
www.manaraa.com

Solid Mechanics and Its Applications

Joshua Pelleg

Mechanical 
Properties 
of Ceramics



www.manaraa.com

Solid Mechanics and Its Applications

Volume 213

Series editor

G. M. L. Gladwell, Waterloo, Canada

For further volumes:
http://www.springer.com/series/6557

http://www.springer.com/series/6557


www.manaraa.com

Aims and Scope

The fundamental questions arising in mechanics are: Why? How? and How much?
The aim of this series is to provide lucid accounts written by authoritative
researchers giving vision and insight in answering these questions on the subject of
mechanics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it
includes the foundation of mechanics; variational formulations; computational
mechanics; statics, kinematics and dynamics of rigid and elastic bodies: vibrations
of solids and structures; dynamical systems and chaos; the theories of elasticity,
plasticity and viscoelasticity; composite materials; rods, beams, shells and mem-
branes; structural control and stability; soils, rocks and geomechanics; fracture;
tribology; experimental mechanics; biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts
are monographs defining the current state of the field; others are accessible to final
year undergraduates; but essentially the emphasis is on readability and clarity.
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Preface

This textbook presents a general review of the Mechanical Properties of Ceramics
and aims to provide an overall understanding of the subject. It surveys the various
behaviors characteristic of ceramics in response to applied forces. The present
approach emphasizes common denominators in the responses of all these materials
to certain applied forces, while delineating the differences found between various
classes of the large families of materials. By discussing the general mechanical
behaviors of ceramics as a whole, rather than the specific behaviors of each type of
ceramic separately, it is hoped that the readers, students, and engineers alike, will
understand that these mechanical properties are governed by physical laws com-
mon to them all and relevant to all their applications.

The book has been arranged in a manner different from that found in many, if
not most, of the textbooks dealing with mechanical behavior and follows, to some
extent, the same framework established in my earlier book on the Mechanical
Properties of Materials. As such, Chap. 1 presents all the basic tests and equations
useful for a student entering a materials testing laboratory for the first time.
Chapter 2 shows that there are ductile ceramics also at ambient temperature and
discusses ductility at elevated temperatures, superplasticity, and other features
directly influencing ductility or related to their strength properties. Chapter 3
establishes the theoretical foundations of mechanical properties and considers
imperfections—point defects and dislocation-related concepts, setting the back-
ground for experimental observations. In Chap. 4, deformations, elastic and
plastic, are discussed both at low and elevated temperatures, as are slip and
twinning. Here, high-temperature deformation is emphasized, because even
ceramics that are brittle at room temperature show some ductility at high
temperatures. Ceramic strength and strengthening mechanisms are dealt with in
Chap. 5. Time-dependent deformation (creep) is the subject of Chap. 6 and
ceramics that are brittle or ductile at room temperature and superplastic ceramics
are discussed. This chapter also considers the phenomenon of rupture and the
design of materials to prevent creep. Cyclic deformation (fatigue) in ceramics is
broadly discussed in Chap. 7, whereas static, time-dependent fracture, dynamic
deformation and the theoretical strength of materials are the subjects of Chap. 8. In
the ninth and final chapter, small grain-sized ceramics, in the nanosize range, are
considered.

ix

http://dx.doi.org/10.1007/978-3-319-04492-7_1
http://dx.doi.org/10.1007/978-3-319-04492-7_2
http://dx.doi.org/10.1007/978-3-319-04492-7_3
http://dx.doi.org/10.1007/978-3-319-04492-7_4
http://dx.doi.org/10.1007/978-3-319-04492-7_5
http://dx.doi.org/10.1007/978-3-319-04492-7_6
http://dx.doi.org/10.1007/978-3-319-04492-7_7
http://dx.doi.org/10.1007/978-3-319-04492-7_8


www.manaraa.com

Actual problems are not presented for solution, so that each lecturer may devise
his/her own problems to challenge the students. There is no need to repeat prob-
lems that appear in other textbooks. Suffice it to say that those interested in
conceiving of practical problems that may arise in the field are encouraged to seek
them (and their probable solutions) for their own benefit.

I would like to express my gratitude to all publishers and authors for permission
to use and reproduce some of their illustrations and microstructures.

Finally, without the tireless devotion, help, understanding, and unlimited
patience of my wife Ada, I could never have completed this book, despite my
decades of teaching in this field; her encouragement was essential and her helpful
attitude was instrumental in inspiring to write this book. Thanks to Ethelea
Katzenell of Ben-Gurion University for improving the English.
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Chapter 1
Mechanical Testing of Ceramics

Abstract This chapter considers the most common mechanical testing methods
which are usually expected to be performed by students entering the first time into
a lab. Tensile test-related parameters are evaluated. Very popular tests of ceramics
are the various hardness tests (for example Vickers hardness test), which is not
only a cost saving test, but also requires shorter times, since no specific specimen
preparation, except of a smooth (often polished) surface is required. On small size
specimens, Knoop hardness test is the general approach to obtain hardness data.
Another accepted method of evaluating the mechanical properties of a ceramic is
by a bending (flexural) test. The tests can be performed by three or four point
bending tests. Compression tests are more popular than tension tests, since they
tend to close pores, cracks and other flaws resulting in higher test results than by
those obtained by tension, which tends to open rather than close cracks and mi-
crocracks. Toughness is an important criterion in ceramic properties (mechanical)
evaluation. Because of the brittle nature of ceramics, special instrumented Charpy
Impact Test machines were developed, primarily to evaluate the dynamic tough-
ness of such materials. Creep and Fatigue tests are not included in this chapter and
they will be evaluated in separate chapters. Because of the large scatter in the
experimental results, Weibull statistical distribution is applied to obtain a mean
value of the experimental results.

1.1 Introduction

Ceramic materials have been used by Mankind on Earth since the dawn of time.
Early ceramics were made of clays hardened into various desirable and practical
shapes. Such objects are called ‘ceramics clay’ and served both as useful tools and
things of beauty. Ceramic materials are the end products of clays fired at high
temperatures. Generally, ceramics clay articles are made by moistening a mixture
of clays, casting it into desired shapes and then firing it to a high temperature, a
process known as ‘vitrification’. It would be hard to imagine human progress

J. Pelleg, Mechanical Properties of Ceramics, Solid Mechanics
and Its Applications 213, DOI: 10.1007/978-3-319-04492-7_1,
� Springer International Publishing Switzerland 2014

1



www.manaraa.com

without those very first steps when humans began to make utensils to meet daily
needs. Tools and weapons were necessary for the struggle to survive the perils to
which humans were exposed. Ceramics antedated most other materials and one
cannot imagine metal smelting and casting without the necessary ceramic cruci-
bles. In fact, the relatively late development of metallurgy in the history of
Mankind was contingent on the availability of ceramics and the know-how to mold
them into the appropriate forms. Without that primordial knowledge of ceramics
fabrication today’s expertise would not exist.

Moreover, one of the hottest scientific topics currently being debated is the role
played by ceramics, or more specifically by clay, in the origin of life. Cath Harris
discusses this in a recent publication entitled: ‘‘Did clay mould life’s origins?’’
[54]. She reports that clay was suggested by crystallographer John Bernal as a
means of concentrating primitive biomolecules onto its surface, making them
available for further reactions [51]. Clays were spotlighted again more recently
when James Ferris showed that they can act as catalysts for the formation of long
strands of RNA (ribonucleic acid), crucial elements of the DNA proteins essential
for the origin of life. Professor Don Fraser from the Department of Earth Sciences
at the University of Oxford has carried out neutron scattering experiments to try
and find out more about the role of geochemistry in determining the origin of our
amino acids—key building blocks of life on Earth—and specifically why the
DNA-coded amino acids that make up our proteins are all left-handed [henceforth:
LH]—which has led many researchers to believe that clay served as a template for
life [53]. The modern identification of various ceramics by their chemical com-
position and structure follows.

The atoms of the elements comprising the structures of various ceramic
materials are attached to each other by: (a) ionic bonding, (b) covalent bonding or
(c) a mixture of ionic and covalent bonding. Most ceramics, however, have mixed
bonding. The ratio of ionic to covalent bonding determines the properties of the
ceramics. This structural feature is the easiest way to refer to a particular ceramic.
The elements comprising ceramics are either metallic or non-metallic (such as O,
N, C); accordingly, ceramics are often classified as being ‘oxide ceramics’, ‘nitride
ceramics’ or ‘carbide ceramics’.

Some of the general features of ceramics may be summarized as follows:

(i) Contrary to metals, ceramics show low electric and thermal conductivities,
due to the absence of free electrons which produce the bonds between atoms.

(ii) Ceramic materials, in general, are harder and stronger than metals, since their
ionic and covalent bonds are much stronger than the relatively weak metallic
bonds.

(iii) Ceramic structures are characterized by high melting points, high moduli of
elasticity and high temperature and chemical stabilities. These qualities are
strength related, namely, a consequence of the inter-atomic potential function
versus the inter-atomic distance of covalent and ionic bonds. The minimum
potential energy, pictured graphically as the potential well, is deeper for
materials held together by these bonds.

2 1 Mechanical Testing of Ceramics
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(iv) Usually, ceramics are brittle, since free dislocation glide through the planes of
the structure is impeded.

(v) As in metallic structures, ceramics are either crystalline or amorphous.

Because of the aforementioned characteristics of ceramics, they offer great
advantages over metals in specific applications in which hardness, wear resistance
and chemical stability at high temperatures are essential. However, the wide ‘all-
purpose’ use of ceramics remains hampered by room (and lower) temperature
brittleness, namely, the lack of sufficient ductility. If this disadvantage, which is an
integral property of ceramic materials, could be overcome, then ceramics could be
more widely applied. Thus, much research has been done to remove this limitation
by improving ceramic brittleness by various methods with appreciable success
(see, for example, [27, 45, 29]). Moreover, it has been observed that brittle
ceramics can be made ductile in special cases, permitting large plastic deforma-
tion, even up to *100 % at low temperatures, if a polycrystalline ceramic is
produced with a low crystal size, of the order of a few nm, which apparently
allows for the diffusional flow of atoms along the grain boundaries [29].

In the following sections, the commonly used tests applied to ceramic materials
are discussed, mostly with respect to the monolithic ceramics, such as oxides,
nitrides, carbides and borides. The vast number and types of existing ceramics
preclude covering all of them here. However, consideration and emphasis will be
focused on their structural feasibility for various applications and on their relevant,
practical mechanical properties.

1.2 Tension Test

Tension tests provide information on the strength and deformation of materials
under uniaxial tensile stresses. To evaluate the strength of ceramics, typically a
brittle material, one must test a statistically significant number of specimens in
order to obtain a reliable average value. Note that specimen size affects the
strength values. This test provides information on strength and deformation, but
uniform stress states are required to obtain a meaningful value characterizing the
ceramics under uniaxial tensile stress. The test conditions, subcritical cracks
(which grow relatively slowly, i.e., fast test rates are recommended), other flaws
and environmental effects resulting in stress corrosion all influence the outcome of
such tests. Therefore, specimens from particular ceramics should be produced in
standard dimensions, although one must still bear in mind that the test results for
specimens do not necessarily totally represent the strength properties of an entire,
full-sized item. Thus, even the results of tests done on standardized specimens only
represent the overall strength properties of a certain ceramic material processed in
a particular manner and are less indicative of the same or similar ceramics pro-
cessed and treated differently. Furthermore, a uniaxial tension test is meaningful if
it is applied primarily to ceramics that macroscopically exhibit isotropic,

1.1 Introduction 3
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homogeneous and continuous behavior. This way, the probabilistic strength dis-
tribution of the brittle ceramic material may be converged into a more charac-
teristic value for the tested material. In addition, the method of specimen
fabrication, the testing technique, the strain rate used, etc., are important factors to
be considered when the results are expected to be characteristic of a particular
ceramic.

Figure 1.1a is a typical stress–strain curve for a brittle ceramic having only
elastic deformation up to the point of fracture. As indicated in the introduction,
ceramics fail in a typically brittle manner, due to the ionic nature of the bonds,
which prevent slip via dislocation motion. The fact that brittle catastrophic failure
in ceramics is likely is an indication that very little energy is absorbed in the
process of fracture. Pure aluminum oxide behaves as indicated in Fig. 1.1b. The
fracture strain of a ceramic is *0.0008–0.001. One can state that ceramics at room
temperature are Hookean until fracture. In general, ceramic materials experience
very little or no plastic deformation prior to fracture. Slip is difficult due to the
structure and the strong local electrostatic potentials (a consequence of the ionic or
covalent bonds).

In Fig. 1.1b, a glass-like ceramic, which is usually amorphous, is also shown
indicating the same Hookean behavior without plastic deformation, but at a much
lower fracture stress than in a crystalline alumina, for example.

The brittle fracture of ceramics is predominantly the result of unavoidable
microscopic flaws (micro-cracks, internal pores and atmospheric contaminants),
the presence of which are production outcomes and occur during cooling from the
melt. It is difficult to thoroughly control the formation of these flaws during
manufacturing with the consequent large scatter in the experimental results of the
test specimens. The growth of micro-cracks into a crack formation and its prop-
agation occur perpendicular to the applied stress transgranularly along specific
cleavage planes until fracture sets in.

The tensile testing of brittle materials is difficult to perform satisfactorily by
straight uniaxial testing in the conventional tensile testing machines. Specimen
gripping is also a common problem in uniaxial testing. The disagreement between
various tests is high, sometimes approaching 100 %, due to the lack of sufficient
ductility to allow the relief of misalignment stresses. Efforts to overcome technical
problems in the uniaxial tensile testing of brittle materials are described in the
literature for round and flat specimens. Seshadri and Chia [43] developed a special
test fixture for the uniaxial testing of flat ceramic specimens which eliminates
premature gripping failures and stress-concentration-related problems arising from
misalignment in uniaxial tension. Some tests have been performed on SiC speci-
mens using this fixture. Figure 1.2 is reproduced from their work. A tension test
was carried out at 23� C in air using a crosshead rate of 8.4 7 9 10-6 m/s (0.02 in./
min). This test resulted in a Young’s modulus of 420.9 ± 9.8 GPa, which is very
consistent with the published data. Their specimens are essentially plate specimens
of uniform thickness (3.2 mm) with wedge-shaped ends for improved gripping.
The fraction of specimens failing in the gage section may be used as a qualitative
measure of the alignment. The fractions for the sintered alpha SiC were *55 %.
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Seshadri and Chia [43] claim that these values are quite comparable to similar test
configurations used in sintered copper-steel specimens (i.e., about the same as in
metallic specimens).

The reproducibility and applicability of this test procedure has been established
as being appropriate for advanced structural ceramic specimens. Figure 1.3 shows
the microstructure of the tensile fracture surface for the sintered alpha SiC.

As indicated, the inability to slip makes ceramics more difficult to deform.
However, since ceramics behave like a Hookean body until fracture, the known
stress–strain relations in elastic deformation can be applied. Assuming that the
force, P, is acting normally on a small area, DA, of a ceramic test specimen:

r ¼ lim
A!0

dP

dA
¼ dP

dA
ð1:1Þ

Typical ceramics such as Al2O3

x

Glass-like ceramics

x

x

(b)(a)

Fig. 1.1 Stress–strain curve of a ceramic material: a only elastic deformation; b typical
ceramics, such as Al2O3 and glass

Fig. 1.2 Typical stress–
strain curve for a sintered
a-SiC specimen [43]. With
kind permission of
JohnWiley and Sons
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or

dP ¼ rdA ð1:2Þ

Integrate (1.2)

P ¼
Z

rdA ð1:3Þ

Although ceramics are often not completely uniform in their structure
(as mentioned above) and have various flaws, it is assumed that the stress is
distributed uniformly over the cross-section of the test specimen and, thus, acts at a
constant level, rewriting (1.3) as:

P ¼ r
Z

dA ¼ rA ð1:4Þ

As such, the stress is absorbed by the fracture as:

r ¼ P

A
ð1:4aÞ

Figure 1.2 for a-SiC was obtained by using thin-plate specimens (3.2 mm) of
uniform thickness with tapered regions for gripping, as illustrated schematically in
Fig. 1.4. The purpose of the tapered parts at the ends of the specimens was to
accommodate the gripping blocks and to provide good alignment in the plane par-
allel to the specimen (suggested by Seshadri and Chia [43]). The size of the region
between these tapered edges is 50 mm. Tensile specimen dimensions are given in
the ASTM standards for the testing of ambient advanced ceramics with solid rect-
angular cross-sections. The Hookean behavior of the stress–strain relation gives:

Fig. 1.3 a Typical tensile fracture surface of sintered a-SiC (r = 163 MPa). b Higher magni-
fication shows the transgranular fracture mode [43]. With kind permission of John Wiley and Sons
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r ¼ Ee ð1:5Þ

In (1.5), e is the average linear strain, which correlates the change in specimen
dimension with its original length and which may be expressed as:

e ¼ l� l0

l0
¼ Dl

l0
¼ 1

l0
� 1 ð1:6Þ

l0 is the original length within the gage length of the specimen, while Dl is the
axial change resulting from the elastic deformation. Thus, Dl is often referred to as
the ‘deformation’. Equation (1.6), linear strain, may also be expressed as:

e ¼
Z l

l0

dl

l0
¼ l� l0

l0
ð1:7Þ

Important amorphous ceramics are the glass-like materials. A schematic stress–
strain curve is indicated in Fig. 1.1b and shows a lower overall stress–strain curve.
However, it would be difficult to enumerate all the many types of glass with a wide
variety of compositions, ranging from the most common window glass to the
various metallic glasses. In general however, internal and external factors influ-
ence the performance of ceramic materials even to the point at which ductility can
be induced. Here are some of these factors, especially those that have critical
effects on ceramic (and glass) behavior:

Internal factors of major influence are:

(a) Grain size
(b) Pores
(c) Other flaws, such as micro-cracks.

Fig. 1.4 Schematic shape of the plate-like specimen used in tensile testing resulting in uniform
and reproducible values
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External factors:

(a) Composition
(b) Specimen size
(c) Specimen shape.

For instance, the tensile stress–strain properties of a bulk metallic glass (BMG)
is shown in Fig. 1.5.

Metallic glasses are recognized as being true glasses and behave as any of the
aforementioned brittle materials. BMGs are of current interest, because of their
wide spectrum of applications. Similarly to conventional oxide glasses (such as
silica glasses), BMGs are brittle at room temperature when tested under tension.
This is shown in Fig. 1.5 for two types of BMG, where the test was performed in
both directions, i.e., also in the transverse direction. It is interesting that the
colored lines shown in Fig. 1.5 were obtained in situ by using synchrotron X-ray
diffraction [henceforth: XRD]. The tensile stress–strain curves of these two BMGs
at room temperature with a strain rate of 1 9 10-4 s-1 are also illustrated Fig. 1.5.
Although some BMGs exhibit pronounced plasticity under uniaxial compression
or bending conditions, they are generally destroyed with catastrophic failure under
tension at room temperature and at a slow strain rate. No tensile plasticity is
observed in the specimens illustrated in Fig. 1.5. By linearly fitting the points and
calculating the ratio of the strains between the transverse and tensile directions for
each alloy, the tensile elastic modulus and Poisson’s ratio were obtained as
*83 GPa and 0.37 for Zr62Al8Ni13Cu17 BMG and 34 GPa and 0.36 for
La62Al14(Cu5/6Ag1/6)Co5Ni5 BMG, respectively. The strain was calculated by
using the relation:

e ¼ d � d0

d0
¼ q0 � q

q
ð1:8Þ

Fig. 1.5 (Color online)
Strains determined from the
diffraction data of tensile/
transverse directions. In
addition, the tensile stress–
strain curves of
Zr62Al8Ni13Cu17 and
La62Al14(Cu5/6Ag1/6)Co5Ni5
bulk metallic glasses (BMG)
are also included for
comparison [46]. Reprinted
with kind permission of the
American Institute of Physics
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where d0 and d indicate the peak positions in real space under zero stress and r
stress while the difference between q0 and q (the first peak positions under the
aforementioned stress conditions) were derived from the use of structural mea-
surements from in situ synchrotron XRD.

To indicate the different deformation-mode-dependent behaviors in amorphous
BMGs, Figs. 1.6 and 1.7 indicate the stress–strain relations under tension and
compression of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. The strength
of amorphous BMGs often approach theoretical limits, while the plastic defor-
mation depends predominantly on temperature, but also on strain rate and mode of
deformation.

In Fig. 1.7, the Zr41.25Ti13.75Ni10Cu12.5Be22.5 alloy indicates yielding under
compression and the plastic flow proceeds at a constant stress, contrary to the
tension test shown in Fig. 1.6a. Under tension, the yield stress coincides with the
fracture stress, which is usually observed in brittle materials without ductility.

Specimen size, in general, has an effect on mechanical tests, and ceramics or
glasses are no exception. The shapes of ceramic and glass test specimens are often
a matter of convenience, but, in most cases, the specimen’s form dictates the test
conditions. Various other techniques have also been suggested to improve the
reliability of the strength result. One such technique, used for the tensile testing of
ceramic fibers, is video extensometry [25]. Figure 1.8 illustrates a schematic video
set up for the evaluation of the results of SiC monofilaments.

The video-extensometer eliminates the use of an external extensometer, which
can cause micro-cracking during handling. Furthermore, small-sized specimens in
the micron range may be tested using this method. Here, the video-extensometer
was used to evaluate the tensile properties of silicon carbide monofilaments
100 lm in diameter and to determine the change in distance, Dl between the
marked targets, caused by the mechanical strain to the specimen. The strain is then
calculated in the conventional manner, as indicated in Eq. (1.6), rewritten here as:

Fig. 1.6 a Tension stress–strain curve; b torsion stress–strain curve [23]. With kind permission
of Elsevier
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e ¼ Dl

l0
ð1:6aÞ

The camera (shown in Fig. 1.8) is focused on the specimen. For details of the
measuring technique, the original work of Coimbra et al. [25] may be consulted.
The sensitivity of the video-extensometer was tested by varying the crosshead
speed, using the rates of 0.1, 0.2 and 0.6 mm/min. The crosshead speed had no
effect on the mechanical properties of SiC monofilaments between 0.1 and
0.6 mm/min. Very good agreement was found between the Young’s modulus
experimental data and the expected values. The tensile strength values
(2100–2600 MPa), however, were lower than 3500 MPa, due to surface micro-
cracking caused by handling. Different fiber lengths were tested (80, 120 and
160 mm) at a crosshead speed of 0.2 mm/min and the initial distance between the
targets was kept between 40 and 60 mm in all cases. No influence of the specimen
length was noticed, which means that testing fibers with the video-extensometer
does not require specific specimen lengths to get reproducible results. Figure 1.9 is
an illustration of the stress-strain curve obtained by Coimbra et al. [25].

Polycrystalline alumina fibers were also tested in this way with very good
agreement between the experimental mean values and the expected data (less than
2 %). It was shown that video-extensometry could be a successful method for
recording the elastic deformation and brittle failure of ceramic fibers.

1.2.1 Tension of Ductile Ceramics

Most ceramic materials are brittle at room temperature. However, in the case of
ductile materials, namely when the elastic limit and the fracture stress do not
coincide due to some plasticity observed in the deformation process, the relation
can be given, similarly to Eq. 1.7, as:

Fig. 1.7 Compressive
stress–strain curves [23].
With kind permission of
Elsevier

10 1 Mechanical Testing of Ceramics



www.manaraa.com

e ¼
Zli

l0

dl

l
¼ ln

li

l0
ð1:9Þ

Fig. 1.8 General diagram of the video-extensometer connected to the tensile testing system. PC
is a fast processor which allows real-time acquisition and analysis of the data [25]. With kind
permission of Springer

Fig. 1.9 Typical experimental stress-strain curve of SiC monofilament [25]. With kind
permission of Springer
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Here clearly, li is the instantaneous length of the test specimen. Equation 1.9 is
the summation of all the small changes between the two values and, thus, may be
expressed as:

e ¼ R
l1 � l0

l0
þ l2 � l1

l1
þ l3 � l2

l2
þ . . .

� �
ð1:10Þ

Sometimes, it is necessary to alternate between these two definitions of strain,
namely e and e, which can be easily done, as shown below, by rendering Eq. (1.6) as:

eþ 1ð Þ ¼ l

l0
ð1:6bÞ

Then, it is possible to apply Eq. (1.9) as follows:

e ¼ ln
l

l0
¼ lnðeþ 1Þ ð1:9aÞ

expanding Eq. (1.9a):

e ¼ lnðeþ 1Þ ¼ e� e2

2
þ e3

3
� . . . ð1:9bÞ

and, for small strains, as is the case in most (brittle) ceramic materials showing
limited ductility, Eq. (1.9b) actually becomes:

e ffi e ð1:9cÞ

When, for example, a load is acting on an elastic body in x direction, it elon-
gates not only in the direction of the acting load, but contracts laterally, as well.
Thus, contraction must occur in the transverse y and z directions. Empirically,
it was observed that transverse strains are constant fractions of longitudinal
extension. The ratio of the lateral contractive strain to the axial strain is called
‘Poisson’s ratio’, denoted by m and expressed as:

m ¼ �lateral strain

axial strain
¼ �ey

ex
¼ �ez

ex
: ð1:11Þ

This ratio denotes a reduction in cross-section elongation. In brittle materials,
there is a small change in the cross-section with elongation, so m is low. Thus, when a
sample of material is stretched on one axis, it tends to get thinner also on the other
two axes. If, during the uniaxial tension, no lateral contraction occurs, then m = 0.

Another expression for the Poisson’s ratio connects the elastic modulus, E, with
the shear modulus and is given by:

G ¼ E

2ð1þ mÞ ð1:12Þ
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or

m ¼ E

2G
� 1 ð1:12aÞ

1.2.2 Stress Tensor

This section introduces the concept of the ‘stress tensor‘. Stress tensors are
especially significant for brittle materials, such as ceramics and essential for
defining stress at a certain point. In addition, they help to construct a ‘Mohr’s
circle of stress’ (discussed later). The following discusses Eq. (1.12), explaining
what happens when three normal stresses act simultaneously on a test specimen.
The simplest way to understand this is by visualizing a cube of unit dimensions
under rx, ry and rz stresses, creating a three-dimensional state-of-stress problem.
Consider an elementary cube with edges dx, dy and dz removed from a structural
body in equilibrium upon which external forces are applied. The stress acting on
each plane (shown in Fig. 1.10) can be resolved into normal stress components
(rx, ry and rz) and two shear-stress components.

The stress defined at a specific point (described by the elementary cube, i.e.,
upon which the cube is converging) is a tensor:

rij ¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

ð1:13Þ

All the stress symbols in Eq. (1.13) are denoted by subscripts, though the
designations from Fig. 1.10 are very often used. Thus, equivalent designations for
the normal and the shear stresses are shown respectively in (1.13a).

r11; r22; r33 are equivalent to rx; ry; rz

r12; r13; r21; r23; r31; r32 are equivalent to

sxy; sxz; syx; syz; szx; szy:

ð1:13aÞ

Expression (1.13) may also be written as:

rij ¼
rx sxy sxz

syx ry syz

szx szy rz

ð1:13bÞ

In Eq. (1.13) or (1.13b), the diagonal symbols are the normal stress compo-
nents, while the off-diagonal elements are the shear-stress components acting
tangentially on the shown faces of the elemental cube. Note that, when the normal
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stress components are directed outward from the plane, they are defined as positive
(i.e., tensile stress). Furthermore, if the positive, normal-stress component is
directed in the positive coordinate direction (as shown in Fig. 1.10), then the
shear-stress components are also positive in the positive coordinate direction.

1.2.3 Stress on an Inclined Plane

The ‘Cauchy stress tensor’, r, at any point of a body (assumed to behave as a
continuum) is completely defined by nine component stresses–three orthogonal,
normal stresses and six orthogonal, shear stresses. It is used for the stress analysis
of materials undergoing small deformations, in which the differences in stress
distribution, in most cases, can be neglected.

Figure 1.10 shows the nine components of the stress tensor required to deter-
mine the stress state around an arbitrary point. Assuming that a point, P, is at the
origin of a Cartesian coordinate system, Fig. 1.11 shows the stress components
acting at an inclined plane labeled A, B and C. The directional cosines of the
inclined plane are ai (i.e., a1, a2, a3).

Recall that the ‘directional cosines’ of a vector are often defined as being the
cosines of the angles that the vector makes with the x, y and z axes, respectively.
These angles are labeled: a (the x axis’ angle), b (the y axis’ angle) and c (the z
axis’ angle), while defining: l = cosa, m = cosb and n = cosc.

Let the stress on the inclined plane in Fig. 1.11 be ri = (r1, r2, r3) and using
the labels for the notation from Eq. (1.13):

τ

x

y

z

dx

dy

dz

τzx

zy

σy
τyx

τyz

σxτxy

τxz

σzx3

x1

x2

Fig. 1.10 An elementary cube, removed from a structural material, is shown under stress-like
forces. These are the components of a stress tensor. Often, the coordinate system is shown as
indicated on the left of this figure
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Let the area of ABC (Fig. 1.11) be s, giving the following for the areas in the
tetrahedron:

Area BPC ¼ s1 ¼ sa1

Area APC ¼ s2 ¼ sa2

Area APB ¼ s3 ¼ sa3

ð1:14Þ

The sum of the forces acting on tetrahedron ABCP should be zero. The force
components, in terms of their x, y and z directions, may be expressed as:X

F1 ¼
X

F2 ¼
X

F3 ¼ 0 ð1:15Þ

The forces in the x, y, z directions are obtained by multiplying the stresses by
the areas upon which they act, giving these forces in their respective directions as:

in the x direction:X
F1 ¼ 0 ¼ r1s� r11sa1 � r21sa2 � r31sa3 ¼ 0 ð1:16aÞ

When eliminating s and expressing the relation for r1:

r1 ¼ r11a1 þ r21a2 þ r31a3 � ri1ai ð1:16bÞ

In line with the notation in Figs. 1.10 and 1.11 and as indicated in Eqs. (1.13a)
and (1.16b), this equation may also be rewritten as:

r1 ¼ rxa1 þ syxa2 þ szxa3 � ri1ai ð1:16cÞ

Note that ri is not a normal stress and is acting on a surface at a point indicated
in Fig. 1.11. In Eqs. (1.16b) and (1.16c), the sum of all the components acting in
the x direction are indicated.

y

x

z

A

B

C

τzy

τzx

σz

σx

τxy

τxz

τyx

τyz

σi

P

σy

x = x1

y = x2

z = x3

Fig. 1.11 A stress acting on
an inclined surface
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In the same way, a similar relation in the y direction may be given as:X
F2 ¼ 0 : r2 ¼ r12a1 þ r22a2 þ r32a3 � ri2ai ð1:16dÞ

and in the notation of (1.13a) as:

r2 ¼ sxya1 þ rya2 þ szya3 ð1:16eÞ

This may also be repeated in the z direction as:X
F3 ¼ 0 : r3 ¼ r13a1 þ r23a2 þ r33a3 � ri3ai ð1:16fÞ

or, as before, in the notation of (1.13a) as:

r3 ¼ sxza1 þ syza2 þ rza3 ð1:16gÞ

Thus, the Eqs. (1.16b), (1.16d) and (1.16f) may be rewritten as:

r1 ¼ r11a1 þ r21a2 þ r31a3 � ri1ai

r2 ¼ r12a1 þ r22a2 þ r32a3 � ri2ai

r3 ¼ r13a1 þ r23a2 þ r33a3 � ri3ai

ð1:17Þ

One can briefly summarize the above Eqs. (1.16b), (1.16d) and (1.16f) for the
stresses at any point on the inclined plane by writing the stress tensor in any
Cartesian coordinate system as:

ri ¼ rijaj ð1:17aÞ

Adopting the notation in Eqs. (1.16c), (1.16d) and (1.16g) for the notation of
Figs. 1.10 and 1.11, they may also be rewritten as:

r1 ¼rxa1 þ syxa2 þ szxa3

r2 ¼ sxya1 þ rya2 þ szya3

r1 ¼ sxza1 þ syza2 þ rza3

ð1:17bÞ

In the above, a1, a2 and a3 are called the ‘directional cosines’ and are the
components of the normal unit vector, i.e., the line of unit length perpendicular to a
surface at point P. They are usually written as:

a1 ¼ cosðn; x1Þ
a2 ¼ cosðn; x2Þ
a3 ¼ cosðn; x3Þ

ð1:18Þ

or:

ai ¼ cosðn; xiÞ ð1:18aÞ

where i is 1, 2, 3.
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In Eq. (1.18), the angles between the normal and the xi axes are the respective
angles. (Clearly, x1, x2 and x3 are the x, y and z coordinates, as indicated in
Fig. 1.11.) The stress vector is dependent on the position in space and on the
inclination, as determined by the directional cosines of the normal to the surface
upon which it is acting.

Depending on the orientation of the plane under consideration, a stress vector
may not necessarily be perpendicular to that plane. In Fig. 1.11, ri is not normal to
the inclined plane. It is often advantageous to resolve this stress both for its normal
component vis-a-vis the surface, rN (also indicated as N) and for its shear com-
ponent parallel to the surface, T (s is a very common designation). The compo-
nents of the normal rN are:

rN ¼ r1a1 þ r2a2 þ r3a3 ð1:19Þ

and those of the shear components are:

T = (r2�r2
NÞ

1=2 ¼ ðr2
1 þ r2

2 þ r2
3 � N2Þ1=2 ¼ ðririN

2Þ1=2 ð1:19aÞ

T is often referred to it as ‘traction’ and clearly it represents a stress vector
acting parallel to the surface. From the Pythagorean relation shown in Fig. 1.12,
the sum of the squares of the normal and tangential stresses on any face of an
elementary cube under arbitrary stress is equal to their sum. Furthermore, the shear
component, T, is usually not parallel to any of the axes of a chosen coordinate
system, as indicated in Fig. 1.12. It is, however, common to resolve this shear
stress into two components, each of which is parallel to a chosen reference
coordinate system. In Fig. 1.13, the stresses are indicated on the z plane.

Substituting the respective components of (1.17) into (1.19), one obtains:

rN ¼ r11a
2
1 þ r22a

2
2 þ r33a2

3 þ 2r12a1a2 þ 2r23a2a3 þ r31a3a1 ð1:20Þ
If instead, (1.17b) is substituted into (1.19), the resulting notation of Fig. 1.11

becomes:

rN ¼ rxa2
1 þ rya

2
2 þ rza

2
3 þ 2sxya1a2 þ 2syza2a3 þ 2szxa3a1 ð1:20bÞ

Equation (1.20b) is often found written differently. The directional cosines
from Sect. 1.2.3, paragraph 2 (above) were in brackets, in terms of l, m and n; thus,
one can rewrite (1.20b) accordingly as:

rN ¼ rxl2 þ rym2 þ rzn
2 þ 2sxylmþ 2syzmn þ 2szxnl ð1:20cÞ

Each of the shear components in (1.20), (1.20b) and (1.20c) are then multiplied
by 2 as a consequence of the following. Consider the elementary cube in Fig. 1.10,
with dimensions dx, dy and dz, and imagine that this cube is shrinking to a very
small size, almost to the point about which the cube was drawn. In the absence of
gravitational or other forces to maintain equilibrium, the moments about the axes
on the opposite faces must be equal. Thus, the moment produced by sxz on the z
axis acting on area (dydz) at a distance, dx, may be written as: sxy(dydz)dx.
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Similarly, the moment produced by syx acting on the (dxdz) plane at a distance, dy,
is syx(dzdz)dy. Therefore:

sxyðdydzÞdx = syxðdzdzÞdy ð1:21Þ

or

sxy ¼ syx ð1:21bÞ

Similar relations are obtained at equilibrium of the cube about axes x and y,
resulting in:

x

y

z

P

σ

Ν

x = x1

y = x2

z = x3

Normal StressΝ = σN -

T

T = τ - Shear Stress component

σ2 = Τ2 + Ν2

Fig. 1.12 An arbitrary stress acting on a point is resolved into normal and shear stress
components

N
T

τzyτzx

σz

σy

σx

Fig. 1.13 The shear stress,
T, in Fig. 1.12 is further
resolved into two components
parallel to the respective
coordinate axes. Both the
normal and shear stresses are
acting on the z plane
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syz ¼ szy and szx ¼ sxz ð1:21cÞ

These relations explain the factor 2 in the above relations for rN. Since
sxy = syx, syz = szy and szx = sxz for arbitrarily chosen orthogonal axes, only six
stress components are needed to define the stress at any point (instead of nine).

1.2.4 Principal Stresses

When a stress perpendicular to a surface acts at a point on that surface in the
absence of shear stresses, that stress is called ‘principal stress’. In other words, it is
possible to find an orientation such that, for any point on a surface represented by
the elementary cube, the shear stresses on the cube’s surfaces vanish. Thus,
sxy = syz = szx = 0 and only three normal stresses (of the nine) remain. The three
perpendicular planes and the three coordinates are the principal planes and the
principal axes, respectively. Directions along the principal axes are known as
‘principal directions’. The stress components vary as the orientation of the
orthogonal, coordinate axes changes. Figure 1.14 illustrates the principal stresses
and their directions for a point inside a body, compared to the initial system of
coordinates and the stress tensor after rotation.

1.2.4.1 Calculation of Principal Stresses

In Fig. 1.15, an inclined plane is indicated with a normal stress, r (:rn :rN),
which, when multiplied by the directional cosines, may be resolved into its
components on the basis of Eq. (1.17) by means of the designations indicated in
Fig. 1.15 (on its left side) as:

In Eq. (1.17), the indicated stress is acting at a point on an inclined plane,
reproduced here as Eq. (1.22). An inclined plane is defined by its directional
cosines; in the absence of shear stress and, if the stress is normal (as shown in
Fig. 1.15), it is a ‘principal stress’. It follows that:

r1 ¼ ra1 ¼ r11a1 þ r21a2 þ r31a3 � ri1ai

r2 ¼ ra2 ¼ r12a1 þ r22a2 þ r32a3 � ri2ai

r3 ¼ ra3 ¼ r13a1 þ r23a2 þ r33a3 � ri3a

ð1:22Þ

Expression (1.22) may be written as:

ðr� r11Þa1 � r21a2 � r31a3 ¼ 0

�r12a1 þ ðr� r22Þa2 � r32a3 ¼ 0

�r13a1 � r23a2 þ ðr� r33Þa3 ¼ 0

ð1:22bÞ

1.2 Tension Test 19



www.manaraa.com

These three homogeneous linear equations for the directional cosines can only
be solved for a non-zero solution, when their determinant equals zero. Thus:

ðr� r11Þ �r21 �r31

�r12 ðr� r22Þ �r32

�r13 �r23 ðr� r33Þ

������

������ ¼ 0 ð1:22cÞ

The solution is:

r3 � ðr11 þ r22 þ r33Þr2 þ ðr11r22 þ r22r33 þ r11r33 � r2
12 � r2

23 � r2
31Þr

� ðr11r22r33 þ 2r12r23r31 � r11r
2
23 � r22r

2
13 � r33r

2
12Þ ¼ 0

ð1:22dÞ
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τxz

x

Fig. 1.14 Rotation of the elementary cube to a position where the shear stresses vanish is
indicated. a Before rotation; b after rotation only the normal stresses (in red), known as ‘principal
stresses’, remain. The new axes are the ‘principal axes’ (red)
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on an inclined plane is
resolved into its components,
acting along the directions of
the indicated coordinate
system
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The components of the stress tensor usually change with the reference coor-
dinates, but there are functions of these components that do not change. These
functions are known as ‘stress invariants’. The terms in the parentheses of
Eq. (1.22d) may be rewritten in terms of such invariants as:

J1 ¼ðr11 þ r22 þ r33Þ
J2 ¼ðr11r22 þ r22r33 þ r11r33 � r2

12 � r2
23 � r2

31Þ
J3 ¼ðr11r22r33 þ 2r12r23r31 � r11r

2
23 � r22r

2
13 � r33r

2
12Þ

ð1:22eÞ

By using the terms from (1.22e) in (1.22d), it can be shortened to:

r3 � J1r
2 � J2r � J3 ¼ 0 ð1:23Þ

J1, J2 and J3 are invariant coefficients of stress and, therefore, independent of the
choice of coordinate system. Equation (1.23) is a third-order equation for stress, r,
with three roots, rI, rII, rIII, also termed ‘principal stresses’. Such solutions may
be inserted into Eq. (1.22c) by utilizing the relation:

a2
1 þ a2

2 þ a2
3 ¼ 1 ð1:24Þ

to obtain three sets of directional cosines. Each set is associated with one principal
stress and its direction is called a ‘principal axis of stress’. These three principal
axes are mutually perpendicular. It is customary to designate rI as the largest
principal stress and rIII as the smallest one; thus, rI C rII C rIII.

It is possible to determine the values of the directional cosines that give the
maximum (or minimum) shear stress by using the principal stress axes, the normal
stresses rI, rII, rIII and Eq. (1.17), while all the shear components are zero.
Equation (1.17) reduces to:

r1 ¼ rIa1

r2 ¼ rIIa2

r3 ¼ rIIIa3

ð1:17cÞ

Note that, in Fig. 1.14, the principal stresses are rx (:rI), ry (:rII) and
rz (:rIII), indicated in red with the new coordinate system after rotation (also in
red). Now, by inserting Eq. (1.17c) into Eq. (1.19), Eq. (1.19b) is obtained:

rN ¼ r1a1 þ r2a2 þ r3a3 ð1:19Þ

rN ¼ rIa
2
1 þ rIIa

2
2 þ rIIIa

2
3 ð1:19bÞ

In Fig. 1.15, stress is resolved into three components parallel to the axes
(designated by symbols often found in the literature) of the reference coordinate
system. Often, it is useful to resolve stress into its normal, N, and shear, T,
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components (Fig. 1.12), i.e., normal and parallel to the surface. The components of
rN (Fig. 1.15) and T (Fig. 1.13) are respectively:

rN ¼ r1a1 þ r2a2 þ r3a3 ð1:19Þ

Those of the shear components are:

T ¼ ðr2 � r2
NÞ

1=2 ¼ ðr2
1 þ r2

2 þ r2
3 � r2

NÞ
1=2 ¼ ðriri� N2Þ1=2 ð1:19aÞ

The second term in the parentheses above is an expression of the Pythagorean
relation between r and rN (N) and T, such as T2 = r2 - rN

2 . By taking T2 and
replacing rN in Eq. (1.19), one obtains a relation in terms of the directional
cosines, given as:

T2 ¼ r2
1 þ r2

2 þ r2
3 � ðr1a1 þ r2a2 þ r3a3Þ2 ð1:25Þ

with the principal stresses from Eq. (1.17c) introduced into Eq. (1.25) to give:

T2 ¼ r2
I a

2
1 þ r2

IIa2
2 þ r2

IIIa
2
3 � rIa

2
1 þ rIIa

2
2 þ rIIIa

2
3

� �2 ð1:26Þ

Using Eq. (1.24), a directional cosine, such as a3
2, may be written as:

a2
3 ¼ 1� a2

1 � a2
2 ð1:24aÞ

By inserting this value into Eq. (1.26) and taking partial derivatives with
respect to a1 and a2 as indicted below, the positions of planes upon which T
reaches its extreme values (maximum or minimum) may be defined by:

oT2

oa1
¼ oT2

oa2
¼ 0 ð1:27Þ

Similarly, one can take the partial derivative with respect to a3
oT2

oa3
¼ 0.

Equation (1.26) may be written, after partial differentiation according to
Eq. (1.27) and with the substitution for a3

2 from Eq. (1.24a), as:

oT2

oa1
¼ 0 ¼ a1 rI � rIIIð Þa2

1 þ rII � rIIIð Þa2
2 �

1
2

rI � rIIIð Þ
� �

oT2

oa2
¼ 0 ¼ a2 rI � rIIIð Þa2

1 þ rII � rIII

� �
a2

2 �
1
2

rII � rIIIð Þ
� �

2

oa3
¼ 0 ¼ a3 ðrI � rIIÞa2

2 þ ðr1 � rIIIÞa2
3 �

1
2
ðrI � rIIIÞ

� �
ð1:28Þ

By equating the partial differentials of Eq. (1.26) to zero, the positions of the
planes are defined by where the shear stress reaches its extreme values, namely its
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maximum and minimum. One can find solutions to these equations when a1 or a2

are set to zero. When a1 is zero, the second relation in Eq. (1.28) for a2 yields:

a2 ¼ �
ffiffiffiffiffi
1
2
:

r

From the first relation, for a2 = 0 one gets:

a1 ¼ �
ffiffiffiffiffi
1
2
:

r

From the third relation in Eq. (1.28), for a2 = 0 one obtains:

a3 ¼ �
ffiffiffi
1
2

r
:

Another set of three equations may be derived to yield values for the directional

cosines: a1 ¼ �
ffiffi
1
2

q
; a2 ¼ �

ffiffi
1
2

q
and a3 ¼ �

ffiffi
1
2

q
; thus, altogether six values of a2 ¼

�
ffiffi
1
2

q
can be obtained by using equations similar to Eq. (1.24a) and expressed as:

a2
1 ¼ 1� a2

2 � a2
3 ð1:24bÞ

a2
2 ¼ 1� a2

1 � a2
3 ð1:24cÞ

Inserting these values of a1, a2 and a3 successively into Eq. (1.26), the proper
shear-stress components are:

s12 ¼ �
1
2
ðrI � rIIÞ

s23 ¼ �
1
2
ðrII � rIIIÞ

s13 ¼ �
1
2
ðrI � rIIIÞ

ð1:29Þ

These are principal shear stresses. Conventionally, rI and rIII refer to the
largest and smallest principal normal stresses, respectively. s13 represents the
largest acting shear stress and is, therefore, referred to as the ‘maximum shear
stress’, smax. In Fig. 1.16, an example of a plane with one of the principal shear
stresses is shown for an elementary cube whose faces are principal faces on which
principal stresses are acting. Note that each pair of principal stresses has two
planes of principal shear stress bisecting the planes on which the principal stresses
are acting. In Fig. 1.16, only one of these planes is shown, while the second should
be perpendicular to it (90�). Maximum shear stress acts on planes inclined at 45� to
two principal planes and perpendicular to the remaining plane.
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Here, the shear stress shown is s12 ¼ � 1
2 rI � rIIð Þ. Altogether, six such planes

exist in an elementary cube. For the principal planes in Fig. 1.16, for example, the
normal, N, to the 45� plane shown has directions a1 = a2 = cos 45� = � 1ffiffi

2
p and

a3 = cos90� = 0.
When rI = rII = rIII, no principal shear stresses exist on any inclined plane

according to Eq. (1.29) and stress state is ‘hydrostatic’. Table 1.1 provides
information on the directional cosine values giving maximum shear stresses.

1.2.5 Plain Stress: Two-Dimensional Stress

In modern technology, thin films play an important role in many applications. Thin
films provide an example in which one of the dimensions is very small compared
to the other two; consequently, the stress acting in the microscopic direction will
also be much smaller than in the other two and, as such, may be disregarded.
Sheets, thin films or thin-walled bodies are other examples in which one of the
stresses may be ignored. Thus, a state of plane stress exists when one of the
principal stresses is assumed to be zero and the flat body or the thin film may be

x

z

y

45o
45o

Ν

z

τ12 σN

σΙΙΙ

σΙΙ

σΙ

90ο

Fig. 1.16 Plane of principal
shear stress (45� shear plane)

Table 1.1 Directional cosines of planes that give maximum shear stress in terms of principal
axes

Directional cosines Plane I Plane II Plane III

a1 0 �
ffiffi
1
2

q
�

ffiffi
1
2

q

a2 �
ffiffi
1
2

q
0 �

ffiffi
1
2

q

a3 �
ffiffi
1
2

q
�

ffiffi
1
2

q
0

Shear stress s23 ¼ � 1
2 rII � rIIIð Þ s13 ¼ � 1

2 rI � rIII

� �
s12 ¼ � 1

2 rI � rIIð Þ
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analyzed two-dimensionally with the absence of one stress component. A stress
condition, in which the stress in one dimension (a primary direction) is zero, is
termed a ‘plane stress’. To show a two-dimensional state of stress, the elementary
cube in Fig. 1.10 has been redrawn in two dimensions, as illustrated in Fig. 1.17a.
Rotation of the square transforms this figure into a different coordinate system. In
the following, h is used for the angle of rotation instead of a, previously used for
the directional cosines.

Multiplying the stress by the respective areas gives the force acting on the
element, as indicated to the right of Fig. 1.17c (the bottom figure). The surface
areas associated with the sides of the triangle are indicated to the right of
Fig. 1.17c at the top (above d)).
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Fig. 1.17 Three stresses, rx, ry and sxy, a act in the two-dimensional state of stress; b stress
transformed into another coordinate system; c the triangle is a portion of (b). Surface areas
associated with the sides of the triangle (marked in blue) are indicated. A is the area shown on
one side of the triangle. d The stress distribution after rotation on an inclined plane

1.2 Tension Test 25



www.manaraa.com

The sum of the forces acting in the x0 direction is:

Ar0xsec h� Arxcos h� Asxysin h� Arytan hsin h� Asyxtan hcos h ¼ 0 ð1:30Þ

and the sum of the forces acting in the y0 direction is:

As0xysec hþ Arxsin h� Asxycos h� Arytan hcos h� Asyxtan hsin h ¼ 0 ð1:30aÞ

Recall that:

sxy ¼ syx and sec h ¼ 1=cos h and tan h ¼ sin h
cos h

:

Thus Eq. (1.30) may be rewritten as:

r0x ¼ rxcos2hþ rysin2hþ 2sxysin hcos h ð1:30bÞ

and Eq. (1.30a) as

s0xy ¼ �ðrx � ryÞsinhcoshþ sxyðcos2h� sin2hÞ ð1:30cÞ

Notice the different signs designating force, Arx in Eq. (1.30) and Asxy in
Eq. (1.30a), due to the different directions of the force. It is possible to express
Eqs. (1.30b) and (1.30c) by substituting the known relations from Eq. (1.31),
resulting in Eqs. (1.32)–(1.32d):

cos2 h ¼ 1þ cos 2h
2

sin2 h ¼ 1� cos 2h
2

sin h cos h ¼ sin 2h
2

ð1:31Þ

r
0

x ¼ rx
1þ cos 2h

2

� �
þ ry

1� cos 2h
2

� �
þ 2sxy

sin 2h
2

ð1:32Þ

rearranging Eq. (1.32) to give:

r
0

x ¼
rx þ ry

2
þ rx � ry

2
cos 2hþ sxy sin 2h; ð1:32aÞ

and, similarly, for sxy
0:

s
0

xy ¼ �
rx � ry

2
sin 2hþ sxy cos 2h ð1:32bÞ

As seen from Fig. 1.17c, y0 is 90o + h away from x. For the evaluation of ry
0, h

should be replaced by (90� + h), namely by cos2 (90� + h) or sin2 (90� + h)
using the relations:

cosð180þ aÞ ¼ �cosa and sinð180þ aÞ ¼ �sina ð1:32cÞ
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Thus, Eq. (1.32a) may be written for ry
0 as:

r0y ¼
rx þ ry

2
� rx � ry

2
cos 2h� sxy sin 2h ð1:32dÞ

An important concept is gleaned from the results of adding Eqs. (1.32a) and
(1.32d):

r0x þ r0y ¼ rx þ ry ¼ I ð1:33Þ

It means that the sum of the normal stresses on two perpendicular planes is an
invariant.

1.2.5.1 Principal Stresses

In Sects. 1.2.4 and 1.2.4.1, the concept of principal stresses was discussed regarding
the three-dimensional case of stress acting at a point. As previously mentioned, in
problems involving structural materials, like thin plates, one of the principal
stresses is very small compared to the other two. Often in problems involving such
structural elements, the small principal stress is assumed to be zero and the three-
dimensional stress state can be reduced to two dimensions; the remaining two
principal stresses lay and act in a plane. Figure 1.17a illustrates a two-dimensional
case in the z direction, in which the ‘ignored’ principle stress is actually absent. The
stress matrix in Eq. (1.13b) above is presented for the two- dimensional case in
which all the components having z subscripts have been removed:

rij ¼
rx sxy

syx ry

����
���� ð1:13cÞ

Clearly, in static equilibrium, sxy = syx. The principal stresses may be obtained
by differentiating Eq. (1.32a) with respect to h, equating it to zero and discovering
where the shear stress vanishes:

dr
0

x

dh
¼ � rx � ry

2
2 sin 2hþ sxy2 cos 2h ¼ 0 ð1:34Þ

dr
0
x

dh
¼ � rx � ry

2
sin 2hþ sxy cos 2h ¼ 0 ð1:34aÞ

tan 2h ¼ 2sxy

rx � ry
ð1:35Þ
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Let us denote this angle by hp and, thus, Eq. (1.35) can be rewritten as:

tan 2hp ¼
2sxy

rx � ry
ð1:35aÞ

Equation (1.35) may be expressed in a right-handed triangle by an angle, 2h,
between the hypotenuse and its adjacent side, as shown in Fig. 1.18.

This triangle may be also used to evaluate the cosine and sine functions in
Eq. (1.32a). The significant data are as follows:

sin 2h ¼ 2sxy

H cos2h ¼ rx�ry

H H2 ¼ ð2sxyÞ2 þ ðrx � ryÞ2

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

� �2þ 2sxy

� �2
q ð1:35bÞ

Inserting the respective values into Eq. (1.32a) and rearranging the equation,
one obtains the principal stress:

r0xðprincipalÞ ¼ rI ¼
rx þ ry

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þs2

xy

r
ð1:36Þ

The second principal axis can be obtained from Eq. (1.33), rewritten as:

rI þ rII ¼ r1 þ r2 ¼ rx þ ry ð1:33Þ

tan 2h ¼ 2sxy

rx � ry

Thus:

rII ¼ rx þ ry � rI ¼
rx þ ry

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þs2

xy

r
ð1:36aÞ

Furthermore, it is possible to take a derivative of Eq. (1.32a) to find the
maximum shear stress:

ds
0
xy

dh
¼ � rx � ry

2
2 cos 2h� 2sxy sin 2h ¼ 0 ð1:37Þ

tan 2h ¼ � rx � ry

2sxy
ð1:37aÞ

2θ

H

σx- σy

2τ
xy

Fig. 1.18 Equation (1.35)
can be derived from this
triangle
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By reassigning this angle as hs (Eq. 1.37a), it can be rewritten as:

tan 2hs ¼ �
rx � ry

2sxy
ð1:37bÞ

As in the technique applied to principal stresses, an equation for the maximum
shear stress can be obtained from the triangle in Fig. 1.18 with the geometrical
relations in Eqs. (1.35a) or (1.35b) after inserting the proper data into Eq. (1.32b).
The results are:

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þs2

xy

r
ð1:38Þ

Note that Eq. (1.37a) is the negative reciprocal of Eq. (1.35), which means that
both the angle associated with the maximum shear stress and the angle in which
the shear stress vanishes are orthogonal. This is based on the known fact that two
curves are orthogonal if, at each point of intersection, their tangent lines are
perpendicular, i.e., the slopes of their tangent lines at their point of intersection are
negative reciprocals of each other. It is readily shown that the planes of maximum
shear stress, hs, occur at 45� to the principal planes, hp. Subtract the principal
stresses, rI and rII, Eqs. (1.36) and (1.36a) and write:

rI � rII ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þs2

xy

r
ð1:39Þ

rI � rII ¼ 2smax ð1:40Þ

smax ¼
rI � rII

2
ð1:40aÞ

Furthermore, Eq. (1.37a) is equal to:

tan 2hs ¼ �
rx � ry

2sxy
¼ � cot 2hp ¼ �

2sxy

rx � ry
ð1:41Þ

or

tan 2hs þ cot 2hp ¼ 0 ð1:41aÞ

sin 2hs

cos 2hs
þ cos 2hp

sin 2hp
¼ 0 ð1:41bÞ

sin 2hssin 2hp þ cos 2hscos 2hp ¼ 0 ð1:41cÞ
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Recalling the relation:

cosða� bÞ ¼ cos a cos bþ sin a sin b ð1:41dÞ

Equation (1.41c) may be rewritten as:

cosð2hs�2hpÞ ¼ 0 ð1:41eÞ

or

2hs�2hp ¼ � 90o ð1:41fÞ

hs�hp ¼ � 45o ð1:41gÞ

hs ¼ � 45o þ hp ð1:41hÞ

Thus, shear stress reaches a maximum on planes which are oriented at ± 45� to
the principal planes. Recall that the stress system at a given point depends on the
inclination of the plane. The principal stresses are often referred to as being
‘major’ and ‘minor’ principal stresses, referring algebraically to the largest and
smallest normal stresses.

1.2.6 Mohr’s Circle in Two Dimensions

There is a graphical way to evaluate principal stress using the well-known concept
of ‘Mohr’s circle’. Basically, this is a graphic method of representing the plane
stress state at a given point. In essence, a circle is drawn on the abscissa and
ordinate axes, representing r and s. All the stress states obtained, as the angle h
varies, fall on the circle (as will be discussed below). It is simpler to describe the
two-dimensional case. In essence, the most common, graphic illustration presented
in almost every book and the associated methodology is as follows. First, rewrite
the squared Eqs. (1.32a) and (1.32b) to get:

r
0

x �
rx þ ry

2


 �2

¼ rx � ry

2


 �
cos 2hþ sxy sin 2h

h i2
ð1:42Þ

ðs0xyÞ
2 ¼ � rx � ry

2


 �
sin 2hþ sxy cos 2h

h i2
ð1:43Þ

Then, combine the two equations after squaring them, to get:

r
0

x �
rx þ ry

2


 �2

þ s
0

xy


 �2
¼ rx � ry

2


 �2
cos2 2hþ sin2 2h
� 

þ s2
xy sin2 2hþ cos2 2h
�  ð1:44Þ
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This reduces to:

r
0

x �
rx þ ry

2


 �2

þ s
0

xy


 �2
¼ rx � ry

2


 �2
þ s2

xy ð1:45Þ

Equation (1.45) is further modified for the purpose of the graphical presentation
as follows:

rave ¼
rx þ ry

2
and R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þs2

xy

r
ð1:46Þ

and

r
0

x � rave


 �2
þ s

0

xy


 �2
¼ R2 ð1:47Þ

Equation (1.47) has the form of the equation for a circle, such as:

ðx� aÞ2 þ y� bð Þ2¼ r2:

This circle is in a Cartesian coordinate system with center coordinates a, b and
radius r. This circle equation applies to any point on the circle where the radius is
the hypotenuse of a right-angled triangle whose other sides are of length (x - a)
and (y - b). If the circle is centered at the origin (0, 0), then the equation sim-
plifies to:

x2 þ y2 ¼ r2

A circle with center coordinates (a, b) and radius, r, is the set of all points (x, y).
In our case, the circle is such that (rave, 0) are the coordinates and the radius is
R. The parameters of Eq. (1.47) are defined as indicated in Eq. (1.47a):

r0x � x; s0xy � y; rave � a ¼ rx þ ry

2
; b ¼ 0; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þs2

xy

r

¼ smax

ð1:47aÞ

τxy’

σx’σave

τmax

R
σIσII

0

Fig. 1.19 A circle according
to Eq. (1.47)
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Equation (1.47) of the circle can be redrawn by replacing coordinates a, b, and r
with rave, sxy

0 and R, as defined in Eq. (1.47a). In this circle, the points along the
abscissa (at zero shear sxy

0) are the principal stresses, as indicated in Eq. (1.46), in
which rx

0 is the principal stress designated as rI. Any point on the circle can be
obtained by the Pythagorean theorem. Such constructions serve as the basis for
Mohr’s circle, yielding the particular stress at each point. Bear in mind that the
normal and shear stress components in the z direction are zero or negligible.

Figure 1.19 demonstrates that the relation found in Eq. (1.33): rI +
rII = rx + ry = I (an invariant) was applied for the sake of simplicity. However,
to draw Mohr’s circle, the accepted procedure is as follows. Consider Fig. 1.17a,
redrawn in Fig. 1.20a. The plot is in Cartesian coordinates; the abscissa is for
normal stresses and the ordinate for shear stresses. Two points on Fig. 1.20a are
the coordinates on the diameter of the circle as indicated: A (rx, -sxy) and B
(ry, sxy). (Recall that sxy = syx). Tensile stresses are considered positive, while
compressive ones are negative. However, when constructing Mohr’s circle, the
shear stresses are considered positive if they make a counter-clockwise moment
around the stress element. In Fig. 1.20a or 1.21a, sxy is counter-clockwise (neg-
ative), while syx is clockwise (positive), as seen in the rotation in Fig. 1.21b and in
the Mohr’s circle in Fig. 1.21c. This convention is important for determining the
proper orientation of the principal stress relative to the x, y coordinate system.

Figure 1.21 shows the construction of a Mohr’s circle with a counter-clockwise
rotation of an element. It intersects the axis at two points, C and D. The stresses at
these two end points of the horizontal diameter are rI and rII, the principal
stresses. In Fig. 1.21, the equation is basically that of Eq. (1.39), defined like
Eq. (1.46) for 2R.

rI � rII ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þ s2

xy

r
¼ 2R

(a)
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●
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Fig. 1.20 Mohr’s circle construction
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To construct a Mohr’s circle for the stress state shown in Fig. 1.21, first identify
the x and y axes of a Cartesian coordinate system as the rx and ry axes, respec-
tively. Figure 1.21a, redrawn from Fig. 1.17a, serves this purpose. Points A and B,
representing normal stresses, have coordinates for A rx and sxy, while point B is
defined by ry and syx; these are then plotted in Fig. 1.21c. Now draw a line
through points A and B. The point of intersection of this line with the abscissa
serves as the center about which a circle is drawn with diameter AB. The circle
passing through points A and B intersects the abscissa at points C and D. These
define the distances OC and OD, which represent the principal stresses, rI and rII.
At points C and D. the shear stresses are zero and, therefore, they correspond to the
principal stresses. The circle’s radius, normal to the abscissa, CaveH, is associated
with the maximum shear stress. Next, a rotation is performed, as indicated in
Fig. 1.21b) to angle hp, which is the same as given in Eq. (1.35), newly positioning
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Fig. 1.21 Construction of a Mohr’s circle. a and b from Fig. 1.17a, 1.17b; c is the Mohr’s circle
construction for the two-dimensional case
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the coordinate system between the abscissas x and x0. However, in the Mohr
illustration, the angle shown is 2hp, since this angle is measured counter-clockwise
on the Mohr’s circle (see Fig. 1.21b or 1.17b for the angle) and it is between the
rotated and non-rotated systems. Thus, it is evident from its construction that the
coordinates of the points of line EF may be used to obtain the values of stresses in
the rotated system, namely those of rx

0 and sxy
0. One may note that, of the axes, the

ordinate in Fig. 1.21c is a shear stress and the abscissa is a normal stress, as
indicated earlier.

Mohr’s circle may be used in the transformation of stresses from one coordinate
system to another. Figure 1.21 may also be used for this purpose. Consider
Fig. 1.21a or 1.17a representing the normal and shear stresses, rx, ry and sxy

acting on the respective planes in the body characterized by the coordinate system,
x and y. The stresses acting in the new coordinate system, x0 and y0, after rotation
to an angle h, from x towards x0, are indicated in Fig. 1.21b. The previous Mohr’s
circle shows the stress state of Fig. 1.21a at points A and B with coordinates rx,
sxy and ry, syx, respectively. Now, a line may be drawn between these two points,
and then rotated to angle 2h, which is twice the angle h between x and x0 and in the
opposite direction of h. A line drawn after the rotation between the two new points,
E and F, provides the new stresses, rx

0, ry
0 and sxy

0, in the new coordinate system.
A short exercise can illustrate how to use a Mohr’s circle to get the principal

stresses. A priori the angles are not needed for this. Figure 1.22 indicates the
method when no rotation of the coordinate system has occurred. The magnitudes
of rx, ry and syx (= sxy) are indicated in Fig. 1.22.
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Fig. 1.22 Example of plain stress without rotation
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Equation (1.46) may be used to evaluate rave and R as:

rave ¼
rx þ ry

2
¼ 120þ 40

2
¼ 80 psi

and

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrx � ryÞ2

2
þ s2

xy

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
402 þ 202

p
¼ 44:72:

According to Eq. (1.47a):

smax ¼ R ¼ 44:72

From Eqs. (1.36) and (1.36a):

rI ¼ rave þ R ¼ 80þ 44:72 ¼ 124:72

rII ¼ rave�R ¼ 80� 44:72 ¼ 35:28:

In this case, a Mohr’s circle is constructed as follows. A horizontal axis is
drawn for the normal stresses, like rx in the figure, while the vertical axis, sxy,
represents shear stresses. Two points, A and B, are indicated by the coordinates
(ry,sxy) and (rx, -syx), namely (40, 20) and B (120, -20). Join these points by a
line; the midpoint of this line is rave, which is the center of a (Mohr’s) circle
having the coordinates (rave ¼ rxþry

2 , 0) or a value of (80, 0). Now, a circle is
drawn from the midpoint, with a radius, R, of 44.72. This circle cuts the abscissa
(the r axis) at two points, providing the principal stresses, rI and rII, for the
indicated values.

Earlier, the concept of ‘principal stresses’ was discussed and it was mentioned
that at some stressed positions, when shear stress vanishes, the position depends
upon the angle h. When Eq. (1.32b) is differentiated with respect to h and equated
to zero, Eq. (1.35) is obtained:

tan 2hp ¼
2sxy

rx � ry
ð1:35Þ

2h ¼ 2sxy

rx � ry
ð1:35aÞ

There are two solutions for h in the range of -180� B h�B 180� that may be
attained by inserting the appropriate values shown earlier, 2h1 = 26.57 or
h1 = 13.29 and 2h2 = 26.57 + 180�. It was previously stated that the angle h,
located between x and x0 in Fig. 1.21b on the Mohr’s circle, is 2h. In Fig. 1.22b,
the angle following the rotation of the square of Fig. 1.21b is also shown.
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Summarizing this section on the Mohr’s circle, the following features have been
described:

(1) The principal axes are indicated as rI and rII.
(2) The center of the circle, rave, is always on the normal stress axis, rx.
(3) The center of a Mohr’s circle and its radius are determined by Eq. (1.46).
(4) A Mohr’s circle represents all stress states, namely normal and shear that can

exist on the surface of an elementary cube as it is being rotated.
(5) The maximum shear stress equals R.
(6) The center of a circle in terms of the principal stresses is smax ¼ rI�rII

2 .

1.2.7 Three-Dimensional Mohr’s Circles

The stress state in Fig. 1.23 is associated with the principal stresses located at the
position where the shear stresses vanish. The stress tensor for such a condition may
be written as:

rij ¼
rx sxy sxz

syx ry syz

szx szy rz

ð1:13bÞ

or replaced by its reduced form, as represented by Fig. 1.23.

rij ¼
rx 0 0
0 ry 0
0 0 rz

As in the two-dimensional case, the direct stresses are on the horizontal axis and
the shear stresses are on the vertical axis. For the construction of the Mohr’s circle,
three circles are required. The stresses on any plane at any rotation, when plotted
in the three-dimensional Mohr’s circle diagram, are represented by a point located
either on one of the three circles or within the area between the largest and the two
smaller circles. The maximum shear stress is given by the radius of the largest
circle. When constructing the Mohr’s circle, the angle of rotation is double that of
the real stress system. Shear stresses are positive if they cause clockwise rotation,

σIII

σII

σI

Fig. 1.23 The resultant
normal stress system on
principal axes without shear
stresses
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while those inducing counter-clockwise rotation are negative, as indicated above;
thus, the conventional sign for tensile stress is positive and for compressive stress
is negative. The practical steps are as follows:

(1) Draw these axes, namely the direct and shear stresses;
(2) Mark the three principal stresses on the abscissa and designate them as rI, rII

and rIII;
(3) Draw the three circles as indicated in Fig. 1.24.

The center of each Mohr’s circle which lies on the r axis is given by:

C1 ¼
rI þ rIII

2
C2 ¼

rx þ ry

2
C3 ¼

rII þ rIII

2

The radii of the circles are:

R1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx þ ry

� �2þ sxy þ syx

� �2
q

R2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx þ rzð Þ2þ sxz þ szxð Þ2

q

R3 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ry þ rz

� �2þ syz þ szy

� �2
q

Note that the center, C2, may be evaluated from the values of rx and ry, which
is equivalent to the center obtained from the principal stresses, rI and rII. These
principal stresses are obtained at a certain orientation of the stress system of an
element in space, in which all the shear-stress components equal zero. In this
special orientation, the normals of the faces correspond to the principal directions
and the normal stresses associated with these faces are the principal stresses.

σσI=124.7
●●σIII=0

●σII=35.3

τmax
4.62

2max =−= IIII σστ

C2C1C3

σx=(120,20)
●

σx

σy

σy=(40.-20)

21
IIIIC σσ +=

23
IIIIIC σσ +=

22
yxC

σσ +
=

Fig. 1.24 Construction of a three-dimensional Mohr’s circle
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In Fig. 1.24, the solution of a sample problem solved is also indicated by the
data below. The following measurements were performed on a body under stress,
rx = 120 MPa, ry = 40 MPa and sxy = 20 MPa. The stresses rz, syz and szx are
zero. Here, a Mohr’s circle is used to evaluate the principal stresses and the largest
shear stress for this stress state. The relations in Eqs. (1.36) and (1.36a) are for the
principal stresses, resulting in:

r0xðprincipalÞ ¼ rI ¼
rx þ ry

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þ s2

xy

r
¼ 124:7 MPa ð1:36Þ

rII ¼ rx þ ry � rI ¼
rx þ ry

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þ s2

xy

r
¼ 62:36 MPa ð1:36aÞ

smax ¼
rI � rIII

2
¼ 62:36 MPa

The other shear stresses in the respective circles, defined by the principal
stresses, rI - rII and rII - rIII, are:

s23 ¼ r2 � r3=2

s12 ¼ r1 � r2=2:

These relations were given earlier as Eq. (1.27), in terms of the principal
stresses:

s12 ¼ �
1
2

rI � rIIð Þ

s23 ¼ �
1
2

rII � rIIIð Þ

s13 ¼ �
1
2

rI � rIIIð Þ:

ð1:27Þ

The stress state at the point upon which the Mohr’s circle is based was dis-
cussed earlier in Sects. 1.2–1.2.5.

Fig. 1.25 One-dimensional
deformation of a bar [14].
With permission of the author
Joshua Pelleg
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1.2.8 Strain Tensor

In Sect. 1.2 above, the simple equations relating to strain were discussed. ‘Strain’
is defined as the relative change in the position of points within a body that has
undergone deformation. In deformed materials, the points have undergone posi-
tional changes and, even in isotropic materials, these changes are not uniform,
except in the one-dimensional case. Thus, for example, a polycrystalline material
with a random orientation of the grains (crystals) is isotropic; otherwise, it might
be anisotropic, developing a preferred orientation. To better explain the concept of
strain, here is a description of the one-dimensional case. Figure 1.25 shows a one-
dimensional change occurring in a bar under uniaxial deformation, e.g., by tension.

Figure 1.25 shows the condition before and after the application of force. A
consequent displacement of the points occurs in the body, as exemplified by the
displacement of point A to point A0, designated by u. Point B, Dx apart from A, is
also displaced to point B0, moving to u + Du. Due to the assumption that the bar is
a rigid body, the elongation is Du. This case basically considers a small normal
strain, i.e., in the elastic region in one direction, shown as:

e1 ¼
A
0
B
0 � AB

AB
¼

dxþ ou
ox dx� dx

dx
¼ ou

ox
ð1:48Þ

In this Eq. (1.48), the Dx and Du in Fig. 1.25 are replaced by dx and du or in
terms of their partials as qx and qu, thus indicating the instantaneous change of u
with respect to x. Recall that e1 : e11 : ex : exx, depending on the type of
notation. Nomenclatures may vary in accordance with the original research
applications. For instance, the Voigt notation is useful in calculations involving
constitutive models, such as the generalized Hooke’s Law, as well as for finite
element analysis.

One may also consider the accepted example of the two-dimensional case of a
square which has been deformed into a parallelepiped as an additional step in
understanding strain. Various shapes may result from deformation, depending on
the types of forces applied and the directions in which they act. Figure 1.26
illustrates the displacement of a square without a change in shape and without
shear deformation. Figure 1.26 is a geometric representation of the normal strains
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e1 (: e11 : ex : exx) and e2, in which the displacements, u1 (:u) and u2 (:v)
and the respective equations, are also shown.

Figure 1.27 also shows various changes occurring in a square under active
forces, when e12 = -e21, the elemental square, is rotated by pure shear, without
any change in its dimensions. If e12 has a small value but e21 = 0, it is a simple
shear of the element. Figure 1.27c indicates a pure shear deformation, without
rotation of the element. However, if e12 = e21, there is angular deformation
during the rotation, as shown in Fig. 1.27d.
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Fig. 1.27 Examples of deformation when shear and/or shear and rotation of the square element
occur. a Pure rotation no shear. b Simple shear. c Pure shear without rotation. d Angular
deformation
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Fig. 1.28 For clarity, Fig. 1.27d is redrawn and more detailed
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To show more details of the angular deformation shown in Fig. 1.27d, it has
been redrawn and illustrated in Fig. 1.28.

In Figs. 1.26, 1.27 and 1.28, e11 and e22 are normal strains and provide the
relative changes in the length of the lines parallel to the coordinate axes following
some deformation. The shear stresses are e12 and e21. Figure 1.28 or 1.27d are
basically the results of pure shear and rotation of the body (represented by a square
for two dimensions). This is shown schematically in Fig. 1.29.

Thus, one can state that ‘arbitrary shear strain’ is the result of pure shear and
some rotation occurring simultaneously during a deformation process.

At this stage, further clarification of ‘shear’ is required in terms of engineering
strain, commonly designated as c. cave = e12 + e21 is the overall shear strain, as
seen from Fig. 1.30. Here, the sides, Dx and Dy, of a rectangle, ABCD, along axes
x and y, respectively, are shear-deformed into a rhombus-like shape, A0B0C0D0.
The change from the 90o angle of the undeformed square is associated (as seen in
Fig. 1.30) with a shear producing two angles; the right angle becomes 90� -

(e12 + e21). Hence, the shear is expressed as c = e12 + e21 for the two-dimen-
sional case in an x–y coordinate system. (Total shear deformation is also written as
c12, indicating the two angles involved).
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Fig. 1.29 An arbitrary shear strain (c) may be decomposed into a pure shear (a) and a pure
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Fig. 1.30 Deformation of a
two-dimensional square by
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As seen in Fig. 1.27c or 1.28, strains are associated with displacements. In the
general, three-dimensional case, the displacement of a point in an elemental body
is denoted by u, v, and w, which are functions of position in the coordinate system
x, y and z. In other words:

u ¼ u x; y; zð Þ; v ¼ v x; y; zð Þ; w ¼ w x; y; zð Þ ð1:49Þ

Returning to the two-dimensional case indicated for the shear strain in
Fig. 1.30, the deformation may be expressed in terms of the displacements. In
Fig. 1.26, the normal strain components were indicated in terms of u and v, which
are displacement components in the x, y directions. (Other symbols are also used,
such as u, v and w in the three-dimensional case.) In fact, displacement may be
described in terms of its components by projecting the displacement vector onto
the coordinate axes. In this manner, the average, normal-strain components, in
terms of u and v after deformation, may be given as in Eq. (1.50), and in the limit,
the displacement vector as in Eq. (1.50a):

e11;ave ¼ uþDu�u
Dx ¼ Du

Dx e22;ave ¼ v�Dv�v
Dy ¼ Dv

Dy ð1:50Þ

e11 ¼ lim
Dx!0

Du
Dx ¼ ou

ox e22 ¼ lim
Dy!0

Dv
Dy ¼ ov

oy ð1:50aÞ

Here, partial differentiation must be used to express the shear strains, because u
is also a function of y (and, in the three-dimensional case, also of z), as indicated in
Fig. 1.28, showing the displacements involved. Figure 1.30 shows that the four
corners of the square are displaced. e21 and e12, taken from Fig. 1.28, may be used
to express displacement in Fig. 1.31.

When evaluating cave = e21 +e12 in the x–y system in Eqs. (1.51) and (1.51a),
some approximations are made as indicated:
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Fig. 1.31 Evaluation of shear deformation in terms of the displacements
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tan e21 ffi e21 ¼
vD � vA

ðDx� uAÞ þ uD
¼ DvDA

Dxþ uD � uAð Þ ¼
DvDA

Dxþ DuDA
¼ Dv

Dx
ð1:51Þ

tan e12 ffi e12 ¼
uB � uA

ðDyþ vBÞ � vA
¼ DuBA

Dyþ vB � vAð Þ ¼
DuBA

Dyþ DvBA
¼ Du

Dy
ð1:51aÞ

cave � c12 ¼ e21 þ e12 ¼ lim
Dx!0;lim Dy!0

Dv

Dx
þ Du

Dy
¼ ov

ox
þ ou

oy
ð1:51bÞ

Strains are assumed to be infinitesimal in the elastic region. Hence, the angles
are small and their tangents are about the same as the angles themselves. Fur-
thermore, it may be assumed that DvDA and DuBA are smaller than Dx and Dy,
respectively. Therefore, one can write Dx + DuDA & Dx and Dy + DvBA & Dy.
These simplifications produced the last terms in Eqs. (1.51) and (1.51a), also
indicated by the sum in Eq. (1.51b).

To summarize, the strain state at a point in a two-dimensional case may be
given in terms of the normal and shear strains

eij ¼
e11 e12

e21 e22

����
���� ¼

ou
ox

ou
oy

ov
ox

ov
oy

�����
����� ð1:51cÞ
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Fig. 1.32 The change in the dimensions of a deformed cube relative to those of a non-deformed
one is indicated (the dimensions of the deformed cube are exaggerated). Only normal strains are
present. PP0 is the displacement vector with u, v and w components
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Often, the above is given in the literature as:

eij ¼
ex cxy

cyx ey

����
���� ð1:51dÞ

Analogous to stress, normal strain is obtained when i = j and, for shear strain,
i = j. Finally, in the three-dimensional case, an additional term exists, and
Eq. (1.50a) becomes by the addition of a term in z:

e11 ¼ lim
Dx!0

Du
Dx ¼ ou

ox e22 ¼ lim
Dy!0

Dv
Dy ¼ ov

oy e33 ¼ lim
Dz!0

Dw
Dz ¼ ow

oz ð1:51bÞ

The normal strains in three dimensions may be derived from the deformed cube
shown in Fig. 1.32, where normal strains are operating and all shear strains are
zero. Thus, no angular deformation has occurred, but there is a change in the
dimensions of the cube. These changes in the sides of the deformed cube, resulting
from the displacement, are Dx + Du, Dy + Dv and Dz + Dw. The following
equations may be given for the averaged normal strain components of such a three-
dimensional deformation:

e11 ¼
uþ Du� u

Dx
¼ Du

Dx
) e11 ¼ lim

Dx!0

ou

ox

e22 ¼
vþ Dv� v

Dy
¼ Dv

Dy
) e22 ¼ lim

Dy!0

ov

oy

e33 ¼
wþ Dw� w

Dz
¼ Dw

Dz
) e33 ¼ lim

Dz!0

ow

oz

ð1:52Þ

For each case of Eq. (1.52):

u ¼ e11x; v ¼ e22y; w ¼ e33z ð1:52aÞ

As a consequence of displacements u, v and z, the three-dimensional compo-
nents are given as:

u ¼ e11xþ e12yþ e13z

v ¼ e21xþ e22yþ e23z

w ¼ e31xþ e32yþ e33z

ð1:53Þ

In Fig. 1.32, the displacements are shown indicating how Eqs. (1.52) may be
obtained. As mentioned in the two-dimensional case, there is an assumption that
the strains are infinitesimal.

The two-dimensional shear components of a deformed body are given in
Eqs. (1.51), (1.52a) and their sum, giving the shear strain, c12. The graphic pre-
sentation of the angular distortion of an elementary cube into a rhomboid is more
complicated and will not be presented here. However, the following results can be
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obtained. A shear component of an angle e13 = e31 (in a three-dimensional illus-
tration) is:

tan e13 ffi e13 ¼
Du

Dz
ð1:54Þ

Additional tangents of appropriate angles are:

c4 ¼
A0B0 � AB

AB
¼ wA � wB

Dy
¼ DwAB

Dy
¼ lim

Dy!0

ow

oy

c5 ¼
B0E0 � BE

BE
¼ uE � uA ¼ DUEU

Dz
¼ lim

Dz!0

ou

oz

c6 ¼
A0D0 � AD

AD
¼ wD � wA

Dx
¼ DwDA

Dx
¼ lim

Dx!0

ow

ox
:

Note again that the ‘engineering shear strain’ is defined as the total change in
the right angle of an elementary cube, being the sum of the appropriate angles,
given as (for c12 in Eq. (1.51b)) and rewritten in Eq. (1.55) as:

c12 � cxy ¼ e12 þ e21 ¼
ou

ov
þ ov

ox
¼ c12 ð1:55Þ

z

y

0
x

exx

eyy

ezz

e21

e12

e31

e32

e23

e13

Fig. 1.33 The normal and
shear components of a
distorted cube are shown
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c13 � cxz ¼
ou

oz
þ ow

ox
¼ c31 ð1:56Þ

c23 � cyz ¼
ov

oz
þ ow

oy
¼ c32 ð1:57Þ

One can switch the subscripts to obtain:

c21 ¼ ov
oxþ ou

oy ; c32 ¼ ow
oy þ ov

oz ; c31 ¼ ow
ox þ ou

oz ð1:58Þ

The strain at a point in a three-dimensional system can be arranged in a 3 9 3
matrix comprising nine components. Of these components, three are normal and
six are shear components, as indicated in Eq. (1.59):

eij ¼
e11 e12 e13

e21 e22 e23

e31 e32 e33

������

������ ¼
ou
ox

ou
oy

ou
oz

ov
ox

ov
oy

ov
oz

ow
ox

ow
oy

ow
oz

�������

�������
ð1:59Þ

Actually, this matrix is symmetrical and can, therefore, be reduced to only six
independent components.

Equations (1.57) and (1.58) indicate the reciprocity concept–expressions that
do not change if the subscripts are reversed. Equation (1.59) may also be
expressed in terms of c, as follows:

exx cxy cxz

cyx eyy cyz

czx czy ezz

ð1:60Þ

In terms of these strain components, Fig. 1.33 shows the distorted elementary
cube around a point for small displacements. Recall that the cube and the rhom-
boid exaggerate the space around the point considered.

It was indicated earlier that the shear strain c = e12 + e21, as indicated in
Fig. 1.31. Therefore, it is possible to write c = 2e12, which is the engineering
strain. Also note that:

cij

2
¼ eij

Equation (1.59) is a second-rank tensor and, as such, it can be decomposed
into symmetric and anti-symmetric parts, also known as ‘skew tensors’ (see,
for example [6]). Any second-rank tensor, Tij, may be expressed as their sum
or as:
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Tij ¼ Sij þ Aij ð1:61Þ

where:

Sij ¼ 1
2 ðTij þ TjiÞ Aij ¼ 1

2 Tij � Tji

� �
ð1:62Þ

Based on this concept, deformation may be written as a strain tensor, eij, and a
rigid body rotation, wij, as follows:

eij ¼
1
2
ðeij þ ejiÞ þ

1
2
ðeij � ejiÞ ð1:63Þ

This expression is often written in the literature as:

eij ¼ eij þ wij ð1:63aÞ
Applying these concepts, it is possible to write the following for eij and wij:

e11 e12 e13

e21 e22 e23

e31 e32 e33

������

������ ¼
1
2

ou
ox þ ou

ox

� �
1
2

ou
oy þ ov

ox


 �
1
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oz þ ow

ox
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1
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1
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oz
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1
2

ow
oy þ ov

oz


 �
1
2
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oz þ ow

oz


 �

���������

���������

¼

ou
ox

1
2
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oy þ ov

ox


 �
1
2
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oz þ ow

ox


 �
1
2
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oxþ ou

oy


 �
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oy

1
2
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 �
1
2

ow
ox þ ou

oz
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oz


 �
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oz

���������

���������
ð1:64Þ

w11 w12 w13

w21 w22 w23

w31 w32 w33

������

������ ¼
0 1

2
ou
oy � ov

ox


 �
1
2

ou
oz � ow

ox


 �
1
2

ov
ox� ou

oy
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0 1
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1
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oz


 �
1
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0
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���������
ð1:65Þ

The shear strain, eij, is seen to be symmetric from the following:

e12 ¼
1
2

ou

ov
þ ov

ox

� �
� e21 ¼

1
2

ov

ox
þ ou

ov

� �
ð1:65aÞ

as are the other shear strain components, i.e., e13 : e31 and e23 : e32, as indicated
in Eq. (1.64).

The normal and shear strains may be abbreviated as:

eij ¼
1
2

oui

oxj
þ ouj

oxi

� �
ð1:65bÞ
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Keeping in mind the above notation in terms of u, v, w with coordinates x, y, z,
when using another nomenclature, i, and j have the values of 1, 2 or 3 in the above
formula. Clearly, u2 and x2 stand for v and y.

1.2.9 Generalized Hooke’s Law

In Sect. 1.2 above, the stress–strain relation in uniaxial tension tests was given in
Eq. (1.5), indicating a Hookean behavior. This section now considers linear elastic
solids, as described by Hooke, according to which rij is linearly proportional to the
strain, eij. Each stress component is expected to depend linearly on each strain
component. For example, the r11 may be expressed as follows:

r11 ¼
c1111e11þ c1211e12þ c1311e13þ
c2111e21þ c2211e22þ c2311e23þ
c3111e31þ c3211e32þ c3311e33

ð1:66Þ

Clearly, similar relations may be written for other stress components. Suc-
cinctly, Eq. (1.66) may be presented as:

rij ¼
X3

k¼1

X3

l¼1

cijklekl ð1:67Þ

or in terms of the strain as:

eij ¼
X3

k¼1

X3

l¼1

Sijklrkl ð1:68Þ

cijkl’s and the Sijkl’s are proportionality constants and are called the ‘stiffness and
compliance constants’, where i and j can have any value from 1 to 3 [12]. The
number of constants is 34 = 81. However, in the most general case, only 21
independent constants are sufficient, since the following relations hold:

rij ¼ rji eij ¼ eji and it can be argued that cijkl ¼ cklij

Note that: cijkl = cjikl = cijlk = cklij … etc. for the other possible combinations.
Thus, for the most general elastic expression of a material, 21 constants must be

specified. Yet, considering the various symmetries of crystals, this number can be
further reduced. For instance, in cubic crystals having coordinate systems along
the cube edges, many of the constants, such as c1111 = c2222 … etc. or
c1212 = c1313 = c2323 …, are equivalent. The notation shown in Eq. (1.66) may be
simplified here as it has been in many publications:
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r11 ! r1 r22 ! r2 r33 ! r3

r23 ! r4 r31 ! r5 r12 ! r6

e11 ! e1 e22 ! e2 e33 ! e3

2e23 ! c4 2e31 ! c5 2e12 ! c6

ð1:69Þ

making Eq. (1.66):

r1 ¼
c11e1 þ c12e2 þ c13e3þ
c14c4 þ c15c5 þ c16k6

ð1:70Þ

Furthermore, instead of the c’s, the shear components are often given as e4, e5

and e6. Thus, one can write Eq. (1.70) compactly by replacing the c’s with e’s:

ri ¼ cijej ð1:71Þ

Notice that, in Eq. (1.70), the definition of the shear components, such as e12,
e21 etc., are indicated in Eq. (1.69) as 2eij = ck (where k = 4, 5 or 6); therefore, it
is sufficient to write Eq. (1.70) with six components.

Crystals with cubic symmetry have three independent elastic constants and the
following equivalences apply:

c11 ¼ c22 ¼ c33

c12 ¼ c23 ¼ c31

c44 ¼ c55 ¼ c66

ð1:72Þ

and all the other elastic constants are zeros. Consequently, the tensor for the
stiffness components for cubic symmetry is given as:

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44jj

������������

������������
ð1:73Þ

Thus, there are only three elastic constants in cubic crystals: c11, c12 and c44.
Similarly, the compliance components of materials with cubic symmetry are
given:

S11 S12 S012 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

�����������

�����������
ð1:74Þ
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For cubic crystals, the elastic compliance constants are related to those of
stiffness [12]:

S11 ¼
c11 þ c12

c11 � c12ð Þ c11 þ 2c12ð Þ
S12 ¼

�c12

c11 � c12ð Þ c11 þ 2c12ð Þ

S44 ¼
2

ðc11 � c12Þ

ð1:75Þ

The different forms of compliance and stiffness, expressed as tensors for the
various crystal classes and Eq. (1.75) are found in the literature. The Eq. (1.75),
expressing the stiffness components and related to the c’s, are given as:

c11 ¼
S11 þ S12

S11 � S12ð Þ S11 þ 2S12ð Þ

c12 ¼
�S12

S11 � S12ð Þ S11 þ 2S12ð Þ

c44 ¼
1

S44

ð1:75bÞ

In isotropic crystals, the number of constants may be further reduced; instead of
three constants (cubic crystals), only two independent constants are required to
describe a state of stress at a point, given as matrix (1.76):

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c11 � c12ð Þ=2 0 0
0 0 0 0 c11 � c12ð Þ=2 0
0 0 0 0 0 c11 � c12ð Þ=2

�����������

�����������
ð1:76Þ

The tensor for compliance is similar and the (c11 - c12)/2 is replaced by
2(S11 - S12):

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 2 S11 � S12ð Þ 0 0
0 0 0 0 2 S11 � S12ð Þ 0
0 0 0 0 0 2 S11 � S12ð Þ

�����������

�����������
ð1:77Þ

Recall that isotropy is uniformity in all orientations; therefore, relations must be
independent of the coordinate system chosen to represent isotropy.
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The equations rij = cijklekl and eij = Sijklrkl, in which i, j, k, l = 1, 2 or 3, may
be meaningfully expressed in matrix form for the general case as:

rxx

ryy

rzz

ryz

rzx

rxy

������������

������������
¼

c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

�����������

�����������

exx

eyy

ezz

eyz

ezx

exy

������������

������������
ð1:78Þ

and

exx

eyy

ezz

eyz

ezx

exy

������������

������������
¼

S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66

�����������

�����������

rxx

ryy

rzz

ryz

rzx

rxy

������������

������������
ð1:79Þ

The above are known as ‘constitutive relations’, due to Cauchy, who general-
ized Hooke’s Law by assuming that, in elastic bodies, the 6 components of stress
are linearly related to the 6 components of strain.

In Table 1.2, calculated elastic constants and other data compared with
experimental data are presented for various cubic ceramic crystals taken from Yao
et al. [50].

1.3 Poisson Ratio

Figure 1.34 illustrates a cube with l side of an isotropic, linearly elastic material,
subjected to tension along the x axis by a small Dlx extension. After the cube
underwent strain, contraction occurred along the y and z directions at magnitudes
Dly and Dlz.

Basically, Fig. 1.33 illustrates the Poisson effect, previously considered in the
section on tension and expressed by Eqs. (1.11)—(1.12a) as rewritten below:

Δly

Δlz Δlx

l

x

y

z

Δly

Δlz Δlx

l

x

y

z

Fig. 1.34 The application of
a tensile stress on a cube in
the x direction results in a Dl
contraction in both the y and z
directions
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m ¼ � lateral strain

axial strain
¼ � ey

ex
¼ � e22

e11

� �
¼ � ez

ex
� e33

exx

� �
ð1:11Þ

G ¼ E

2ð1þ mÞ

m ¼ E

2G
� 1

ð1:12aÞ

Given that this is in the elastic region and that the acting stresses are small, the
assumption can be made that the normal stress (e.g., rx) does not produce shear
strains on the appropriate planes. Using the principle of superposition while
recalling that the stress components act in their respective directions and using
appropriate strains expressed in terms of Poisson’s ratio, the effects of the three
individual, uniaxial loadings may be summed up as:

ex ¼
rx

E
� mry

E
� mrz

E
¼ rx � mðry þ rzÞ

E

ey ¼
ry

E
� mrz

E
� mrx

E
¼ ry � mðrz þ rxÞ

E

ez ¼
rz

E
� mrx

E
� mry

E
¼ rz � mðrx þ ryÞ

E

ð1:80Þ

The strain components in the x, y and z directions used to obtain Eq. (1.80) are:

e0x¼
rx

E
e0y ¼ �

m
E

rx e0z ¼ �
m
E

rx ð1:81Þ

e00x ¼ �
m
E

ry e00y ¼
ry

E
e00z ¼ �

ez

E
ry ð1:82Þ

e000x ¼ �
m
E

rz e000y ¼ �
m
E

rz e000z ¼
rz

E
ð1:83Þ

Eliminating E from the two relevant equations in (1.80) yields:
ex

rx � mðry þ rzÞ
¼ ey

ry � mðrz þ rxÞ
¼ ez

rz � mðrx þ ryÞ
ð1:80aÞ

expressing Hooke’s Law for isotropic materials. It is easy to remember the rela-
tions shown in Eq. (1.80), since they are in succession, x, y and z.

If one of the normal strains in one of the directions, e.g., the z direction, is zero,
then strain ez may be reduced as follows:

ez ¼ 0 ¼ rz � mðrx þ ryÞ
E

ð1:80bÞ

making the stress component rz:

rz ¼ mðrx þ ryÞ ð1:80cÞ
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Similar relations can be obtained for strains in the x or y directions, when the
appropriate normal strain in the respective directions is zero. Thus, it is possible to
write the following relations for ex and ey:

ex ¼ 0 ¼ rx � mðry þ rzÞ
E

ð1:80dÞ

rx ¼ mðry þ rzÞ ð1:80eÞ

and:

ey ¼ 0 ¼ ry � mðrz þ rxÞ
E

ð1:80fÞ

ry ¼ mðrz þ rxÞ ð1:80gÞ

When an applied load produces a normal stress in one of the three directions
(assumed to be zero), a plain-stress condition prevails. In thin films, for example,
the z dimension is small compared to the other directions; the approximation that
the normal stress is rz = 0 is a good one. In this case, the equations for plain stress
may be obtained from Eqs. (1.80). These strains are:

ex ¼
rx � mry

E

ey ¼
ry � mrx

E

ez ¼ �
mðrx � ryÞ

E

ð1:80hÞ

In terms of planar stresses, one can easily infer the following expressions from
Eq. (1.80h):

rx ¼
Eðex þ meyÞ

1� m2

ry ¼
Eðey þ mexÞ

1� m2

ð1:80iÞ

For instance, to show how rx is obtained from Eq. (1.80h), the following steps
are taken:

(a) Express rx from the first relation as:

rx ¼ Eex þ mry;

(b) Express ry from the second relation in Eq. (1.80h) and multiply by m to obtain:

mry ¼ mEey þ m2rx
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(c) Replace mry in (a) from (b) and rearrange the relation as:

rx ¼
E ex þ mey

� �
1� m2ð Þ :

In a similar manner, ry may be obtained.
Despite the assumption that in a thin film rz = 0, ez = 0, as seen from

Eq. (1.80b). It is also easy to get the plain strain conditions when ez = 0.
Useful relations can be obtained when Eq. (1.80c) is inserted into Eq. (1.80)

giving:

ex ¼
rxð1� m2Þ � mryð1þ mÞ

E

ey ¼
ry 1� m2ð Þ � mrx 1þ mð Þ

E
ez ¼ 0:

ð1:80jÞ

Even though strain ez = 0, the stress is not as found in Eq. (1.80c). Now,
returning to the three-dimensional case, one gets the following relations from
Eq. (1.80) by adding and subtracting the appropriate terms:

ex ¼
1
E

rx 1þ mð Þ � m rx þ ry þ rz

� �� 

ey ¼
1
E

ry 1þ mð Þ � m rx þ ry þ rz

� �� 

ez ¼
1
E

rz 1þ mð Þ � m rx þ ry þ rz

� �� 
ð1:84Þ

Thus, for ex the steps are:

(a) From Eq. (1.80):

ex ¼
rx � mðry þ rzÞ

E

(b) Add and subtract the appropriate term of mrx
E to get:

ex ¼
rx � mðry þ rzÞ

E
þ mrx

E
� mrx

E

(c) Rearrange the above relation to obtain:

ex ¼
1
E

rx 1þ mð Þ � m rx þ ry þ rz

� �� 

Similarly, one can obtain the relations for ey and ez.
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Another useful relation may be obtained by adding the Eq. (1.80) as:

ex þ ey þ ez ¼
1� 2mð Þ

E
rx þ ry þ rz

� �
ð1:85Þ

Equation (1.85) is often expressed as:

rx þ ry þ rz

� �
¼ E

1� 2mð Þ ex þ ey þ ez

� �
ð1:85aÞ

Additional relations may be derived from Eqs. (1.84) and (1.85) to give
Eq. (1.86) as follows:

(a) Take rx from Eq. (1.84) as:

rx ¼
Eex

1þ mð Þ þ
m

1þ mð Þ rx þ ry þ rz

� �

(b) Replace (rx, + ry + ry) in Eq. (1.85) to get Eq. (1.86):

rx ¼
Eex

1þ vÞð Þ þ
Em

1þ mð Þ 1� 2mð Þ ex þ ey þ ez

� �
ð1:86Þ

Similar relations may be obtained in the same manner for ry and rz. Thus,
Eq. (1.86) may be rewritten in terms of Lame’s parameters l and k as:

rx ¼ 2lex þ kðex þ ey þ ezÞ ð1:86aÞ

k is known as ‘Lame’s constant’ and from Eq. (1.86) it is:

k ¼ Em
1þ mð Þ 1� 2mð Þ ð1:86bÞ

Hooke’s Law for isotropic materials, in terms of Poisson’s ratio, is given in
matrix form as:

e11

e22

e33

2e23

2e31

2e12

�����������

�����������
¼

e11

e22

e33

c23

c31

k21

�����������

�����������
¼ 1

E

1 �m �m 0 0 0
�m 1 �m 0 0 0
�m �m 1 0 0 0
0 0 0 2 1þ mð Þ 0 0
0 0 0 0 2 1þ mð Þ 0
0 0 0 0 0 2 1þ mð Þ

�����������

�����������
¼

r11

r22

r33

r23

r31

r12

�����������

�����������
ð1:87Þ
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Recall that the engineering shear strain was previously given as cij = 2eij.
The above stress may also be expressed as being a reverse relation:

r11

r22

r33

r23

r31

r12

��������������

��������������

¼ E

1þ mð Þ 1� mð Þ

1� vð Þ m m 0 0 0

m 1� mð Þ m 0 0 0

m m 1� mð Þ 0 0 0

0 0 0 1� 2mð Þ=2 0 0

0 0 0 0 1� 2mð Þ=2 0

0 0 0 0 0 1� 2mð Þ=2

��������������

��������������

e11

e22

e33

2e23

2e31

2e12

��������������

��������������
ð1:88Þ

Furthermore, considering Eq. (1.86) or (1.86a), matrix (1.88) may be also given
in terms of Lame’s constants as (1.89):

Clearly, one could rewrite any of the tensors in Eqs. (1.87)–(1.89) for plane
stress conditions. In this case, Hooke’s Law can be rewritten with the under-
standing that r31 = r13 = r32 = r23 = 0. The only shear stress operating in the
case of planar stress conditions is r12.

r11

r22

r33

r23

r31

r12

�����������

�����������
¼

2lþ kð Þ k k 0 0 0
k 2lþ kð Þ k 0 0 0
k k 2lþ kð Þ 0 0 0
0 0 0 l 0 0
0 0 0 0 l 0
0 0 0 0 0 l

�����������

�����������

e11

e22

e33

2e23

2e31

2e12

�����������

�����������
ð1:89Þ

For ceramics, Poisson’s ratio is smaller than it is for metals, namely B 0.3.
Poisson’s ratio is an indication of the ability of a material to undergo deformation
and, except for ductile or high-temperature ceramics, regular ceramics indeed have
quite low Poisson ratios in accordance with their brittle behavior.

Structural ceramic materials are required to withstand high-temperature use
and, therefore, their elastic properties are of great interest. As such, the focus will
now shift to the Poisson’s ratio. A common method for evaluating the Young’s
modulus at room temperature (found in all above relations) is either by a resonance
technique [44] or by an ultrasonic pulse method [38]. A more appropriate tech-
nique for such high-temperature measurements is by a laser ultrasonic method
[16]. Matsumoto et al. [9] used a laser ultrasonic method coupled with a Fabry–
Perot interferometer (LUFP) to eliminate certain drawbacks encountered during
high temperature measurements. Two techniques were compared when measuring
samples of sintered SiC in the range of 20–1600 �C, as illustrated in Fig. 1.35. The
results were also compared with those of the standard resonance technique. Using
this technique Matsumoto et al. [9] determined the Young’s modulus and Pois-
son’s ratio for SiC ceramics, with and without additions, as a function of tem-
perature, as shown in Fig. 1.36 for the Poisson’s ratio.

These measurements indicated that, as the temperature increased, the Poisson’s
ratio remained relatively constant. However, even for the same material, there may
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be differences in the test results from different laboratories as a consequence of the
sensitivity of ceramics to production, minor chemical changes, testing techniques
and also due to the effects of temperature on the composition of structures,
especially the potential loss of O.

Thus, the information on SiC may be cited as an example, as illustrated in
Fig. 1.37, where the Poisson’ ratio seems to increase above 1000 �C, unlike the
case shown in Fig. 1.36. However, this value was below 0.2 and at about the same

Fig. 1.35 Poisson’s ratio
measured by the (filled circle)
LUFP (laser ultrasonics
coupled with a Fabry–Perot
interferometer) method and
(plus sign) laser ultrasonic
pulse technique using SiC as
a standard [9]. With kind
permission of Wiley and Sons

Fig. 1.36 Temperature
dependence of Poisson’s ratio
of (filled circle) SiC ceramics
with boron and carbon
additions and (open square)
SiC ceramics with Al2O3

additions [9]. With kind
permission of Wiley and Sons
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level as in Fig. 1.36. The increase in the Poisson’s ratio may indicate some
deformability, but, according to the authors, no macroscopic deformation was
observed below 1400 �C. In Fig. 1.37, the variation in the Poisson’s ratios of some
ceramics at various temperatures is also shown. Note that TZP (tetragonal zirconia
polycrystal) has a Poisson’s ratio at a level comparable to metals. It is likely that
this reflects the non-elastic behavior of TZP at room temperature. Another reason

Fig. 1.37 Temperature dependence of the Poisson’s ratio for the materials indicated: (open
circle) TZP (tetragonal zirconia polycrystal), (filled circle)Si3N4, (open square) alumina and
(open traingle) silicon carbide. Sakaguchi et al. [42] with kind permission of Springer

Table 1.3 Comparison of the elastic constants from the resonance and ultrasonic sound velocities
[42] (with kind permission of Springer)

Ultrasonic Resonance Error (%)

Si3N4 E (GPa) 310.2 314.4 +1.4
G (GPa) 121.4 122.2 +0.7
v 0.278 0.286 +2.9

SiC E (GPa) 368.7 388.6 +5.4
G (GPa) 158.0 166.8 +5.6
v 0.167 0.156 -6.6

Al2O3 E (GPa) 372.2 375.6 +0.9
G (GPa) 151.1 148.9 -1.5
v 0.232 0.261 +12.5

TZP E (GPa) 212.2 212.2 ±0.0
G (GPa) 80.7 80.8 ±0.1
v 0.314 0.313 -0.3
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for the high Poisson value in TZP is the lower Young’s modulus, as indicated in
Table 1.3.

A linear degradation of the Poisson’s ratio with temperature increase was
observed in Si3N4 (as indicated in Fig. 1.37), which may be a consequence of the
macroscopic non-elastic behavior of Si3N4.

1.4 Volume Strain (Dilatation)

The concept of ‘volume strain’ is defined as the volume change per unit volume of

a deformed body,
DV
V

. Here, DV are the normal strain components and Eq. 1.85a is

reintroduced, as above:

ex þ ey þ ez ¼
1� 2mð Þ

E
rx þ ry þ rz

� �
ð1:85aÞ

The term on the left, often denoted as D, represents the volume strain, ev. DV,
the normal strain components, refer to cases in which the strains are small.
Basically, when a rectangular parallelepiped of initial volume V with sides a, b, c
is deformed to a value of V0, as shown in Fig. 1.38, the following relations hold:

V0 ¼ a0b0c0 ¼ að1þ exÞbð1þ eyÞcð1þ ezÞ
¼ abcð1þ ex þ ey þ ez þ exey þ exez þ eyez þ exeyezÞ ð1:90Þ

When linear strains are small, as they are in the elastic region, their products
can be ignored, rendering Eq. (1.90) into:

ev ¼
DV

V
¼ V 0 � V

abc
¼ abcð1þ ex þ ey þ ezÞ � abc

abc
¼ ex þ ey þ ez

� �
ð1:91Þ

In this case, ev is equal to the sum of the strains on the left side of Eq. 1.85a. In
terms of the mean strain, ea, it is expressed as:

ev ¼ ex þ ey þ ez ¼ 3ea ð1:92Þ

The volume strain may be expressed in terms of Eq. (1.85a) as:

ev ¼ ex þ ey þ ez ¼
1� 2mð Þ

E
rx þ ry þ rz

� �
¼ 1� 2mð Þ

E
3ra ð1:93Þ

where:

ra¼
1
3

rx þ ry þ rz

� �
ð1:92aÞ

and expressing ra, from Eq. (1.93) as:
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ra ¼ ev
E

3 1� 2mð Þ ¼ Kev ¼ 3Kea ð1:94Þ

K is known as the ‘bulk modulus’ and also as the ‘volumetric modulus of
elasticity’ and is given by:

K ¼ E

3ð1� 2mÞ ð1:94aÞ

K is often expressed as:

K ¼ ra

ev
¼ �p

ev
¼ 1

b
ð1:95Þ

-p is the hydrostatic pressure, which is the negative of Eq. (1.92a) and b is the
compressibility factor. In this case (hydrostatic pressure), the volume change of an
elemental cube is the result of the acting pressure, p, on all six faces of the cube.

1.5 Principal Strain

Figure 1.39 is reproduced from Fig. 1.21 in terms of strain in the two-dimensional
case to show the principal strains. A transformation to the principal direction is
performed by rotating the x, y axes to x0, y0, the principal directions of those axes.
The principal strains are eI and eII. Due to the similarity between the plane-stress
and plane-strain transformation equations, the orientation of the principal axes and
the principal strains are given below. First, there is an angle, hp, at which the shear
strain, exy, vanishes. In analogy to Eq. (1.35a), this is now given as:

tan 2hp ¼
2sxy

rx � ry
ð1:35aÞ

a

b

c

a’

b’

c’

)1(' xε+=a
)1(' ybb ε+=
)1(' zcc ε+=

a

b

c

a’

b’

c’

)1(' xε+=a
)1(' ybb ε+=
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Fig. 1.38 Changing volume
V, with sides a, b, c, into
volume V0, with the indicated
change in length
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A similar relation may be given for the strain defining the principal directions:

tan 2hp ¼
2exy

ex � ey
ð1:96Þ

These principal strains also take the form of Eqs. (1.36) and (1.36a), previously
considered in Sect. 1.2.5.1 and reproduced here for comparison. Equation (1.97)
shows the principal strains at which, in the rotated square, e0xy vanishes. This
coordinate system is marked as x0 and y0.

r0xðprincipalÞ ¼ rI ¼
rx þ ry

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þs2

xy

r
ð1:36Þ

rII ¼ rx þ ry � rI ¼
rx þ ry

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2


 �2
þs2

xy

r
ð1:36aÞ

eI ; eIIðprincipalÞ ¼ ex þ ey

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ex � ey

2


 �2
þe2

xy

r
ð1:97Þ

Analogous to principal stresses, there are principal strains acting on the prin-
cipal planes of the strains. Also as in the principal stresses, the shear strains on the
principal planes of those strains equal zero, i.e., the normal strains on these planes
are actually the principal strains. Following convention, the maximum principal
strain of the three is called the ‘major principal strain’, while the smallest strain is
known as the ‘minor principal strain’. In an isotropic elastic material, the principal
planes of strain coincide with the principal planes of stress. In a manner similar to
that in Eqs. (1.22e) and (1.23), it is possible to write the following for the strain:
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y

dx

dy

d
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dy

εy

εy

εxεx
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εxy

ε

ε
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dy

y
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εΙΙ
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Fig. 1.39 The strains of an elementary square of sides dx and dy, before and after rotation: a the
strains in a given coordinate system, b the rotation performed by hp is to a position at which no
shear strains are present. eI and eII are the principal strains acting in the principal directions
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e3
i ¼ I1e

2
i þ I2ei þ I3 ¼ 0 ð1:98Þ

where:

I1 ¼ ex þ ey þ ez ð1:98aÞ

I2 ¼ exey þ eyez þ ezex � e2
xy � e2

yz � e
2

zx ¼
1
2

eiiejj � eijeji

� �
ð1:98bÞ

I3 ¼ exeyez þ 2exyeyzezx � exe
2
yz � eye

2
zx � eze

2
xy

¼ exeyex þ
1
4

cxycyzczx �
1
4
exc

2
yz �

1
4

eyc
2
zx �

1
4
ezc

2
xy ¼ detðeijÞ

ð1:98cÞ

The symbol I represents the strain invariants analogous to the stress invariants
given as J in Eqs. (1.22e) and (1.23). The coefficients in Eq. (1.98c) are the results
of the engineering shear strain being:

cij ¼ 2eij;

as given earlier.
The principal strains are determined as being the roots of Eq. (1.98), quite

similarly to the evaluation of the principal stresses.

1.6 Thermal Strains

In many engineering applications, uniaxial thermal strain is useful when defined as:

e ¼ Dl

l0
¼ aDT ð1:99Þ

a is the coefficient of thermal expansion, assumed to be temperature-independent
and, thus, a material constant. However, one must be aware that chemical changes
may occur with increasing temperature, especially in transition-metal oxides [21],
which can induce strain change and, thereby, the linear relation between thermal
strain and temperature will not necessarily be maintained. Such changes may
occur, for example, when the oxygen content of certain ceramics changes, thus
modifying the metal–oxygen bond length responsible for the strain deviation from
linearity. These effects are observed in La1-xSrxCoO3-d (LSCF) and other La-Sr-
based ceramics. An illustration of this effect is shown in Fig. 1.40 for La0.6Sr0.4-

Co0.2Fe0.8O3 (LSCF 6428).
In general, however, when no chemical changes occur in materials, Eq. 1.99 is

helpful for describing thermal strain. It expresses the change when a uniform
temperature is applied to an unconstrained three-dimensional element experienc-
ing thermal expansion or contraction. Free, unhindered thermal expansion pro-
duces normal strains. The values of a (when no chemical effects are involved, as
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stated above) may be found in the literature on structural materials. The most
practical way to take the thermal strain occurring, when structural ceramics are
used at high temperatures, into account is by directly adding the thermal strain to
the respective stress–strain relations. Thus, Eq. (1.80) may be expressed as:

ex ¼
rx � mðry þ rzÞ

E
þ aDT

ey ¼
ry � mðrz þ rxÞ

E
þ aDT

ez ¼
rz � mðrx þ ryÞ

E
þ aDT

ð1:100Þ

It should be emphasized that thermal expansion does not induce angular
deformation, thus no shear stresses are involved. Also note the expressions for
stresses Eq. (1.86) modified by thermal strain:

rx ¼
E

1þ mð Þ ex þ
Em

1þ mð Þ 1� 2mð Þ ex þ ey þ ez

� �
� EaDT

ð1� 2VÞ

ry ¼
E

1þ mð Þ ey þ
Em

1þ mð Þ 1� 2mð Þ ex þ ey þ ez

� �
� EaDT

ð1� 2VÞ

rz ¼
E

1þ mð Þ ez þ
Em

1þ mð Þ 1� 2mð Þ ex þ ey þ ez

� �
� EaDT

ð1� 2VÞ

ð1:101Þ

Fig. 1.40 Equilibrium
uniform expansion of a dense,
square prismatic bar of LSCF
6428 as a function of oxygen
content and temperature [21].
With kind permission of
Wiley
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Equation (1.86) may be rearranged and the thermal strain factor added, giving:

rx ¼
E

1þ mð Þ 1� 2mð Þ ex 1� mð Þ þ m ey þ ez

� �� 
� EaDT

ð1� 2VÞ

ry ¼
E

1þ mð Þ 1� 2mð Þ ey 1� mð Þ þ m ez þ exð Þ
� 

� EaDT

ð1� 2VÞ

rz ¼
E

1þ mð Þ 1� 2mð Þ ez 1� mð Þ þ m ex þ ey

� �� 
� EaDT

ð1� 2VÞ

ð1:102Þ

Equation (1.102) is equivalent to Eq. (1.101) and may, for instance, be obtained
by rearranging Eq. (1.86), as presented below:

rx ¼
E

1þ mð Þ ex þ
Em

1þ mð Þ 1� 2mð Þ ex þ ey þ ez

� �
ð1:86Þ

(a) Express the two terms of Eq. (1.86) by a common denominator as:

rx ¼ E
ex 1� 2mð Þvþ m ex þ ey þ ez

� �
1þ mð Þ 1� 2mð Þ

� �
ð1:102aÞ

(b) Multiply the two terms by their respective coefficients to get:

rx ¼ E
ex � 2exmþ exmþ m ey þ ez

� �
1þ mð Þ 1� 2mð Þ

� �
ð1:102bÞ

(c) Rearrange (b) to obtain:

E

1þ mð Þ 1� 2mð Þ ex 1� mð Þ½ � þ m ey þ ez

� �
ð1:102cÞ

By adding the thermal factors, Eqs. (1.102) are obtained.

1.7 Relations Among Some Elastic Constants

In the previous sections, some elastic constants were mentioned, namely, E, G, m, k
and K. The constants E and G, the Young’s and the shear modules, respectively,
relate to stress–strain relations represented as:

r ¼ Ee
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and shear-stress strain:

s ¼ Gc:

Again, Poisson’s ratio, Lame’s constant and the bulk modulus were given
earlier, respectively, as:

m ¼ � lateral strain

axial strain
¼ � ey

ex
¼ � e22

e11

� �
¼ � ez

ex
� e33

exx

� �
ð1:11Þ

k ¼ Em
1þ mð Þ 1� 2mð Þ ð1:86bÞ

K ¼ E

3ð1� 2mÞ ð1:94aÞ

These three constants are not independent, but if a solid is isotropic, these
constants are sufficient for describing the mode of deformation, as given below.

(a) In order to study the relation between E, G and m, the following section considers
pure shear deformation. In the illustration, take, for example, a body comprising
a two-dimensional cube element around a point (see the square in Fig. 1.41).
This square, ABCD, is distorted by shear to ABC0D0; the diagonal AC bisects the
square, ABCD, thus, the angle, ABC, is 45�. Due to this deformation, the
diagonal elongates to AC0; simultaneously, the diagonal, BD, of the square gets
shorter to a value of BD0. Now draw a perpendicular to the new diagonal, i.e., AC0

of the distorted parallelepiped. Since this deformation is a very small, angle,
AC0C, may be taken as 45�. The resultant shear strain from the triangle, CC0B, is:

B

φ

A

D CD’ C’

E

τyx

τxy

τyx

τxy

dx

dy

φ

Fig. 1.41 A square distorted
by pure shear. The result of
the shear is indicated by
ABC0D0
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shear strain ¼ tan c ¼ c ¼ CC0

BC
ð1:103Þ

This shear strain is also given as stress per the shear modulus, namely:

shear strain ¼ s
G

ð1:103aÞ

By equating Eqs. (1.103) and (1.103a), one gets:

s
G
¼ CC0

BC
ð1:103bÞ

There is a right-angle triangle, CC0E, where CE is perpendicular to AC0. Two
angles in this right-angle triangle are 45�.

cos 45 ¼ C0E

CC0
ð1; 104Þ

or:

CC0 ¼ C0E

cos 45
¼

ffiffiffi
2
p

C0E ð1:104aÞ

Moreover, in triangle ABC, which is also a right-angle triangle

cos 45 ¼ BC

AC
ð1:105Þ

and, thus:

BC ¼ AC cos 45 ¼ ACffiffiffi
2
p ð1:105aÞ

Equations (1.105a) of BC and (1.104a) of CC0 may be inserted into
Eq. (1.103b) to obtain

s
G
¼

ffiffiffi
2
p

C0E

AC

ffiffiffi
2
p
¼ 2

C0E

AC
ð1:106Þ

Since AC is almost equal to AE, C0E can be considered to represent the increase
in length of the diagonal, AC. The strain in the diagonal length is given as the ratio
of the increase in the length and the original length. Thus:

strain in diagonal ¼ increase in diagonal length

original length
¼ C0E

AC
ð1:107Þ
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From Eqs. (1.106) and (1.107):

s
2G
¼ C0E

AC
¼ c

2
ð1:108Þ

One can state that, due to the increase in the diagonal length, AC is subjected to
a tensile stress, but BD must be subjected to a compressive stress, since it shortens
as a consequence of shear deformation. Under these conditions, the tensile shear
stress is r1 = s and the compressive one is r2 = -s. Remember that:

m ¼ � e2

e1
¼ � e3

e1
:

Now, the direct state of the stress system along the diagonals may be written as:

strain on diagonal ¼ r1
E �

mr2

E
¼ s

E
� �sð Þ

E
¼ s

E
1þ mð Þ ð1:109Þ

Equating both the expressions of strain found in Eq. (1.107), i.e., Eqs. (1.108)
and (1.109) give:

s
2G
¼ s

E
1þ mð Þ ð1:110Þ

thus, the relation between E and G, in terms of Poisson’s ratio, is given by:

E ¼ 2Gð1þ mÞ ð1:110aÞ

or as indicated more often in the literature and previously shown in Eq. (1.12):

G ¼ E

2ð1þ mÞ ð1:12Þ

(b) The relation between E, K and m.

Equation (1.85) is rewritten below as:

ex þ ey þ ez ¼
1� 2mð Þ

E
rx þ ry þ rz

� �
¼ 3

1� 2mð Þ
E

ra ð1:85Þ

where ra is the average (or mean) stress. It is also given (for isotropic materials) as
Eq. (1.92), which, when combined with Eq. (1.85), gives:

ev ¼ ex þ ey þ ez ¼ 3ea ¼ 3
1� 2mð Þ

E
ra ð1:93Þ

Furthermore, in Eq. (1.94), K is related to the average stress, ra, and average
strain, ea:
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ra ¼ ev
E

3 1� 2mð Þ ¼ Kev ¼ 3Kea ð1:94Þ

Using Eq. (1.94):

K ¼ ra

3ea
ð1:94bÞ

Taking ra from Eq. (1.94) gives:

ra ¼ ev
E

3 1� 2mð Þ ð1:94cÞ

Then, equate this with ra from Eq. (1.94b) to express this equality as:

K3ea ¼
evE

3ð1� 2mÞ ð1:94dÞ

or:

E ¼ 3Kea3 1� 2mð Þ
ev

ð1:94eÞ

Take ev = 3ea from Eq. (1.94) and substitute this value for ev into Eq. (1.94e)
to get:

E ¼ 3Kð1� 2mÞ ð1:111Þ

which is basically the expression for the bulk modulus usually given as:

K ¼ E

3ð1� 2mÞ ð1:93Þ

thus expressing the relation between K, E and m.

(c) The relation between G, K, E

In Eq. (1.12), G is given as:

G ¼ E

2ð1þ mÞ ð1:12Þ

or:

E ¼ 2Gð1þ mÞ ð1:112Þ
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while in Eq. (1.111), E is given in terms of K as:

E ¼ 3Kð1� 2mÞ ð1:111Þ

When equating Eqs. (1.111) and (1.112), one gets:

3Kð1� 2mÞ ¼ 2Gð1þ mÞ ð1:113Þ

G ¼ 3K 1� 2mð Þ
2 1þ vð Þ ð1:114Þ

In order to get the relation between G, K and E, first express the following from
Eq. (1.112):

E

2G
� 1 ¼ m ð1:112aÞ

and express m from Eq. (1.111) as follows:

E
3K
¼ 1� 2m ð1:111aÞ

I. m ¼ �E � 3K

6K

Now, equate Eqs. (1.111a) and (1.112a) to get:

II.
E

2G
� 1 ¼ �E � 3K

6K

Cross-multiplying II, gives:

III. 6 EK � 12 GK ¼ �2 GE þ 6 KG

IV. Eð6 K þ 2 GÞ ¼ 18 KG

E ¼ 18KG

ð6K þ 2GÞ ¼
9KG

3K þ G
ð1:115Þ

(d) The relation between G, K and m.

Express E from both Eqs. (1.112) and (1.111) and equate them to obtain:

2Gð1þ mÞ ¼ 3Kð1� 2mÞ ð1:116Þ

Get G as:

G ¼ 3Kð1� 2mÞ
2ð1þ mÞ ð1:117Þ
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Equation (1.117) is one of the required relations between G, K and m.

(e) The relation between k, E and m.

Is given in Eq. (1.86b), shown above:

k ¼ Em
1þ mð Þ 1� 2mð Þ ð1:86bÞ

(f) The relation between k, G and m.

Is found by inserting E from Eq. (1.112) into Eq. (1.86b):

E ¼ 2Gð1þ mÞ ð1:112Þ

to obtain:

k ¼ 2Gm
ð1� 2mÞ ð1:118Þ

Additional relations between k and elastic constants that may be derived are
presented below without proofs, such as those between: k, E and J; k, K and G; k,
K and m, respectively.

It is convenient for users of these elastic constants to get them from tables
summarizing all these relations, such as Table 1.4. For isotropic materials, two
independent elastic constants are sufficient (as indicated in the Table 1.4) for
describing a stress–strain relation. There are different stress–strain constants for
various other deformation conditions.

1.8 Compression of Ceramics

Experimental observations indicate that, in general, the true stress–strain curves of
ductile materials coincide. Brittle materials, among them brittle ceramics, do not
show a similar behavior. Usually, experimental observations indicate that brittle
materials are stronger under compression than under tension.

Almost all materials are candidates for compression tests. Thus, ductile metals
used for various applications, when shaped by forging, drawing, extrusion, etc.,

Table 1.4 Relations between
some elastic constants for
isotropic materials

The relation between E, G and m: G ¼ E
2ð1þmÞ

The relation between E, K and m: E = 3 K(1 - 2m)
The relation between G, K and E: E ¼ 9KG

3KþG

The relation between G, K and v: G ¼ 3Kð1�2mÞ
2ð1þmÞ

The relation between k, E and m: k ¼ Em
1þmð Þ 1�2mð Þ

The relation between k, G and m k ¼ 2Gm
ð1�2mÞ
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experience pressure components during their commercial fabrication and, there-
fore, are tested by loading under compression. Very soft materials, such as plastics
or soft metals, are often exposed to compression experiments. However, ceramics,
like most of the brittle materials intended for structural applications are invariably
tested under compression as the prime mechanical evaluation test. Furthermore,
compressive strength plays an important role in the performance of machine
components including ceramic armor, machine tool bits and bioceramic body parts.

True stress–strain curves of tension and compression have been experimentally
observed to coincide. Yet, this observation is not true for brittle materials (that
behave like glass), in which fracture and yield stress coincide. Thus, in brittle
materials, e.g., ceramics, the strain seldom exceeds *1 %, depending to a large
degree on the type of deformation involved. Classical Hookean behavior is
observed in such brittle materials. The presence of imperfections of various kinds,
including porosities, has a profound effect on the mechanical behavior of ceramics.

Uniaxial compression tests may be done either on unconfined or confined
specimens. Unconfined uniaxial tests of porous calcium phosphate ceramics
(intended for use as a bioceramic body part) are shown in Fig. 1.43.

These specimens were cleaned by soaking in a phosphate-buffered saline (PBS)
after deaeration, which is a recommended biomimetic process (‘biomimetic’ refers
to man-made processes, substances, devices or systems that imitate nature). The
designations in Fig. 1.42 indicate the conditions of the porous specimens. Speci-
mens A, B and D show a stepwise collapse, due to the stepwise collapse of the
weaker part in each pore wall. Specimens E, F and G reveal a dense body-like
stress–strain curve, i.e., their pore wall has a similar structure to dense ceramics.
These results suggest that, to enhance the compressive strength of bioactive
ceramics in the initial stage of their implantation, they should be kept in air after
briefly removing the surface liquid remaining after a 24 h soaking in PBS at 25 �C,
followed by the addition of PBS after the de-aeration of the specimens.

Uniaxial and triaxial compression tests of silicon-carbide ceramics under quasi-
static loading conditions were performed by Brannon et al. [33]. Their SiC-N
specimens were prepared in the form of a right circular cylinder, as is indicated
schematically in Fig. 1.43a next to the experimental set-up.

These specimens were porous, as illustrated in Fig. 1.44. Triaxial compression
tests were also performed under unconfined and confined conditions. The confined
tests employed lateral confining pressure. The confinement of specimens during
compression tests relates to the accompanying reduction of transverse tensile
stress, which induces fracture. This confinement may be lateral or created by
producing true hydrostatic pressure by submerging the specimens (or the entire test
assembly) in a pressurized liquid. For more on the testing of brittle specimens by
uniaxial and triaxial compression, the reader is referred to Chapter 11 of the
textbook by Polakowski and Ripling [15]. Table 1.5 is a summary of the com-
pression tests performed on SiC-N and includes: specimen size, fracture stress,
Poisson’s ratios and elastic module confinement levels. In Fig. 1.46, the axial
stress, ra, is plotted against ea (axial) and el (lateral) strains, respectively.
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During the uniaxial compression, the specimens were loaded at a constant axial
strain rate of 2 9 10-5/s, until the peak stress was reached and the specimen failed
in an explosive manner, as shown in Fig. 1.45.

Figure 1.46 illustrates the stress–strain curves of an unconfined, uniaxial,
compressive deformation of a SiC-N specimen. For uniaxial compression, the
axial load was applied without confining pressure (P = 0). The confining pressure
is indicated in Fig. 1.47, where stress–strain plots obtained from the uniaxial/
triaxial compression tests of SiC-N are illustrated. In general, the application of

Fig. 1.42 Typical uniaxial stress–strain curves obtained by compression of porous calcium
phosphate ceramics for biomedical purposes as bone fillers [30]. With kind permission of Ashdin
Publishing
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confinement effects stress and strain and is observed to increase with the increase
of P for various specimens tested [33].

The unconfined compressive strength used in the above equation is
3,872 ± 126 MPa, as seen in Fig. 1.46. A discussion about the effects of tem-
perature and strain rates on the compression stress–strain curves is found in later
sections dealing with ductile ceramics and the influence of impact on the strength
properties of ceramics.

Fig. 1.43 Sample alignment jig designed for coaxial alignment of different components of the
test set-up. The strain gaged SiC-N specimen coated with flexible polyurethane membrane is also
shown. The strain gage signal was transmitted to the data acquisition system through the high-
pressure coaxial feed-through connectors. a Schematic; b actual experimental set-up [33]. With
kind permission of Professor Brannon

Fig. 1.44 SEM micrograph
of the surface of a SiC-N
specimen prepared for
mechanical testing. Grain and
pore sizes are distributed
uniformly [33]. With kind
permission of Professor
Brannon
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1.9 Bend (Flexural) Tests of Ceramics

It has been stated that brittle materials, such as ceramics, are preferentially tested
by means of compressive and bending deformations. The main reason for this is
that specimens of this nature tend to fail at relatively low stresses, not only because
of the flaws and cracks commonly found in various sized ceramics, but for other
reasons as well, as listed below:

(a) The preparation of tensile specimens of ceramics (invariably brittle sub-
stances) to the proper size and dimensions is quite difficult, because it is
problematic to machine them to the desired shape.

(b) Once a specimen is prepared, difficulties may arise in their proper alignment,
as required in tensile testing, resulting in a non-uniform transfer of load across
the specimen’s area.

Table 1.5 Summary of uniaxial and triaxial compression tests for SiC-N specimens [33] (with
kind permission of Professor Brannon)

Specimen no. Diameter
(mm)

Length
(mm)

P
(MPa)

rf

(MPa)
E
(GPa)

V l1(MPa) I1
3
(MPa)

ffiffiffiffiffi
J2
p

(MPa)

SiCN-UC01 12.7 25.4 0 3738 464 0.156 3738 1246 2158
SiCN-UC02 12.7 25.4 0 3988 463 0.153 3988 1329 2302
SiCN-UC03 12.7 25.4 0 3890 467 0.154 3890 1297 2246
SiCN-TA01a 12.7 25.4 200 6326 NA NA 6726 2242 3537
SiCN-TA02 12.7 25.4 350 5948 466 0.161 6648 2216 3232
SiCN-TA03b 12.7 25.4 200 NAb 442c NA NAb NAb NAb

SiCN-TA04 12.7 25.4 100 5508 480 0.167 5708 1903 3122
SiCN-TA05 12.7 25.4 200 6120 480 0.169 6520 2173 3418
SiCN-TA06 12.7 25.4 350 6422 484 0.172 7122 2374 3506
SiCN-TA07 12.7 25.4 350 6515 482 0.173 7214 2405 3559
SiCN-TA08b 12.7 25.4 100 NAb 474c 0.159c NAb NAb NAb

SiCN-TA09 12.7 25.4 100 5283 478 0.166 5483 1828 2992

P(= r2 = r3) = lateral confining pressure
rf = failure stress (maximum r1)
E = Young’s modulus
V = Poisson’s ratio
l1 = r1 + r2 + r3 at failure = rf + 2P
I1
3 = mean stressffiffiffiffiffi

J2
p
¼ rf�Pffiffi

3
p

a Strains were not measured
b Premature failure of the tungsten carbide end-caps at 2284 MPa for SiCN-TA03 and 3477 MPa
for SiCN-TA08
c Uncertain value due to premature of the WC end-caps
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(c) The presence of various imperfections among the cracks of various sizes act
not only as weak regions, but also as stress raisers. Compression tests, for
example, tend to close pores and cracks, whereas tension opens them and
increases their size.

(d) Surface defects, such as crazes, are common in brittle materials, like ceramics
(and more so in glass), and these act as notches, namely stress raisers.

(e) There is often also difficulty gripping or clamping ceramic tension-test
specimens.

(f) Finally, due to the above problems, a large number of specimens must be tested
in order to get a representative strength value via statistical evaluation, which
is both time consuming and costly.

Fig. 1.45 Explosive failure
of the SiC-N-UC02 specimen
(12.7 mm in diameter and
25.4 mm in length) subjected
to the unconfined uniaxial
compressive stress condition
(r1 = 3988 MPa at failure
and r2 = r3 = 0) [33]. With
kind permission of Professor
Brannon

Fig. 1.46 Stress–strain plot
for the uniaxial compression
test of specimen SiCN-UC01.
ea, el, and ev are axial, lateral
and volumetric strains,
respectively. P is the
confining pressure [33]. With
kind permission of Professor
Brannon
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Two methods are used for bend testing—three- and four-point bending tests.
Here, the specimens are rectangular, without notches. It is obvious from Fig. 1.48
that the applied force (downward arrows) is compressive by nature, resisted by the
tensional force (upward arrows). Thus, the longitudinal stresses at the lower sur-
faces (convex) in the specimens are tensile and compressive at their upper surfaces
(concave). As a consequence, a calculable bending moment develops. The
‘modulus of rupture’ is the stress of the specimen at its failure and represents the
flexural strength of the specimen.

The arrow pointing downwards in a, for example, is the center point for the load
application. A large variety of machines are available for flexural tests, such as
MTS, Instron, Universal Testing Machine, etc. The basic assumption in flexural
tests may be summarized briefly as follows:

(i) The beam material is isotropic and homogeneous.
(ii) Perpendicular planes to the longitudinal axis of the specimen are assumed to

remain plane after applying the load for bending.
(iii) Since bending is associated with tension (the lower longitudinal plane is

under tension during load application and upper plane is in compression), the
elastic modulus is considered to be about equal both under compression and
tension.

(iv) This test is based on a small deflection compared to the beam depth.
(v) It is reasonable to believe that stress and strain are proportional to the distance

from the neutral axis. The neutral axis is shown in the schematic specimen of
Fig. 1.49 (at half of h).

(vi) Shear stress and its consequences are not taken into account in the structural
stress of the rectangular bar under consideration.

Fig. 1.47 Stress–strain plots obtained from the uniaxial/triaxial compression tests of SiC-N
specimens (ra—axial stress, ea—axial strain, el—lateral strain, ev—volumetric strain). a without
confining pressure; b confining pressure of 350 MPa [33]. With kind permission of Professor
Brannon
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A circular cross-section is not used as frequently as the rectangular beam shown
above.

The fracture stress, rf, is determined by:

rf ¼
Mc

I
ð1:120Þ

I ¼ 2tc3

3
ð1:121Þ

Replacing I in Eq. 1.120 produces the following for rf:

rf ¼
3M

2tc2
ð1:120aÞ

M is the bending moment, c is half the specimen width, t is the thickness and I
is the moment of inertia of the cross-sectional area. Lists of the moments of inertia
of plane figures and areas are found in the literature and also in the Appendix of
Timoshenko’s book [19]. Basically, the plane under consideration is divided into
small pieces and the contribution of each individual piece to the moment of inertia
is evaluated by integration:

specimen specimen

load load load
three point bend test four point bend test      

specimen suport specimen suport

span length=L

L/2 L/2

span length=L

L/3L/3L/3

(a) (b)

Fig. 1.48 Schematic bend-test configurations: a three point; b four point

c

ct

L

P

P/2 P/2

h

h=2c

Fig. 1.49 Schematic bend
test rectangular bar
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I ¼ bh3

12
� tð2cÞ3

12
¼ 2tc3

3
ð1:121aÞ

Since I is the moment of inertia of the cross-sectional area, expressing the
moment as the force times the lever, allows Eq. (1.120) to be modified as:

rf ¼
2P L

2 c
2tc3

3

¼ 3PL

2tc2
ð1:122Þ

Below, a method for evaluating the inertia is presented.
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Note the final relation bh3

12 for the inertia obtained above and shown in Eq. (1.121a).
When considering the notation in Fig. 1.49, Eq. (1.121) may be obtained. Both

values for inertia: bh3

12 and I ¼ 2tc3

3 from Eq. (1.121) are indicated in Eq. (1.121a).
Equation (1.122) is the flexural strength for the three-point test of a rectangular

bar. In the above relation, a force is acting on a lever of size L/2 (1/2 of the bar at
the support) and this force is supported or balanced at the two supporting points
marked by the arrows close to the ends of the rectangular bar (i.e., M = PL (force
� arm), which yields the same answer as given in Eq. (1.122)).

The four-point bend setup is illustrated in Fig. 1.50 for two cases: for the
loading span at L/2 (illustration a) and for loading span of L/3 (b). The following
relations apply to the L/2 span, using Eq. (1.120a) with the appropriate substitution
for M as:

rf ¼
3M

2tc2
¼

3P L
2

2tc2
¼ 3PL

4tc2
ð1:123Þ

By using Eq. (1.120a) again, the L/3 span shown in Fig. 1.50b may be written as:

rf ¼
3M

2tc2
¼

3P L
3

2tc2
¼ PL

2tc2
ð1:124Þ

In the general case, when the loading span is different from L/2 or L/3 in a four
point bend test, the stress is given as:

rf ¼
3P L� Lið Þ

2tc2
ð1:125Þ

Equation (1.125) is obtained in a manner similar to other bend test relations,
namely:

rf ¼
3M

2tc2
¼ 3PðL� LiÞ

2tc2
ð1:125aÞ

Figure 1.51 illustrates the results of a bend test of five specimens of three-
dimensional carbon-silicon carbide compared with tension tests (Fig. 1.52) on the
same material. The results of the bend test are similar to stress–strain curves;
however, the stress is plotted versus deflection, rather than versus strain. The
results of these bend and tension tests appear in Tables 1.6 and 1.7.

The relations expressing the flexural strength, rf, actually represent the highest
stress of the ceramics at the time of rupture. While tension or compression tests of
metals are commonly used to characterize and development new materials for
design purposes, bend tests of ceramics are the preferred test method. The flexural
strength of a ceramic is dependent on its inherent properties, especially flaws and
crack sizes (common features in ceramics). Variations in size, distribution and the
nature of such cracks cause a natural scatter in test-sample results, requiring the
testing of several test specimens in order to get a statistical value for the inherent
flexural strength.
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P

P/2 P/2

L

L/2

P

L/3 L/3L/3
L

P/2 P/2

P/2 P/2

(a) (b)

Fig. 1.50 Rectangular beams in a four-point bending test; a loading span L/2; b loading span
L/3. Note that the loading span may be different from L/2 or L/3. In this case, it is customary to
denote the load span as Li

Fig. 1.51 Load-deflection curves of 3D carbon-reinforced SiC obtained by flexural tests [7].
With kind permission of Professor Chetan Sharma, Editor in Chief

Fig. 1.52 Load-deformation curves of 3D Carbon reinforced SiC obtained by tensile tests [7].
With kind permission of Professor Chetan Sharma Editor in Chief
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If the loading span is neither 1/3 or 1/2 the support span for the 4 pt bend setup
is used.

Note the relation between three- and four-point bend tests and test-specimen
size. It is expected that the larger volume specimens will show a lower modulus of
rupture than smaller sized specimens, since there is a higher probability that more
defects (micro-cracks, for example) will exist in larger specimens. Therefore, test
specimens have to be standardized. The lower modulus of rupture in four-point
bend tests than in three-point bend tests is a consequence of the size effect.

1.10 Hardness Tests in Ceramics

1.10.1 Introduction

As is known, ‘hardness’, H, is defined as the ratio of applied load to the projected
area of indentation and is generally expressed as:

H ¼ a
P

d2
ð1:126Þ

where P is the load, d is the size of the measured impression with a, the indenter
constant, taking the indenter geometry into consideration. Any of the known
hardness tests are possible candidates for evaluating the hardness of ceramics with

Table 1.6 Experimental
results of flexural strengths of
3D C-SiC specimens [7]
(with kind permission of
Professor Chetan Sharma,
Editor in Chief)

Specimen No. Max. load (PU)
recorded during
flexural test (N)

Flexural strength,
rf (MPa) from
Experiment

1 757 210.2
2 780 216.6
3 789 219.2
4 805 223.6
5 829 230.3

Table 1.7 Experimental
results of tensile strengths of
3D C-SiC specimens [7]
(with kind permission of
Professor Chetan Sharma
Editor in Chief)

Specimen No. Max. load (PU)
during tensile
test (kN)

Tensile strength,
rt (MPa) From
Experiment

1 1.264 70.2
2 1.346 74.8
3 1.437 79.8
4 1.525 84.7
5 1.619 89.9
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the proper choice of test conditions, e.g., the load, the indenter, the time of load
application, etc. The most common hardness testing methods are those of Vickers
and Knoop, the latter being used for ceramic coatings. Here, general hardness
testing methods will not be discussed (details may be found in [13]), rather the
following section focuses on Vickers’ and Knoop’s techniques. In fact, the scatter
in ceramic hardness test results is larger than that found in metals and, therefore,
the reproducibility of hardness is reduced. Therefore, the expected indentation
response of ceramic materials must be considered before selecting the most
reproducible and reliable hardness measurement method and the appropriate test
force. It is recommended to use standard ceramics reference blocks as measure-
ment guides to enhance test reliability. Clearly, the choice of technique and
applied load must be such that no cracking of the ceramics in the vicinity of
indentation occurs. These tests are indentation tests, mainly intended to provide
information on the resistance of these materials to deformation. Resistance to
deformation provides significant information for engineers, stemming from the
relations of the hardness values to other parameters obtained by different testing
methods, mainly to the stress data obtained under tension or compression. The
hardness of a material correlates directly with its strength, wear resistance and
other properties. It is hoped that similar relations also exist for ceramics or can be
developed. Thus, hardness testing is widely used for material evaluation, because
of its simplicity and low cost relative to direct measurements.

The indenters and their indentation shapes vary widely, leaving different
impressions. The appropriate dimensions of these impressions on the surfaces are
measured to obtain interesting research data. Conversion charts, from hardness to
other properties of interest, appear in the literature. Basically, glass and ceramic
hardness tests are carried out using static methods, usually by means of a diamond
indenter and low test loads, because brittle materials tend to propagate cracks.

1.10.2 Vickers Hardness Test (VHT)

The Vickers Hardness Test (henceforth: VHT) uses a diamond pyramid with a
square base for indentation, so it is also known as the Diamond Pyramid Hardness
Test [henceforth: DPH]. The indenter has an angle of / = 136� between the two
opposite faces. The results of this test are also known as the ‘diamond pyramid
number’ [henceforth: DPN], defined as the load divided by the surface area of the
pyramid-shaped indentation (impression). This area is simple to evaluate from the
geometry of the shape of the indentation, which requires measuring the diagonals
and using the known angle between the two opposite faces. These two diagonals
are measured on the screen of the Vickers Tester and their average is used in the
DPH formula. The area of the sloping surface of the indentation is calculated as
indicated in Fig. 1.53 and the steps are also shown for deriving the expression for
DPH measurements:
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DPH ¼ 2P sinð/=2Þ
d2

¼ 1:854P

d2
ð1:127Þ

The 136� angle between the opposite faces of the indenter was chosen because
of the similarity between the Brinell hardness number (henceforth: BHN) and the
DPN. Due to this similarity, the DPN is on the same hardness scale as the BHN
and their values are about the same up to *300 BHN. Only beyond this BHN
value do the two curves shown in Fig. 1.54 deviate one from the other. Significant
deviation between these two types of measurement occurs at high hardness values,
particularly above *600 BHN, due to the deformation of the indenter. The DPH
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Fig. 1.53 Vicker’s
indentation [13]

DPH numbers
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0

Fig. 1.54 Beyond 300 BHN,
the lines diverge [13]
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curve is linear, as seen in the schematic Fig. 1.54, because of the insignificant
deformation of the diamond indenter compared to that of the BHN.

The load of a conventional Vickers machine varies from 1 to 120 kg and may
be easily reset to the desired load at the push of a button. Thus, a VHT may be
applied to different materials having a very wide range of hardness values.
However, at the Ben-Gurion University of the Negev’s ceramics testing labora-
tory, the Vickers tester has a load range of 1–2000 g. A photograph of the Buehler
testing unit is seen in Fig. 1.55. This tester may be used to make Vickers, Knoop
and Rockwell hardness measurements. The load is applied via the square-based
pyramid indenter against the smooth, firmly-supported, flat surface of the test
specimen. It is recommended to polish the specimen’s surface, because a small
impression is usually obtained in such a test.

The advantages of the VHT are:

(I) Despite several different loading settings (the application and removal of loads
is controlled automatically) almost identical hardness numbers are obtained on
the same ceramics if the distribution and size of the flaws are uniform. How-
ever, a scatter in the results may occur when the flaws are not uniformly
distributed or when there are variations in their sizes within the test piece.

(II) The VHT yields more accurate diagonal readings than other testing methods.
(III) Only one type of indenter is used for all types of ceramics and the load

applied may be changed by push button. The VHT covers a wide range of
hardness and, as a result, a continuous scale can be established.

(IV) Because of the wide load range, this test is adaptable for the testing of almost
any ceramic material, the softest and hardest ones.

In Fig. 1.56, graphs show the Vickers hardness variations for several refractory
carbides under loads. These experiments were performed for a wide range of test
forces, between 0.49 N and 196 N. All three graphs below show the same pattern

Fig. 1.55 Buehler made a
combined hardness tester for
Vickers, Knoop and
Rockwell. Model #1600-
6400. Load range 1–2000 g
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of decreasing hardness with increased load. The only high hardness found in this
carbide series was observed in B4C, reaching a value of 39.5 GPa at 0.49 N. One
of the microstructures, that of tungsten carbide, is shown in Fig. 1.57 (a back-
scattered electron micrograph), which indicates their grain sizes.

There is no preferential orientation and the grain sizes are 0.43 mm for (a),
1.4 mm for (b) and 2.5 mm for (c). Furthermore, as expected, an indentation size
effect with hardness values should be observed for all carbides tested, because the
size of the impressions are related to the load applied, being smaller for smaller
loads or for harder materials. This, indeed, is the case, as shown in Fig. 1.58. The
shapes of the curves in the illustrated materials are similar to those given by
Li [34] and associates as:

Fig. 1.56 Variation of Vickers hardness as a function of the test force a for B4C, Mo2C, and
NbC; b for TiC, V8C7 and W2C; c for WC, WC-15 mol% SiC and ZrC [40]. With kind
permission of Professor Akihiro Nino and the Japan Institute of Metals
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P ¼ a1d þ a2d2 ð1:128Þ

and may be expressed as:

P

d2
¼ a1

d
þ a2

2 ð1:128aÞ

In the above relations, d is the indentation size; a1 and a2 are constants, which
can be determined from the lines in Fig. 1.58. Thus, a1 and a2 are represented by
the slope and the intercept, respectively. Recalling the definition of hardness in
Eq. (1.126) and combining it with Eq. (1.128a), one obtains:

H ¼ a
a1

d
þ aa2 ¼

a01
d
þ a02 ð1:129Þ

A few more examples of the versatility of the VHT may be cited that were
performed on polycrystalline ceramics, as shown in the following graphs. Note

Fig. 1.57 Backscattered
electron micrographs of
tungsten carbides [40]. With
kind permission of Professor
Akihiro Nino and the Japan
Institute of Metals. a 5 lm,
b 10 lm. c, 10 lm
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that the pattern of these graphs is quite similar to those in Fig. 1.56. In all the lines
in Fig. 1.59, a well-defined plateau is observed, usually at higher loads. Thus, it
seems likely that there is a region on the hardness curves where hardness is load-
dependent until the seemingly constant plateau has been reached, defining a
transition point. Such a transition point appears to be associated with the onset of
extensive cracking around and underneath the indentation. Cracking is an integral
response of ceramics to indentation, often observed in structural ceramics,
sometimes even at small loads. At higher loads, the cracking of ceramics usually
occurs as observed in Fig. 1.60. The hardness measurement of ceramic materials is
unsatisfactory and not reproducible when cracking, chipping or other flaws are
observed in the test-piece, caused by the indentation. Cracks formed during

Fig. 1.58 Pd-2 versus d-1 for the carbides of Fig. 1.55: a for TiC, V8C7, and W2C; b B4C,
Mo2C, and NbC; c for WC, WC–15 mol% SiC, and ZrC [40]. With kind permission of Professor
Akihiro Nino and the Japan Institute of Metals
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indentation can be radial or lateral and, in extreme cases, chipping may accompany
crack formation or the test specimen may even be crushed. The actual indentation
response of a tested ceramic material must be considered before selecting the
appropriate hardness technique and test force level, in order to secure the most
crack-free measurement possible and to enable reproducibility.

In Fig. 1.60b, the radial crack is visible and its occurrence occurs at a threshold
load. It has been observed experimentally that, for most ceramic materials
indented by Vickers tester, the threshold load is at an indentation of *250 N.

It is of practical interest to specify a load for the testing of ceramics; however,
this has not yet been realized by VHT measurements (or any other testing

Fig. 1.59 Vickers hardness as a function of load for: a Pyroceram 9603; b sintered a-SiC;
c NC132 silicon nitride; d AD 999 alumina; e NBD200 silicon nitride [17]. With kind permission
of Springer
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methods). Obviously, the main difficulty is the propensity for cracking; as such, it
is not practical to expect that two ceramics, one with a crack and another intact,
will respond similarly to an applied load. Cracking may influence the hardness of a
crack-free material, making indentation unreliable.

Figure 1.59 showed the load-dependence of hardness; increasing load results in
decreasing hardness. This is equivalent to the size effect on the hardness value,
since increasing a load means increasing the indentation, which is size-related.
Clearly, the effect of the degree of brittleness must be considered when discussing
crack formation, size and resistance to indentation in ceramics.

The VHT is a versatile hardness test, since it may be adapted for micro-
hardness measurements and for a variety of materials, such as metals, ceramics,
composites and plastics. It is useful for applications in which macro-hardness
measurements are unsuitable, e.g., testing very thin materials, such as coatings,
and for measuring individual phases within a larger matrix composed of more than
a single phase.

Another micro-hardness test is the Knoop Hardness Test (henceforth: KHT,
discussed below). It is worth mentioning that superficial Rockwell tests are also
used for ceramics measurements. Hardness tests have been upgraded by the
application of instrumented Knoop and Vickers hardness measurements.

1.10.3 The Knoop Hardness Test: Microhardness

The KHT was devised in 1939 by F. Knoop. A Knoop diamond indenter may be
used in a Tukon Hardness Tester (or in a Buehler Instrument Model 1600-6400).
The indentation produced by the KHT resembles that made by a pyramid-shaped
diamond indenter (developed by the U.S. National Bureau of Standards). The
apical angles are 130� and 172�. Thus, a narrow, rhombus-shaped indenter is used
to produce a rhomboid-shaped impression, as seen in Fig. 1.61.

Fig. 1.60 Indentations in NC 132 (Si3N4, hot-pressed silicon nitride) with a stereo optical
microscope with low angle incident lighting and a severe specimen tilt so as to accentuate surface
detail: a shows rows of indents at different loads, from left to right: 9.8, 19.6, 29.4, 49, 98 and
73.5 N. b Shows a close-up of a 98 N indentation. [17]. With kind permission of Springer
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Projected area

longitudinal diagonal2
¼ Conversion factor C

HK ¼ KHN ¼ P

Cl2
¼ 14:286P

l12

The long diagonal is seven times longer than the short diagonal, i.e., dlong:
dshort = 7:1. As a result, the length of the impression is approximately seven times
the width and the depth is 1/30 of the length of the longer diameter. The loads are
often less than one kilogram-force and even a value of 25 g may be used. This test
has practical applications for the testing of ceramics, thin films, coatings, and for
phase identification in microstructures. The latter use is a consequence of the KHT
indenter, used to sample minute grains of interest in microstructures. In modern
technology, where thin-films play an important role, micro-hardness testing has
become crucial and, thus, micro-indentation, such as the KHT test, plays a major
role. During this test, the pyramid-shaped diamond indenter is pressed against a
ceramic (or other material), making a rhombohedral impression with one diagonal
seven times longer than the other. Then, the Knoop hardness number (henceforth:
KHN) is determined by the depth to which the Knoop indenter penetrates. The
KHT is useful for the hardness testing of brittle materials, such as glass and
ceramics, because the indentation pressures are lower than in the VHT. A Knoop
indenter leaves an impression of ca. 0.01 to 0.1 mm in size. Because of the small
size of the impression under load, hardness may only be calculated after measuring
the length of the longest diameter with the aid of a calibrated microscope. The
KHN is usually given by the load (in kgf) per projected area (in mm2), as:

HK ¼ KHN ¼ P

Cl2
1

¼ 14:286P

l2
1

ð1:130Þ

l1 is the long diagonal and C a conversion factor, which ideally is 7.028 9 10-2,
but this depends on the load. The derivation of the formula is given in Fig. 1.61.
Again, the accepted way to express a KHN is as follows. For instance, 356HK0.5,
where the first number and the letter are the measured hardness value, the second
letter indicates the KHT and 0.5 is the load in kgf.

The measuring apparatus is preset to apply a 25 g load. The duration of the
contact between the indenter and the specimen should be 10–15 s. The length of
the long diagonal of the impression is measured with a high-powered microscope.
This procedure is repeated until at least five impressions have been made at widely
spaced locations. The KHN is then calculated. The test loads are in the range of
10–1000 g. The samples are normally mounted and polished. One scale covers the
entire hardness range.
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Li and associates [34] suggested a model known as the ‘proportional specimen
resistance’ (henceforth: PSR) model for Eq. (1.128), which expresses the relation
between the applied load and the diagonal. This has also been used to get the
KHN, as indicated for SiC in Fig. 1.62. Thus, according to the above authors of the
PSR model, Eq. (1.128) adequately describes the results of the Knoop hardness
measurements for SiC. The actual Knoop hardness variation with load is shown in
Fig. 1.63. However, according to Gong and Guan [28] the PSR model holds only
at the lower load range, as seen in Fig. 1.64. A similar phenomenon was also
observed by analyzing the experimental data for other materials investigated.
These analyses indicate that the existing PSR model does not provide a satisfactory
description for the observed indentation size effect (henceforth: ISE) in ceramics.
In Eq. (1.128), the constants, a1 and a2, are related to the specimen’s proportional
resistance and load-independent hardness. Thus, a modified PSR model was
suggested, known as the MPSR model, basically similar to Eq. (1.128) with an
additional term, P0, given as:
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Fig. 1.61 Knoop Hardness Test (KHT) [13]

Fig. 1.62 Knoop hardness
plotted according to relation
(1.128) for SiC ceramics.
Note that in the graph P of
relation (1.128) is replaced by
F/d. [8]. With kind
permission of John Wiley and
Sons
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P ¼ P0 þ a1d þ a2d2 ð1:131Þ

P0 is related to residual surface stresses in the test specimen. Analyses indicate that
the existing PSR model does not provide a satisfactory description for the observed
ISE in ceramics and warrants further modification.

The Knoop hardness for several ceramics, as a function of load, is indicated in
Fig. 1.65. The pattern of the lines in Fig. 1.65 is similar to those in Figs. 1.56 and
1.59 in the VHT. The plateaus are not well defined, though there is such a ten-
dency. The load variation with d is illustrated for all the materials shown in
Figs. 1.65 and 1.66. Experience with a wide range of ceramics has proven that
Knoop indentations are far less likely to crack than Vickers indentations. This
explains the development of KHTs as an alternative to VHTs. Indeed, for a wide
range of ceramics and other brittle materials, this is justified.

Fig. 1.63 Knoop hardness,
HK, as a function of applied
load for SiC [8]. With kind
permission of John Wiley and
Sons

Fig. 1.64 A plot according
to relation (1.128) for FD-02
(hot pressed Si nitride) and
TCN1 (Ti based cermet) by
Knoop hardness
measurements [28]. With
kind permission of Elsevier
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This section has emphasized the most widely used techniques for hardness
determinations. In fact, all the other known hardness measurement techniques (see
[13]) may be adopted under appropriate conditions for the determination of the
resistance of ceramics to indentation. Specifically, the superficial Rockwell
method is useful for testing hard tiles, but is beyond the scope of this section.

1.11 Impact Testing of Ceramics

One of the important features of impact testing is the evaluation of the ductile-to-
brittle transition temperature. What, then, is the purpose of discussing the impact
testing of ceramics, since most are brittle at ambient temperature (and clearly at
low temperatures)? Yet, impact tests are also performed on classic, brittle mate-
rials in order to evaluate the energy absorbed during the fracturing process.
Furthermore, some brittle ceramics are ductile at sufficiently elevated tempera-
tures, so the brittle-ductile transition may still be of interest. Ductile and super-
plastic ceramics will be discussed in depth in Chap. 2 (on ductile ceramics), while
the present section deals with the actual process of performing impact tests.

Fig. 1.65 Knoop hardness as functions of the applied test load for materials tested. FD-02
(sintered Si3N4) (filled square); FD-03 (hot pressed Si3N4) (open square); SN-W (SiC whisker
reinforced Si3N4 (filled circle); Al2O3 (opened circle); TZP (Tetragonal zirconia polycrystal)
(filled triangle); mullite; TCN1 (Ti(C,N)- based cermet) (filled inverted triangle); TCN2
(Ti(C,N)-based cermet) (open inverted triangle). [28]. With kind permission of Elsevier
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The primary significance of impact tests is to determine the amount of energy
absorbed by a material when it is struck by a moving object, such as a pendulum or
a falling steel ball. Impact tests expose ceramic materials and other brittle products
to dynamic events, forcing these materials to absorb energy quickly. Thus, an
impact tests measures the energy absorbed when the material fractures or breaks
due to a high-speed collision with a pendulum or a falling load, such as a ball. The
amount of energy absorbed during an impact test indicates the resistance of the
tested material to impact (known as its ‘toughness’), measured as J m-3. The data
collected from such tests are usually expressed in terms of ‘load’ versus ‘deflec-
tion’, and the area under the curve represents the ‘impact energy’. Modern impact
testing is sophisticated, as will be discussed below. One of the common methods
for getting impact information is via instrumented impact-testing machines, by
means of which a load may be increased steadily and the results recorded
simultaneously. A load-extension curve is shown schematically in Fig. 1.67.

The data provided by this type of testing is useful for understanding how a
material will function in actual applications. The main goal of such tests is to
characterize the ceramics under dynamic loading and to get information on the
dynamic failure process. However, impact tests are rarely done to evaluate the
impact toughness of brittle ceramics, because there is a major difficulty in eval-
uating the real energy of a given ceramic material, which may be masked by/or
incorporated into the energy of the impact itself. Ceramics that are candidates for
such studies are the engineering ceramics, such as Si3N4 [36] and others.

Modern impact testing is generally performed by instrumented machines and
with other sophisticated impact testers. Ultra-high temperature ceramics (UHTC)
are tested by using unique testing apparatus, as illustrated in Fig. 1.68 [37]. These
tests were performed using a compressed-gas gun to fire *0.5 mm diameter steel
and tungsten carbide balls at velocities ranging 100–300 m s-1. In addition, a
2MV Van de Graaff particle accelerator was used to fire micron-scale iron particles
in the 1–3 km s-1 range. The results were documented by means of optical and

Fig. 1.66 Indentation size versus the applied test load for the materials of Fig. 1.65 [28]. With
kind permission of Elsevier
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scanning-electron microscopy. The UHTC, such as monolithic ZrB2/SiC and
HfB2/SiC, were high-velocity impact tested by the above apparatus. These
materials are relatively hard, having micro-hardness values of *15–20 GPa. The
above impact tester operates via stainless steel or tungsten carbide spheres, with
diameters in the 500–800 micron range, producing impact velocities of
200–300 m s-1. This impact produced minimal plastic deformation, but significant
radial and ring cracking at the impact sites occurred. NASA, while developing
ceramics for use in hypersonic flight tests, discovered that the addition of *20 %
SiC to these ceramics enhances their oxidation resistance. Impact damage is a
major concern, since it directly influences vehicle flight characteristics.

Note that, unlike conventional Charpy or Izod impact tests, during which the
test pieces are usually broken (or bent to different degrees, depending on the
ductility of the tested material), here the shape of the crack and its propagation are
the measure of impact resistance. Figure 1.70 illustrates the type of ring crack
generated by impact on an HfB2/SiC surface.

Figure 1.69 illustrates some of the test results in terms of the crack diameter
formed following the impact tests.

Furthermore, a radial-crack formation, resulting from the impact on the ZrB2/
SiC surface, is shown in Fig. 1.71. The authors note that their experiments, using
this technique, are of an investigative nature. Further investigations should be
made to systematically quantify the effects of impact damage on the strength and
reliability of ultra-high temperature (henceforth: UHT) components.

Because of the brittle nature of ceramics, special instrumented Charpy Impact
Test (henceforth: CIT) machines were developed, primarily to evaluate the

Lo
ad

extension

Area=energy absorbed

Fig. 1.67 Schematic impact load-extension curve. Area under the curve = energy absorbed
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dynamic toughness of such materials. The resulting load–deflection curves
obtained by this instrumented CIT and the absorbed energy were analyzed to
evaluate the characteristics of brittle ceramics exposed to dynamic loading. As
mentioned above, the ductile-to-brittle transition is not relevant at ambient tem-
peratures for such materials, but the purpose of the test is rather to evaluate
toughness in service. Kobayashi et al. [32] was using an instrumented CIT to study
zirconia (PSZ: ZrO2-3 mol%Y2O3) and SiC. The resulting load–deflection curves
obtained for these ceramics are illustrated in Fig. 1.72. Except for PSZ(a), all the
lines are linear up to the maximum load, indicating that no macroscopic plastic
deformation exists. This is in line with what was said earlier regarding brittle-
ductile transition. No such transition exists in these ceramic materials, attested by
the fact that the load in Fig. 1.71 drops vertically from the maximum to zero load.
The area underneath the load–deflection curves represents the absorbed energy, Et,
which may be expressed as:

Fig. 1.68 Gas gun impact apparatus used for studying resistance to impact of ZrB2/SiC and
HfB2/SiC [37]. With kind permission of Springer
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Et ¼ Ei þ Ep ð1:132Þ

Ei is usually associated with crack initiation and, on a load–deflection curve,
spans the area up to the maximum load, while Ep is believed to represent the
apparent crack-propagation energy, appearing after the maximum load. Consid-
ering the curves of these ceramic materials shown in Fig. 1.72, it is clear that the
load drops vertically and there is no additional area to represent Ep. This obser-
vation indicates that PSZ and SiC show typically elastic brittle fracture without
plastic deformation and that:

Et ffi Ei ð1:132aÞ

To further analyze this absorbed energy, the elastic deformation of the machine,
Em, and the kinetic energy (which tossed the broken specimen), Ek, must be taken
into account when calculating the total energy, Et. Thus, during the fracturing
process, where Ef represents fracturing, the total energy, Et, absorbed is:

Et ¼ Em þ Ek þ Ef ð1:132bÞ

As such, the absorbed energy included in Et consists partially of the elastic
deformation of the testing machine, Em, and partially of the stored energy in the
specimen, Es, which is composed of:

Es ¼ Ek þ Ef ð1:132cÞ

Fig. 1.69 Summary of outer
ring crack diameters observed
on ZrB2/SiC and HfB2/SiC
surfaces as a function of size,
composition, and velocity of
the impacting ball. SS refers
to steel and WC to carbide
balls, respectively [37]. With
kind permission of Springer
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This kind of test enables an evaluation based on the reciprocals of the curves,
the compliances of the machine, Cm, and those of the specimen, Cs, to provide
total compliance, Ct, as given by Eq. (1.133). In other words:

Ct ¼ Cs þ Cm ð1:133Þ

No correction is needed for Cs, since no plastic deformation has occurred in
these specimens.

Fig. 1.70 Optical microscope image of the ring crack generated by the 316 m s-1 impact of a
762 lm diameter stainless steel ball on a HfB2/SiC surface [37]. With kind permission of
Springer

Fig. 1.71 SEM image of a radial crack at boundary of ring crack pattern on ZrB2/SiC surface
[37]. With kind permission of Springer
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Figure 1.73 illustrates the instrumented CIT system in a block diagram and the
impact-response curve method, as applied to the above tests. In addition to the
aforementioned partially stabilized zirconia (PSZ: ZrO2-3 mol%Y2O3), samples of
S3N4 were also investigated by Kobayashi et al. [32]. Typical hammer load-times
and strain-gage signal-time curves of PSZ and Si3N4 are found in Fig. 1.74. The
impact-response curves of PSZ and S3N4, at several impact velocities are shown in
Fig. 1.75. The impact curves of these specimens are impact-velocity-dependent.
This technique enables the determination of the dynamic fracture toughness of
these ceramics by means of the impact-response curve method. Impact-response
curves quantitatively relate the response of the specimen to the impact, which
depends solely on the elastic reaction between the specimen and the actual impact.

Fig. 1.72 Typical load–deflection curves for these materials [31]. With kind permission of
Professor Toshiro Kobayashi
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The impact-response curve is previously determined under several conditions and
dynamic fracture toughness may be obtained from the measured time-to-fracture,
tf. An optical method is generally used for this purpose, but, in the case of for PSZ
and Si3N4, a strain-gage was directly attached to the specimens. This procedure
may also be applied to obtain the linear elastic brittle fracture range.

Dynamic fracture toughness, Kd, evaluated from the impact-response curve and
the time-to-fracture was 6.2MN/m3/2 for PSZ and 1.7MN/m3/2 for Si3N4. The
effects of the notch-root radius on static and dynamic fracture toughness were also
evaluated. The specimens were blunt-notched with radii q = 25, 50, 100 and
150 lm. They were tested by instrumented CIT, applying the impact-response

Fig. 1.73 Block diagram of instrumented Charpy impact testing system [32]. With kind
permission of Professor Toshiro Kobayashi

Fig. 1.74 Typical load–time curves and strain gage signal–time curves recorded by a
instrumented Charpy impact testing machine for PSZ and Si3N4 [32]. With kind permission of
Professor Toshiro Kobayashi
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curves in order to investigate the effects of the notch-root radius on the apparent
fracture toughness.

It is generally considered that dynamic fracture toughness is lower than static
toughness in many metallic materials; however, in the case of PSZ, the dynamic
fracture toughness appears to be higher than the static. This is apparently related to
the stress-induced phase transformation which occurs in PSZ.

The effect of impact velocity, or rather the stress-intensity rate, _K Kd=tfð Þ, on
Kd, is shown in Fig. 1.76. Dynamic fracture toughness, Kd, in partially stabilized
zirconia has been observed to increase simply with stress-intensity rate, _K, but Kd

in Si3N4 initially decreases and then increases with increased _K. These specimens
were pre-cracked and the same observation that was made for Si3N4 was also made

Fig. 1.75 Impact response curves in several impact velocities: a for PSZ; b for Si3N4 [32]. With
kind permission of Professor Toshiro Kobayashi

Fig. 1.76 Dynamic fracture toughness, Kd, against stress intensity rate, _K, for: a PSZ; b Si3N4

[32]. With kind permission of Professor Toshiro Kobayashi
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for metals (e.g., steel) and is associated with the crack becoming unstable when the
intensity of the dynamic stress at the crack tip exceeds a critical value.

The effect of the notch-root radius on the apparent dynamic fracture toughness,
Kd, is shown in Fig. 1.77. Kd increases with the radius of the notch for both static
and dynamic fracture toughness. A similar notch-radius effect is observed for
Al2O3. Note that the static fracture toughness of Si3N4 increases at first, but then
becomes constant (Fig. 1.77b).

The critical strain-energy release rate, Gq, in the specimen with notch-root
radius, q, is indicated in Fig. 1.78 for both static and dynamic ceramic fracture.
The linear relation of the lines in Fig. 1.78 are based on the Williams’ relation
[49], given as:

Gq ¼ GC

1þ q
2l0


 �3

1þ q
l0


 �2 ð1:134Þ

Here, Gq is the critical strain-energy release rate in a notched specimen with
radius, q, at the root, l0 (equal to the characteristic distance). When q � l0,
Eq. (1.134) reduces to:

Gq ¼ G0
1
2
þ q

8l0

� �
ð1:134aÞ

The ceramic specimens mentioned above, tested by dynamic loading, namely
impact testing, are notched as is usual during the performance of such tests. During
conventional impact testing, the radius at the notch-root is significant, since it
affects the outcomes. For metals, the dimensions of the specimens and the notches
are standard. A standard CIT specimen consists of a bar of metal or other material
(ceramics included), 55 9 10 9 10 mm having a notch machined across one of

Fig. 1.77 Apparent dynamic and static fracture toughness, KP, as a function of the notch root
radius q: a for PSZ; b for Si3N4 [32]. With kind permission of Professor Toshiro Kobayashi
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the larger dimensions. The most common is a V-notch, 2 mm deep, with a 45�
angle and a 0.25 mm radius along the base.

If U-notch and keyhole notch specimens are used, their characteristics are a
5 mm deep notch with a 1 mm radius. Furthermore, specimens should be selected
that represent the lot being sampled. In general, impact tests should be based on a
minimum of ten specimens that must be inspected for soundness and obvious
physical defects before testing. Aigbodion et al. [22] conducted CITs on notched
samples of ceramic-based composites. Their standard, square impact-test speci-
mens measured 50 9 10 9 10 mm with notch depths of 2 mm and notch-tip
radii of 0.02 mm at 45� angles. Their testing machine could provide a range of
impact energies from 0 to 300 J. The mass of the hammer was 22.7 kg and the
striking velocity was 3.5 m/s.

1.12 Weibull Statistical Distribution

Despite the use of ‘identical’ specimens, the mechanical properties of ceramics
show considerable scatter in the measured results. The main reason for the scatter
in the values measured is a consequence of the presence, size and distribution of
cracks in ceramics. A mean value must be determined via statistical evaluation.
The most commonly used statistical approach for describing experimental data is
Gaussian normal distribution. In ceramics, however, the use of the Weibull dis-
tribution is preferable, reviewed below.

Fig. 1.78 Relationship between critical elastic strain energy release rate, G, and notch root
radius, q: a for PSZ; b for Si3N4 [32]. With kind permission of Professor Toshiro Kobayashi
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Weibull distribution assumes that each elemental part of a bulk material has an
individual property, i.e., a local strength. The fracture or failure probability, Pf, of
each such element is integrated over the entire test piece, giving:

Pf ¼ 1� exp �
Z

V

r� ru

r0

� �m

dV

2
4

3
5 ð1:135Þ

r is the stress at a point and V is the volume of the specimen; ru, r and m are the
Weibull parameters representing location, scale and shape-modulus parameters,
respectively, also known as ‘threshold strength’, ‘characteristic strength’ and the
‘Weibull modulus’. This function is known as the ‘Weibull three-parameter
strength distribution’. The threshold stress parameter, ru, represents a minimum
stress, below which a test specimen will not break. The probability of failure, Pf,
increases with the fracture-stress variable, r. Also, r0 is dependent on the stress
configuration and the size of the test piece. Clearly, the second term is the survival
probability and may be expressed as:

Ps ¼ exp �
Z

V

r� ru

r0

� �m

dV

2
4

3
5 ð1:135aÞ

In cases of fracture with a fracture strength (or stress), rf, the first term, under
the integral in the nominator in the above relations, may be replaced to obtain:

Pf ¼ 1� exp �Ve
rf � ru

r0

� �m� �
ð1:136Þ

The higher is m and the lower represents strength variability. Ve is the effective
volume of the specimen and may be expressed as:

Ve ¼
Z

V

r� ru

rf � r0

� �m

dV ð1:137Þ

In uniaxial tension, for example, in brittle materials (such as ceramics), the
stress r = rf and Eq. (1.137) yields Ve = V. Thus, Eq. (1.136) may be written as:

Pf ¼ 1� exp � rf � ru

r0V�1=m
e

 !m" #
ð1:138Þ

where r0Ve
-1/m is a constant.

Equation (1.138) may be obtained as follows. Multiply and divide Eq. (1.135)

by 1
rf�ru


 �m
and rewrite it either as:
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Pf ¼ 1� exp �
Z

V

r� ru

r0

� �m 1
ðrf � ruÞm

rf � ru

� �m
dV

2
4

3
5 ð1:135aÞ

or:

Pf ¼ 1� exp �
Z

v

r� ru

rf � ru

� �
 !m

dV
1
r0

� �m

rf � ru

� �m

2
4

3
5 ð1:135bÞ

In Eq. (1.137), Ve is the first term of the integral being equal to V, since, in the
nominator, r = rf for brittle materials:

Pf ¼ 1� exp �Ve rf � ru

� �m 1
r0

� �m� �
¼ 1� exp �Ve

rf � ru

r0

� �m� �
ð1:135cÞ

Rearranging Eq. (1.135c) results in Eq. (1.138) being:

Pf ¼ 1� exp � rf � ru

r0V�1=m
e

 !m" #
ð1:138Þ

Equation (1.138) may be expressed after rearrangement as:

ln ln
1

1� Pf

� �� �
¼ m ln rf � ru

� �
� m ln r0V

�1
m

e

¼ m ln rf � ru

� �
� m ln r0 þ ln Ve ð1:139Þ

Equation (1.139) represents a straight line when ln ln 1
1�Pf


 �h i
is plotted versus

ln(rf - ru) with a slope of m. The intercept of the curve is either -mlnr0V-1/m,
or (-m ln r0 + ln Ve), or

intercept ¼ �m ln r0 þ ln Ve:

For the unit volume one calculates r0 by:

r0 ¼ ½exp �interceptð Þ�1=m ð1:140Þ

In the above relations, ru is the stress level below which the probability of failure
is zero, in other words, the probability of survival is 1.0. The Weibull modulus, m,
principally has values in the range 0–?. In metals, the value of m is *100 and for
ceramics m \ 3, but this value depends on the soundness of the ceramics. Well-
controlled engineering ceramics with fewer flaws may even have an m value in the
range of 5–10.
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Again, for brittle materials, such as ceramics, ru represents the minimum stress
below which a test specimen will not break and it is assumed to be equal to zero.
Thus, omitting ru from the above relations, the survival probability Eq. (1.135a)
may be rendered as:

Ps ¼ exp �
Z

V

r
r0

� �m

dV

2
4

3
5 ð1:141Þ

and the failure probability as:

Pf ¼ 1� Ps ¼ 1� exp �
Z

V

r
r0

� �m

dV

2
4

3
5 ð1:142Þ

Pf ¼ 1� exp �Ve
rf

r0

� �m� �
ð1:143Þ

As above in Eq. (1.137) (and with ru = 0), Ve = V; thus, for the integral from
Eq. (1.142) one can obtain Eq. (1.143). Then, by taking logarithms twice,
Eq. (1.143) becomes:

ln ln
1

1� Pf

� �� �
¼ m ln rf � m ln r0V

�1
m

e ¼ m ln rf � m ln r0 þ ln Ve ð1:143Þ

As in the three-parameter case, plotting ln ln 1
1�Pf


 �h i
versus lnrf results in a

linear relation with slope m and intercept (ln Ve - m ln ro), or :

intercept ¼ lnVe� m ln r0 ð1:144Þ

and for unit volume r0:

r0 ¼ exp �interceptð Þ½ �1=m ð1:144aÞ

Note that r in Eq. (1.137) has been replaced by rf, the fracture strength, which,
in brittle materials, is almost identical to r. This value of rf was carried through in
all following equations.

Using the Weibull distribution, plots are made from measured strength data.
These data are arranged in ascending order and assigned numbers beginning with 1
and ending with n. The survival probability (or expected life-time) is usually
assigned to the ith strength value, expressed as:
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Ps ¼ 1� i� 0:5
n

ð1:145Þ

In case of fracture (failure), for example, Eq. (1.145) is written for failure
probability as:

Pf ¼
i� 0:5

n
ð1:145aÞ

Thus, the lowest stress under tension for each configuration represents the first
value (i = 1), the next lowest stress value is the second measured value (ith = 2),
etc., and the highest stress is represented by the nth value measured. This enables
ranking the probability of failure, Pf, assigned to each datum according to
Eq. (1.145a). Now that the fracture stress and the associated Pf have been eval-

uated according to Eq. (1.145a), a graph may be constructed of ln ln 1
1�Pf


 �h i
versus lnr0 according to Eq. (1.143). The fitting of the straight line is often per-
formed by linear regression. An evaluation may be made using Eq. (1.145a) by
expressing the first, second, etc. (up to n) percent of each value measured for Pf. In
this manner, if there are many broken specimens (failures under test conditions)
the percent value of each failed specimen of the total indicates the weakness (in
percentage or fraction) of the specimen compared to the measured stress value. It
is commonly accepted to make a table recording the values of i in the first column,
indicating the measured strength in the second column, the measured ln (strength)
in the third column, the fourth column should give the value of Pf according to
Eq. (1.145a) (in terms of percent or fraction) and the last column should give the

value of ln ln 1
1�Pf


 �h i
. This facilitates making the plot of ln ln 1

1�Pf


 �h i
versus

ln(strength).
A large number of test specimens are necessary to determine the Weibull

parameters, about 30, that must be broken to obtain reasonable accuracy. Fig-
ure 1.79 shows Weibull plots for four values of m obtained on the basis of
Eq. (1.139), obtained under tension. In Eq. (1.139), r0V-1/m = MOR0.

Often in ceramics, fracture tests are replaced by a bending test (a flexural test),
discussed earlier in Sect. 1.9, rather than by a tension test, for the aforementioned
reasons. Figure 1.80 is a Weibull plot. In Fig. 1.80, Weibull plots of ‘‘measured’’
bending strength, rf,B, are shown for different m values.

The lines are not completely linear; one of the reasons may be the probability of
the different distribution, amount and size of cracks. Specimens containing larger
flaws will break or fail at lower stresses than those predicted. As indicated above,
the higher the m, the lower the strength variability.

Concluding this section, materials susceptible to brittle fracture, such a
ceramics, are known to behave in this fashion and they usually fail without
advanced warning. No visible plastic deformation is observed, in general, and,
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thus, fracture sets in quite suddenly. Stress concentrations at various locations, due
to intrinsic flaws, are responsible for (often premature) failure, since they cannot
be relieved by plastic deformation. Therefore, the design methods and tests applied
to ductile materials are not suitable for brittle materials. The smallest strength of
such a material is associated with the largest flaw size. For purposes of design and
failure prediction, the preferred statistical method for obtaining the probable
strength of brittle materials is generally not the Gaussian, but rather the Weibull
distribution approach (described above) for two- and three-parameter methods.
However, for specific tests, these equations may be changed according to the
characteristics of the measurements. Extensive discussion on the use of the Wei-
bull distribution for the various tests and the required modifications needed for
analysis are found in the literature.

Fig. 1.79 Weibull plots of
the ‘‘measured’’ tensile
strength, rf;T. The strength
data were generated using
ru = 250 MPa and
MOR0 = 500 MPa.
(MOR0 = r0V-1/m) [2]. With
kind permission of Professor
Gong

Fig. 1.80 Weibull plots of
the ‘‘measured’’ bending
strength, rf;B. The strength
data were generated using
ru = 250 MPa and
MOR0 = 500 MPa [2]. With
kind permission of Professor
Gong
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Chapter 2
Ductile Ceramics

Abstract Not all ceramics are brittle at room temperature. There are some ceramics
which are ductile at ambient temperatures. Such ceramics, for example are single
crystals MgO, SrTiO3, etc. They undergo plastic deformation and by dislocation
motion slip lines are observed on the deformed specimens. In pure MgO at room
temperature, dislocations are very mobile at comparatively low stresses. Changing
the microstructure, possibly by alloying, the mobility of dislocations may be
reduced and an increase in strength may be achieved. As usually observed, material
undergoing plastic deformation tend to strain harden, a feature observed also in
ductile ceramics. Of the several factors influencing the strength properties of ductile
ceramics, grain size is outstanding. Fine grained ceramics are desirable. Originally
brittle ceramics show elongation at high temperatures which is a usual observation.
There is a transition temperature from brittle to ductile behavior which depends on
the ceramics. One of the common methods to determine the brittle to transition
temperature is by impact testing, and for this purpose various sophisticated
machines have been developed. An extraordinary phenomenon related to ductility is
superplasticity, where very high values of strains can be achieved before fracture.
Superplastic ceramics are oxide (zirconia) or non-oxide ceramics. Well-known
superplastic ceramics are SiC and FeC. The common feature of superplastic
materials is the requirement of very fine grains, namely, in the nanosize range.

2.1 Introduction

This chapter considers the mechanical properties of ductile ceramics, which can be
grouped into three categories as classified below:

(a) Ductility at elevated temperatures. As is commonly known, some ceramics are
ductile at high temperatures and it is meaningful to consider brittle–ductile
transition. This was mentioned in Chap. 1, Sect. 1.11 on the Impact Testing of
Ceramics.

J. Pelleg, Mechanical Properties of Ceramics, Solid Mechanics
and Its Applications 213, DOI: 10.1007/978-3-319-04492-7_2,
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(b) Ductile ceramics that show plasticity at ambient temperatures. Their features
and, in some cases, modifications in their compositions are significant. Fur-
thermore, certain additions to base ceramics, those which promote ductility
(such as metals), are considered.

(c) Superplasticity in ceramics. Some ceramics show plastic behavior with elon-
gations of *100 % and more. This is an important feature of this class of
ceramics, because it is of structural interest for technical or industrial
applications.

2.1.1 Ceramics at Elevated Temperatures

The most outstanding feature of ceramics in this category is the various degrees of
plasticity that occur following the transition from brittle to ductile condition. This
is the first transition to be discussed here, since all the other features are conse-
quences of the brittle-to-ductile transition (henceforth: BDT).

2.1.1.1 Transition Temperature

The classic method for evaluating the transition temperature from a ductile to a
brittle state is by impact testing. The basic reasons for using such a test are the high
strain rate that can be achieved by impact and its simplicity. Though there are
currently many other ways to vary strain rate, those who choose to perform impact
tests can enjoy the use of modern, instrumented impact machines. For most
ceramics which are brittle at room temperature (henceforth: RT), ductility is a
high-temperature feature; thus, it is more meaningful to discuss BDT, rather than
ductile-to-brittle transition (DBT), the more common nomenclature.

Relatively few impact strength data are available in the literature on ceramics
and there are even fewer recorded experimental reports. The major limitations of
performing such impact tests are the brittleness and low impact strength of
ceramics at low and ambient temperatures, especially when the focus is on their
applications at elevated temperatures, in light of their high strength properties.

For an early work on the determination of the transition temperature by impact,
one may consult the paper by Kingery and Pappis [29]. Above a critical transition
temperature, ductility increases markedly and ductile fractures are observed in
ceramics. An illustration of the transition temperatures for a few ceramics may be
seen in Fig. 2.1.

The experimental set-up for impact loading is shown in Fig. 2.2. The samples
are cylindrical, 6 in. long and 1/2 in. in diameter, supported on dense, sintered
alumina knife edges across a 41/2 in. span.

The furnace is heated with silicon carbide resistant elements to 1600 �C. The
samples were impacted in the furnace by a pendulum hammer having a 23.65 in. arm
length and a 0.411 lbs wedge-shaped, sintered alumina head, as shown in Fig. 2.2.
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Tests were performed until fracture occurred after successive blows of the hammer.
About 12 specimens were tested at each temperature. The pendulum velocity at
impact was approximately 41 in./s.

These impact test outcomes are different from the familiar impact results for
metals, where impact strength increases above the transition temperature; this is
not observed in Al2O3 and MgO. Furthermore, in all these cases, an examination of
the fracture surfaces indicates that brittle fracture has occurred, whereas the
fracture in metals is ductile. The transition temperature in Al2O3 is about 900 �C.
Both the soft glass and Pyrex-brand glass samples showed little variation of impact
strength at temperatures up to 500 �C, which can be considered their transition
temperatures. However, the results for Pyrex are questionable, because the spec-
imen slumped at *600 �C. The semivitreous, white-ware body tested showed no
variation in impact strength at temperatures up to 1000 �C, its probable transition
temperature. The 900 �C temperature, in the case of Al2O3, at which the impact
strength decreases, is about the temperature at which plastic flow and creep
commence. The expectation that, by analogy with metals, an increase in impact
strength and ductile failure should also be observed at sufficiently high tempera-
tures for ceramics was not observed in these impact tests.

Fig. 2.1 Impact strength of: a A12O3 and MgO; b Pyrex and soft glass; c semivitreous
whiteware body [29]. With kind permission of Wiley and Sons
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Recent experiments, however, determine transition temperature by varying the
strain rates, whereas, in the impact tests, the information is obtained at the single
strain rate characteristic of the given machine. Strain rate influences transition
temperature both in single crystals and in polycrystalline materials. Moreover, in
single crystals all the effects should be taken into account. In Fig. 2.3, the influence
of orientation is indicated. Here, the BDT of precracked sapphire in four-point
bending is shown as a function of orientation and strain rate from RT to 1500 �C.
As can be seen in the figures below, Tc specimens fracture at the stresses indicated
in the temperature range *20–1000 �C. Above Tc, specimens exhibit general
yield with a yield stress that falls with decreasing temperature. Transition occurs at
the temperature at which the yield stress in bending is equal to the fracture stress
for the specimen geometry used. Tc is the BDT of the specimens shown.

These tests were performed using an Instron Model 8561 (single screw)
machine in air and the furnace was adapted to perform four-point bend tests. The
rates indicated in Fig. 2.3 relate to crosshead displacement. Figure 2.4 shows the
resolved shear stress at yield for the specimens tested at _e ¼ 4:2� 10ffi7 sffi1 above
Tc at the indicated orientations. The mechanism for slip is dislocation glide, which
explains the orientation dependence of yield, as seen in Fig. 2.4. Thus, the BDT
temperature, Tc, of the sapphire (Al2O3) varies not only with the strain rate, but
also with the crystallographic orientation of the fracture plane.

The activation energy of the process controlling the BDT in sapphires, derived
from the strain rate variation of T, is approximately 3.2 eV, close to that for
dislocation glide. This was obtained by the Eq. (2.1):

Fig. 2.2 The apparatus for
impact testing at elevated
temperatures [29]. With kind
permission of Wiley and Sons
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Fig. 2.3 Fracture stress versus temperature data: a specimens of orientation A (1012) (transition
temperature, T = 1035 ± 5 �C), b specimens of orientation B (1105) (T = 1055 ± 5 �C),
c specimens of orientation C 11�20ð Þ (T = 1090 ± 10 �C), d specimens of orientation D (0001)
(T = 1025 - 1050 �C). _eı ¼ 4:2� 10ffi7sffi1 for (a), (b) and (c), and 1.3 9 10-6 s-1 for (d) [26].
With kind permission of Wiley and Sons

Fig. 2.4 Critical resolved shear stress for yield (above the transition temperature) in bending for
all specimens tested at _e ¼ 1:3� 10ffi6 sffi1 compared with data obtained by compression tests of
Castaing et al. C specimens show prismatic slip and those of A and B show basal slip [26]. With
kind permission of Wiley and Sons
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_e ¼ exp ffi Ea

kT

� �
ð2:1Þ

The plastic deformation of the sapphire occurred due to basal and prismatic slip
during loading above T. Basal slip was found in A- and B-oriented specimens and
prismatic slip in C-oriented specimens. The resolved stresses at yield (according to
the author) are comparable to those measured by other researchers under com-
pression in the appropriate slip system.

Note that the impact BDT in Al2O3, as indicated above, is *900 �C, whereas
for sapphires it was *1000 �C. The reason for this may be that, in polycrystalline
Al2O3, grain-boundary sliding contributed to the onset of plastic flow, which is
absent in single crystal Al2O3. The effect of strain rate on BDT is observed also in
superplastic deformation, discussed below in Sect. 2.2c.

2.1.1.2 Ductility and Strength

Not unlike the case of superplastic ceramics, ductility and strength relations are
influenced by strain rate. The conditions of the experiment must be above the DBT
to observe plastic flow, which is different for various ceramics. An illustration of
the effect of strain rate and temperature on the strain (ductility) at some stress level
can be seen in monolithic Si–C–N. Silicon–nitride-based ceramics are quite
promising candidates for mechanical applications at elevated temperatures.
Specimens were prepared by hot isostatic pressure (henceforth: HIP) of pyrolyzed
powder compact at 1500 �C and 950 MPa, without any sintering additives. These
compression tests were conducted at temperatures from 1400 to 1700 �C in a
nitrogen atmosphere with a servo-hydraulic-type testing machine at constant
crosshead speed in an induction heating furnace. In Fig. 2.5, stress–strain curves

Fig. 2.5 Stress–strain curves
of the Si–C–N ceramics
tested in compression at high
temperatures in the
1400–1700 �C range at a
strain rate of 4 9 10-5 s-1

[25]. With kind permission of
Etsuko Hasebe of the
editorial staff of the Japan
Institute of Metals (JIM)
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obtained by compression tests at various temperatures and at an initial strain rate
of 4 9 10-5 s-1 are shown.

The arrows in the curves indicate the locations where the tests were interrupted.
In curves when no arrows are shown, the specimen has failed at the end of the curve.
Deviation from linearity may be seen even at 1400 �C, but at this temperature and at
1500 �C, only slight plastic deformation was observed, in spite of the high com-
pressive stress over 1000 MPa. At the same stress, a compressive strain of *7 %
was obtained at 1600 �C. Yet, a compressive strain of about 11 % was achieved at
1700 �C at a lower compressive stress. Figures 2.6 and 2.7 illustrate compressive
stress–strain curves at various strain rates at 1600 and 1700 �C.

Fig. 2.6 Stress–strain curves
of the Si–C–N ceramics
tested in compression at
1600 �C at various strain
rates [25]. With kind
permission of Etsuko Hasebe
of the editorial staff of the
Japan Institute of Metals
(JIM)

Fig. 2.7 Stress–strain curves
of the Si–C–N ceramics
tested in compression at
1700 �C at the strain rates
indicated [25]. With kind
permission of Etsuko Hasebe
of the editorial staff of the
Japan Institute of Metals
(JIM)
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The strain-rate exponent of the compressive stress in the strain-rate range above
4 9 10-5 s-1 at 1600 and 1700 �C is about 0.1. Recall that the strain rate is
related to stress as:

r ¼ C _emje;T ð2:2Þ

where m is strain-rate sensitivity or the strain-rate exponent and _e is the strain rate.
Usually, m can be evaluated from the slope of a plot of log r versus log _e. In
metals, m is low, \0.1, at RT, but may increase with T. Ceramics fail in pure
compression by the coalescence of axially oriented microcracks. Lankford
expresses the compressive stress for low rates of loading (10-5–15-1 s-1) as:

rc / _e1= 1þnð Þ ð2:3Þ

Here, rc is the compressive strength, n is the stress-intensity exponent in the
macroscopic tensile crack velocity relationship and n is in the range 50–200.
Equation (2.3) expresses a relatively strain-rate insensitive process controlled by
the thermally-activated growth of microcracks. This process is said to dominate
the compressive failure of some ceramics, such as Al2O3, SiC and Si3N4. An
additional equation (Grady and Lipkin) predicts a transition from the dependence
expressed by Eq. (2.3) to one given as:

rc / _effi1=3 ð2:4Þ

which occurs at a material-dependent characteristic strain rate that, for most
ceramics, lies within the range of 103–104 s-1.

TEM micrographs of these specimens after the compression tests at 1700 �C are
shown in Fig. 2.8, together with the results of the pretest sample.

The microstructure before the test (Fig. 2.8a) is a fine, two-phase structure,
consisting of roundish Si3N4 crystalline grains, 20–80 nm in size, in a turbostratic,
graphite-like phase. These phases are homogeneously distributed. The micro-
structures of the specimens after the compression tests, at both the initial strain

Fig. 2.8 TEM micrographs of the Si–C–N ceramics, a before test (as-HIP-treated), and after
compression tests at b 1700 �C, 2 9 10-5 s-1, and c 1700 �C, 4 9 10-5 s-1 [25]. With kind
permission of Etsuko Hasebe of the editorial staff of the Japan Institute of Metals (JIM)
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rates of 2 9 10-5 s-1 (Fig. 2.8b) and 4 9 10-5 s-1 (Fig. 2.8c), also consist of
Si3N4 and graphite-like phases, similar to the structure before the test. However,
the Si3N4 grains in the structures at both the initial strain rates were considerably
coarsened during testing. The sizes of the Si3N4 grains after the compression tests
were about 200 and 150 nm for the 2 9 10-5 and 4 9 10-5 s-1, respectively.

Si–C–N ceramics maintained their mechanical strength up to 1500 �C and
plastic flow was observed during the compressive stress tests at 1600 and 1700 �C,
making Si–N-based ceramics one of the most promising candidates for mechanical
applications at elevated temperatures.

2.1.1.3 Toughness

In defect-free solid materials, the ability to absorb energy, expressed by the area
under the stress–strain curve, is known as ‘toughness’. This represents the resis-
tance of a material to fracture and is expressed as the amount of energy per volume

having the units kg
m2 � m

m
¼ kg:m

m3

� �
, given in SI system notation as joules per cubic

meter (J/m3). For such defect-free solids (as in the case of metals), the relation is:

UT ¼ area under the curve ¼
Z ef

0
r de ð2:5Þ

Graphically, the area under the curve and up to the fracture is shown in Fig. 2.9.
In Eq. (2.5), the elastic contribution is neglected. Toughness and strength are

related, but not necessarily the same, especially when brittle and ductile materials
are considered. Whereas strength indicates how much force a material can support
before breaking, toughness shows how much energy a material can absorb before
fracture. A material may be strong and tough, if it fractures by withstanding a high
force and exhibits high strain, but brittle materials with high strength (*equal to
its yield stress) may be strong, but not tough, since their strain values are limited.
Variables that greatly influence the toughness of a material are: strain rate (rate of
loading), temperature and notch effect (for more details see [7]).

fσx

Lo
ad

extension

Fig. 2.9 Schematic curve for
toughness
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The fracture toughness [7] resulting from crack propagation is related to a
critical stress intensity factor, Kc, which is a measure of fracture toughness rep-
resenting the resistance of the material to failure from fracture initiated by a
preexisting crack. One may add to the aforementioned variables that influence
toughness: loading rate, composition, environment, microstructure and the tip
geometry. A subscript is used to denote the crack opening mode to Kc and the
equation can be expressed as:

KIc ¼ r
ffiffiffiffiffiffiffiffiffi
paB
p

ð2:6Þ

Here, a is the crack length and B is a dimensionless parameter. From Eq. (2.6),
the critical stress, rf, is:

rf ¼
KIcffiffiffiffiffiffiffiffiffi
paB
p ¼ KIc

a
ffiffiffiffiffiffi
pa
p ð2:6aÞ

and a = B1/2. B is a crack length and component geometry factor that is different
for each specimen and is a dimensionless parameter. Expressions for a are tabu-
lated for a wide variety of specimen and crack geometries, and specialty finite-
element methods are available to compute it for new situations. KIc values are also
used to calculate the critical-stress value, when a crack of a given length is found
in a component. The critical-crack length is given from Eq. (2.6) as:

ac ¼
1
p

KIc

rB

� �2

ð2:6bÞ

For edge crack, a is the crack length or one-half crack length for internal cracks.
In the literature, the above relations are often given in terms of Y, rather than B,
with the same meaning. One immediately realizes the connection between this
equation and the one derived by Griffith in his theory on brittle fracture.

The best quality ceramics contain imperfections, all of which have remarkable,
but detrimental influences on the mechanical properties. Therefore, toughness or
rather ‘fracture toughness’ is of critical importance for design purposes. Like
impact tests, a very common method for testing toughness in ceramics is by the
introduction of a notch, usually a V notch. Ceramics and ceramic-based com-
posites, having high strength but low crack resistance, are considered for appli-
cation due to their high strength. However, wide-scale application is still hindered
by the presence of cracks. One of the accepted testing methods for the evaluation
of critical stress intensity factor, KIc, is the single-edge, V-notched beam
(henceforth: SEVNB) method. Several ceramics (of zirconia, alumina and silicon–
nitride ceramics, zirconia and alumina single crystals, silicon carbide, etc.) were
tested for fracture toughness by the SEVNB method [17]. V-notched specimens
were tested using flexural tests and KIc values were calculated by means of three-
point and four-point flexure tests. The load–deflection diagrams for V-notched
specimens contributed to better understanding of the deformation behavior of
ceramics at RT and 1300–1400 �C. Figure 2.10 illustrates the effect of V-notch
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radii on KIc values for Si3N4 and yttria partially-stabilized zirconia (henceforth:
Y-PSZ) ceramics, while the load–deflection relation is illustrated in Fig. 2.11.

Analysis of the data of the fractured specimens reveals that a fracture crack
propagated from the points where additional stress concentrations were present.
This confirms the assumption that the fracture of a loaded ceramic specimen starts
from a small crack ahead of a machined notch root. It is believed that KIc is
influenced more by the sharpness of the notch root, rather than by its shape. The
data in Table 2.1 are from three to four-point flexure tests performed on several
monolithic ceramics. Table 2.2 shows the KIc values at RT and high temperatures
attained by the SEVNB method for these notched specimens.

Single crystals of zirconia and alumina were tested by SEVNB and by the
single-edge notched beam (henceforth: SENB) method, and the results are shown

Fig. 2.10 Effect of V-notch root radii on the KIc values: a for Si3N4, and b for Y-PSZ ceramics
[17]. With kind permission of Elsevier

Fig. 2.11 Load-deflection of notched test: a Si3N4 + 30 % SiC + 3 % MgO; b SiC + 50 %
ZrB2 + 10 % B4C. Specimens 1 and 3 tested at room temperature and specimens 2 and 4 tested
at 1400 �C [17]. With kind permission of Elsevier
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in Table 2.3. In Table 2.3, v is a measure of brittleness and is defined by the ratio
of the specific elastic energy accumulated in the ceramics by the moment of
fracture to the total energy spent on its deformation. v was evaluated from stress–
strain curves obtained during a four-point bend test.

Table 2.1 Comparative fracture toughness tests (MPa m1/2) of several ceramics [17] (with kind
permission of Elsevier)

Test method Three-point flexure
(a/W & 0.5)

Four-point flexure ða=W � 0:2. . .0:3Þ
Our results RRFT’97 results

Si3N4 5.5 ± 0.07(5)a 5.35 ± 0.16(5) –
GPSSN 5.3 ± 0.04(5) 5.2 ± 0.18(5) 5.36 ± 0.34(129)
Si3N4 + 30 % SiC + 3 % MgO 2.27 ± 0.14(4) 2.40 ± 0.16(5) –
SSiC 2.45(1) 2.66 ± 0.20(4) 2.61 ± 0.18(56)
SiC + 50 % ZrB2 + 10 % B4C 3.59 ± 0.12(3) 3.51 ± 0.15(3) –
Al2O3-998 3.5 ± 0.05(5) 3.6 ± 0.06(5) 3.57 ± 0.22(135)
Y-PSZ 5.7 ± 0.17(5) 5.9 ± 0.19(5) –

±Standard deviation
a The number of specimen tested (in parentheses)

Table 2.2 High temperature fracture toughness test results (SEVNB method) [17] (with kind
permission of Elsevier)

Materials KIc (MPa m1/2)

20 �C 1300 �C 1400 �C

Si3N4 5.5 ± 0.1 4.2 ± 0.3 –
Si3N4 + 30 % SiC + 3 % MgO 2.27 ± 0.1 – 2.68 ± 0.1
SiC + 50 % ZrB2 + 10 % B4C 3.52 ± 0.1 3.63 ± 0.3 3.70 ± 0.1
Si3N4 [22]a 5.6 ± 0.5 5.0 ± 0.4 –
a The notches were produced by diamond saw with V-shaped tip

Table 2.3 KIc values for single crystals obtained by SEVNB and SENB methods (MPa m1/2)
[17] (with kind permission of Elsevier)

Single
crystals

Peculiarity Elastic
modulus
(GPa)

Test method Brittleness
measure, v

Index
u

SENB SEVNB

Zirconia Partially stabilized
(3 % Y2O3)

245 9.33 ± 0.95 10.33 ± 2.17 1 0.9

Alumina Specimen axis 45� to
optical axis of
crystal

403 2.31 ± 0.34 2.45 ± 0.29 1 0.94

Specimen axis 90� to
optical axis of
crystal

410 3.19 ± 0.53 2.85 ± 0.50 1 1.12
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The index of sensitivity, u, to stress concentrations, which is equal to the ratio of
the KIc values, obtained by the SEVNB and SENB methods is shown in Table 2.3. In
the tests of elastic materials, u (v = 1) is about 0.6, and in those of inelastic mate-
rials, (u \ 1), exceeding 0.9. Almost all the studies on the deformation behavior of
V-notched ceramic specimens with a u value of about 0.6 produced linear load–
deflection diagrams or diagrams with small nonlinearity, as seen in Fig. 2.11 of lines
1 and 3, which are the results of comparatively slow crack growth.

A practical and relatively easy method for obtaining mechanical properties is by
indentation tests. For ceramics, the most common methods of performing such
tests are the Vickers and the Knoop hardness tests, which are very attractive,
practical and relatively less expensive than the other tests discussed in Chap. 1.
Assessing the toughness of ceramic materials by means of indentation testing is
often done, also due to the ease of performance and low cost of conducting the
measurements. Vickers hardness can be expressed [7] as:

DPH ¼ HV ¼ 1:854
P

d2
¼ a

P

d2
ð2:7Þ

P is the load and d is the diagonal. a is a numerical factor (1.854) that depends on
shape and it is quoted as *2 for ceramics, as a consequence of using the projected
area of the indenter contact with the surface plane. Vickers or Knoop indentations
introduce cracks into the ceramics the sizes of which may be measured. The sizes
of these artificial surface cracks are related to KIc. In particular, the lengths of
these impression cracks are related to KIc and the connection between them has
been evaluated, for example, by Anstis et al. [11]. A Vickers indentation is per-
formed on a flat ceramic surface so that cracks develop around the indentation. By
measuring the crack lengths, it is possible to estimate KIc, which are in inverse
proportion to the toughness of the material. The crack-length method for evalu-
ating toughness, according to Anstis et al. [11] is given by:

KIc ¼ 0:016
E

H

� �1=2

� P

c3=2
ð2:8Þ

Thus, toughness, measured and expressed by KIc, is dependent on the elastic
modulus, E, of the material, its hardness, H, (microindentation is often preferable
for the proper evaluation of the indentation crack), crack length, c, and the applied
load. Anstis et al. [11] employed a two-dimensional fracture mechanics analysis.
The crack length, c, is measured from the center of the impression to the crack tip in
meters; E is in GPa and H is the Vickers hardness in GPa. The height of the opposite
triangular faces is h. It is clear that under small indentation loads, only small cracks
form, as indicated schematically in Fig. 2.12. Actual Vickers indentation cracks are
shown in Fig. 2.13. Equation (2.8) is often also expressed as:

KIc ¼ a
E

H

� �1=2

� a2

c3=2
ð2:8aÞ
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Fig. 2.12 Schematic indentation of a Vickers test before and after indentation. Crack resulting
from the indentation are shown

Fig. 2.13 Scanning electron micrographs of radial crack systems of Al2O3 in 3 modifications
a AD999 (P = 50 N), b Vi (P = 50 N), and c sapphire (P = 10 N), showing the effect of
increasing grain size on pattern definition; width of field 200 lm [11]. With kind permission of
John Wiley and Sons
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since Vickers hardness may be given in terms of the half-diagonal, a, as:

H ¼ P

2a2
ð2:7aÞ

by substituting the value of P from Eq. (2.7a) into Eq. (2.8), one obtains
Eq. (2.8a).

Equation (2.8a) is expressed in Fig. 2.14 in terms of KIc versus E
Hc

� �12
a2

c3=2

� �
:

More about toughness and fracture toughness, expressed in terms of KIc, will be
discussed in the chapter on Fracture in Ceramics.

2.1.1.4 Grain Size Effect

Various strength properties of materials (especially metals) are related to the grain
size effect. The well-known, empirical Hall–Petch (henceforth: H–P) relation
addresses the grain size effect of these properties [7], expressed as:

ry ¼ r0 þ
kyffiffiffi

d
p ð2:9Þ

ry is the yield stress, r0 represents resistance to dislocation glide, ky is a measure
of dislocation pile-up behind an obstacle (a grain boundary, for example) and d is
the size of the grain. One may ask how this relates to ceramics. Indeed, various
mechanical tests have indicated that the H–P relation also applies to ceramics
in many cases [10, 9] and, thus, this relation has been successfully extended to
the study of ceramics, as well. Various mechanical properties have been applied
to test this relation, but a very common property, hardness, is very often used to
indicate the H–P concept. Figure 2.15 shows H–P variation with the grain size of

Fig. 2.14 Plot of KIC

determined with conventional
methods versus the quantity
(E/HC)0.5(a2/c3/2) [19]. With
kind permission of Springer
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yttria-stabilized tetragonal zirconia polycrystals (TZ-3YB) and zirconia nano-
powder (B261).

The hardness of TZ-3YB ceramics clearly decreases with increasing grain size
from HV = 12620 MPa at a grain size of 0.19 lm to HV = 10971 MPa at a grain
size of 1.79 lm. The hardness of B261 ceramics shows a higher dispersion, but the
linear fit seems to be quite reasonable. These hardness values were determined by
Eq. (2.7). The values in the graph may be reasonably expressed by a line
(r2 = 0.94), which means that this dependence follows the H–P relation.
Figure 2.16 illustrates the microstructure of TZ-3YB.

Miyoshi [36] has confirmed the H–P relation by measuring Wickers hardness as
a function of d-1/2 for almost the entire grain-size range investigated. Furthermore,
using bending strength tests, Rothman et al. [9] reported the adherence to the H–P
relation even for spinel, such as magnesium aluminate (MgAl2O4) (Fig. 2.17).

Fig. 2.15 The dependence of
the hardness of TZ-3YB and
B261 ceramics on the inverse
square root of grain size [10].
With kind permission of
Dr. Trunec

Fig. 2.16 SEM micrograph
showing the microstructure of
the TZ-3YB ceramics
sintered at 1400 �C for 2 h
[10]. With kind permission of
Dr. Trunec

128 2 Ductile Ceramics



www.manaraa.com

The grain-size dependence of mechanical properties is also observed in
ceramics. Thus, one can state that the H–P relation is a general observation of most
materials, metals and ceramics alike. Deviations from the linear H–P plots, known
as the inverse H–P trend, observed in metals having small dimensions, will be
discussed later on in the chapter dedicated to that topic.

2.1.1.5 Addition of a Second Phase

A second phase may be either in solution in the matrix or in a state of dispersion.
Often, a soluble second phase is in an undissolved stage, since the processing,
mainly the thermal treatment, occurs at a low temperature or for an insufficient
amount of time for the induction of complete solubility. A second phase may be
another ceramic, polymer or metal in various shapes and sizes. Fibers and whiskers
are also often used for strengthening ceramic base materials. Here, the focus is on
the mechanical properties and not on the influence of a second phase on other
physical characteristics (e.g., electrical, magnetic or optical). Furthermore, the
method of fabrication of ceramics necessary to densify compacted powder samples
(green bodies) in order to form a continuous three-dimensional (henceforth = 3D)
structure and, thus, to get ceramic pieces appropriate for the selected application is
of critical importance. Moreover the second phase may be crystalline or in an
amorphous stage. Although the present objective of adding a second phase is to
enhance the mechanical performance of ceramics, it often occurs that the addition
of a second phase weakens some mechanical properties, probably due for its
promotion of pore formation. An insoluble second phase is a discontinuity in the
matrix and, from this standpoint, pores and cracks, though they are not a genuine
second phase, may be considered as such.

Usually, the consolidation of the constituents of a ceramic is done by means of
a sintering process, which is a densification of the granular (or powder) compact

Fig. 2.17 a Bending strength as a function of average grain size; b shows agreement between the
experimental data and the Hall–Petch relation [9]. With kind permission of Mr. Rothman for the
authors
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by heat treatment. During this stage, the microstructures of the samples evolve into
the initial stage of basic ceramics. Note that for maximum densification, HIP is a
common practice.

Several examples will be presented to show the influence of a second phase, for
example in the ZrB2 case. There is a growing interest in ZrB2-based ceramics for
their outstanding properties: high melting point, high electrical and thermal con-
ductivities, chemical inertness and good oxidation resistance. These properties
make them attractive candidates for high-temperature applications, in which cor-
rosion-wear-oxidation resistance is of interest, for example, for use as ballistic
armor, coatings on cutting tools, electrical devices, nozzles etc [16]. Furthermore,
refractory diborides exhibit partial or complete solid solution with other transition-
metal diborides, which allows compositional tailoring of properties such as the
thermal expansion coefficient and hardness.

The fracture toughness of ZrB2, with and without additives, is generally in the
range of 3.5–4.5 MPa m1/2. For most applications, however, the value of tough-
ness is unsatisfactory, which hinders its wider use and, therefore, the incorporation
of various additives is expected to remedy this problem. ZrO2 additive was found
to improve the mechanical properties of ZrB2 and to enhance its toughness.
Figure 2.18 is an illustration of the effect of ZrO2 additive in ZrB2 on flexural
strength and fracture toughness.

The densification of ZrB2–ZrO2 is improved with increasing amounts of ZrO2,
which is attributed to the smaller grain size of ZrO2. Denser aggregates are
expected to provide better mechanical properties, as indeed observed in Fig. 2.18.
Figure 2.19b illustrates the effect of increasing the volume fraction of ZrO2. Note
that the increase of the relative density follows the trend of the plots shown in
Fig. 2.18.

Considering the microstructure, energy dispersive spectroscopy (henceforth
EDS) patterns reveal that it is characterized by the presence of a coarser and
elongated ZrB2 matrix and relatively finer and equiaxed ZrO2 grains. This appears
in Fig. 2.20. With the increase in the amount of ZrO2, a denser microstructure is
obtained. The fracture surface indicates that ZrB2 grains fracture predominantly

Fig. 2.18 Plots of flexural
strength and fracture
toughness (by SENB) of hot
pressed ZrB2–ZrO2 ceramics
[34]. With kind permission of
Elsevier
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transgranularly and ZrO2 grains, which are dispersed among ZrB2 grain bound-
aries, fracture intergranularly. The introduction of the smaller second phase of
ZrO2 effectively restrained the growth of grains during hot pressing, becoming
more significant with the higher content of ZrO2.

Fig. 2.19 a Densification curves of hot-pressed ZB20Z and ZB30Z; b relative density (%) of
hot-pressed ceramics with increased ZrO2 content from 15 to 30 vol% [34]. With kind permission
of Elsevier

Fig. 2.20 Fracture surface of ZB20Z (ZrB2-20 vol% ZrO2), EDS patterns show that the bigger
and coarser grains are ZrB2, the finer and equiaxed grains are ZrO2 [34]. With kind permission of
Elsevier
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Flexural strength improved with the increase in the amount of ZrO2 and the
strength increased from 667 MPa for the ZB15Z (ZrB2-15 vol% ZrO2) to
803 MPa for the ZB30Z (ZrB2-30 vol% ZrO2) ceramics, as indicated in Fig. 2.18.
The finer grains are responsible for the improved strength, which can be associated
with the H–P relation. Similarly, the increased ZrO2 content plays an active role in
the toughness of the ZrB2-based ceramics. An increase from 15 to 30 vol% ZrO2

increases toughness from 5.6 to 6.5 MPa m1/2. There are two reasons for this
increased toughness: deflection of the crack and stress-induced phase transfor-
mation. In the case of crack-deflection toughening, ZrO2 grains hinder crack
growth or its propagation, as indicated in Fig. 2.21. The increase in toughness due
to phase transformation is associated with the transformation of tetragonal ZrO2

into the monoclinic phase. The more tetragonal ZrO2 is present in the ceramic, the
more monoclinic ZrO2 transformation will occur during the process. Both kinds of
toughening, namely, from phase transformation and crack deflection, were largest
in ZB30Z (ZrB2-30 vol% ZrO2). It is common to express toughness in terms of
hardness measurements, involving the dimension of the crack formed on the
surface in the vicinity of the indentation, as follows:

KIc ¼ g
E

H

� �2=5 P

al1=2ð Þ ð2:10Þ

In Eq. (2.10), g is a dimensionless constant for a given indenter geometry,
provided the volume is conserved within the ‘plastic zone’ (adjacent to the
indentation). E is the elastic modulus; H is the Vickers hardness; P is the indent
load; 2a is the average indentation diagonal length; 2c is the crack length; and
l = c - a. This relation is applied for toughness where the samples exhibit
Palmqvist-type cracks (0.25 \ l/a \ 2.5). The hardness of the ceramic also
increases with increasing ZrO2 and can reach a value of 22.7 GPa under a load of
9.8 N having the composition of ZrB2-30 vol% ZrO2. The load dependence of
hardness is quite pronounced and the nature of decrease in hardness with increased
load has the same form in all ceramics.

A second phase might weaken the ceramics by reducing some of the
mechanical properties, probably because, in some way, it promotes pore forma-
tion. Above, pores were described as a ‘‘discontinuity in the material’’ and, thus, as
having an undesirable effect. In the following, the effect of ceria on the mechanical

Fig. 2.21 SEM image of
microcrack from Vickers
indentation on the polished
surface of ZB25Z [34]. With
kind permission of Elsevier
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properties of yttria-stabilized zirconia-toughened alumina (henceforth: ZTA) will
be considered to show how pores can, indeed, degrade mechanical properties.
Figures 2.22 and 2.23 clearly show the degradation of the modulus of elasticity
(henceforth: MOE), the fracture toughness, the hardness and the modulus of
rupture (henceforth: MOR) with the addition of ceria, respectively.

The authors (Mangalaraja et al. [35]) claim that the possible reason for this
reduction in strength is due to the high density of the microcracks. As the distances
between the microcracks decrease, they near each other and coalescence occurs
spontaneously, which substantially reduces the strength of the materials. More-
over, the decreased mechanical properties are found to be due to the higher
apparent porosity, possibly resulting from the addition of ceria. The higher degree
of apparent porosity is a result of the solid-state mixing of powders.

It was observed that the addition of ceria deteriorates the mechanical properties,
including the fracture toughness of yttria-stabilized ZTA, although reports exist to
the contrary [46] for polycrystalline yttria-stabilized ZTA, in which fracture
toughness is increased by the addition of ceria.

2.1.1.6 Particle Size Effect

The mechanical properties of ceramics are influenced by the particle size of both
the base ceramic and of the added phases. Thus, to obtain a fine-grained

Fig. 2.22 Effect of ceria
addition on fracture
toughness and modulus of
elasticity of ZTA (zirconia
toughened alumina) [35].
With kind permission of
Elsevier

Fig. 2.23 Effect of ceria on
hardness and strength of ZTA
[35]. With kind permission of
Elsevier
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(henceforth: FG), uniform ceramic microstructure after sintering, the distribution
of the particle sizes in the slurries of the components (while in the green stage) is
of major importance for the production of a high viscosity substance. A proper
particle-size distribution facilitates particle arrangement and the development of a
relatively dense structural packing. Particle size affects densification, which is a
prerequisite for the reduction of pores, thus enhancing the mechanical properties.
The range of particle sizes is quite broad—from less than 100 nm to greater than
100 lm. However, the 4-sieve particle-size distribution (henceforth: PSD), which
was borrowed from soil mechanics, is of great importance. Sieving is one of the
oldest techniques for powder separation (based on size or some other physical
characteristic) still in use today. It is among the most widely used and least
expensive methods due to its relative simplicity, low capital investment, high
reliability and the low level of technical expertise required for the determination of
the PSD for a broad range of sizes. There are both dry and wet sieving processes.
Typically, wet sieving is used for the analysis of particles finer than *200 mesh
(75 lm). For particle-size analysis, one can consult Special Publication 960-1 of
the National Institute of Standards and Technology (henceforth: NIST).

Products used in ceramic or abrasive applications are generally manufactured
from powders. The PSD has profound effects on the processing and functioning of
these products, which include most oxides and minerals ranging from aluminum
oxide to zirconium oxide. Laser diffraction, dynamic light scattering and acoustic
spectroscopy have all been successfully utilized to characterize ceramic materials.

It has been mentioned that particle size affects densification, which is a pre-
requisite for the reduction of pores, thus enhancing mechanical properties. The
effect of pores in alumina serves as an example of the direct influence of densi-
fication which is influenced by particle size. Figure 2.24 shows flexural strengths
following subjection to varying degrees of densification. In addition, changes in
Young’s modulus may be seen in Fig. 2.25. Changes occurring with different
degrees of densification are expressed by the two relations given below:
Eq. (2.11), suggested by Lam et al. [30] and Eq. (2.12), its modification given by
Mangalaraja et al. [35]:

Fig. 2.24 Variation of
flexural strength of alumina
measured at room
temperature after sintering to
various temperatures
(800–1600 �C). The increase
in strength occurs at low
theoretical density after
which a leveling in strength
occurs [5]. With kind
permission of John Wiley and
Sons
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E

E0
¼ 1ffi P

Pg

� �
ð2:11Þ

and

E ffi E
0

E0 ffi E0
¼ 1ffi P

Pg

� �
ð2:12Þ

As in the case of flexural strength, variation of the Young’s modulus with the
degree of densification increases during the initial stages of sintering.

In the above equations, E and E
0
are Young’s modulus values of the porous and

the theoretically dense materials, respectively, and P is the fractional porosity (not
load). The subscript g refers to the green body. The right-hand side of the equation
represents the degree of densification. In Eq. (2.12), E

0
is the Young’s modulus at

the onset of densification. The increase in strength properties, even with minimum
densification, is an indication that strength property improvements may be made
by controlling the sintering mechanism and the geometry of the particle structure.

Figure 2.26 shows the apparent porosity versus the average grain size of
ceramic specimens sintered at *1340 �C. These specimens were prepared from
magnesite and bauxite by means of an in situ pore-forming technique.

In general the size of the pores depends, among other factors, on the particle size
of the aggregate. Particle size is the most important parameter in the production of
ceramic products; it must be optimized to ensure that the desired mechanical and
physical properties are achieved. The majority of ceramic products are manufac-
tured by the process of slip casting in a mold. Maintenance of the desired PSD
requires control of the dispersion stability of the ceramic slip. Like all ceramic
materials and castables, in alumina refractories a proper PSD is of importance,

Fig. 2.25 Experimental
Young’s modulus data of
high purity alumina for three
different green densities
expressed by the theoretical
expressions mentioned above
[5]. With kind permission of
John Wiley and Sons
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rather than using a single-sized component. This helps to create better packing,
compared to the use of mono-sized particles. Besides influencing packing, PSD
effects flow, apparent porosity and, hence, the strength of castables. Some research
has been done to discover the relationship between particle size and physical
properties. Figure 2.27 shows compressive strength versus average particle size.

Having established that the size of the pores depends on particle size, some
other examples may now be considered, in which the effect of grain size is
expressed in terms of pore density. In shell casting, ceramic molds are often used.
Previous studies have indicated that zirconia is one of the least reactive materials
and apparently holds promise as a mold refractory material, viable for metallur-
gical processing and the investment casting of TiAl alloys [15]. An important
factor in zirconia mold properties is the role played by PSD on the packing.
Information on this experimental procedure and the effect of PSD on zirconia mold
properties may be found in the original paper of Chen Yan-fei et al. [15] FG,

Fig. 2.26 Apparent porosity
of specimens sintered at
1340 �C [50]. With kind
permission of Professor Wen
Yan

Fig. 2.27 Compressive
strength of sintered specimes
versus average particle size
sintered at 1340 �C [50].
With kind permission of
Professor Wen Yan
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uniform, sintered microstructure is obtained from slurries with median PSD and
optimal viscosity, which facilitate particle arrangement and a structure with good
packing. The mechanical properties of these molds were evaluated at RT by three-
point bend tests of green and sintered (950 �C for 2 h) aggregates. Instron was
used for the constant load test on five samples. The bending is given as:

rw ¼
3FL

2ah2
ð2:13Þ

where F is the fracture load, L is the span length, and a and h are the width and
thickness of the sample fracture area, respectively. Equation (2.13) is basically the
same relation given in Eq. (1.122) from Chap. 1, Sect. 1.9, which was then given as:

rf ¼
2P L

2 c
2tc3

3

¼ 3PL

2tc2
ð1:122Þ

In 1.122 P = F, t = a and c2 = h2.
The load–deflection relation in Eq. (2.13) may be expressed in terms of the

stress–strain relation as:

e ¼ 6hd
L2

ð2:14Þ

where e and d are the strain and deflection, respectively. Figures 2.28a and 2.28b
are the stress–strain curves, in accordance with Eqs. (2.13) and (2.14) at the green
and sintered stages, respectively, for the CSZ1, CSZ2 and CSZ3 specimens having
different PSDs. It is interesting to compare the aggregates of these samples in the
green stage and post-sintering (see Figs. 2.29 and 2.30). The PSDs of the powders
used for these zirconia mold preparations appear in Fig. 2.31, showing that the
median particle diameters are 20, 30 and 40 lm, respectively.

Fig. 2.28 Stress–strain relations for the CSZ1, CSZ2 and CSZ3 specimens; a green stage,
b sintered [15]. With kind permission of Elsevier
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The particle morphologies of the zirconia powders observed by scanning
electron microscope (henceforth: SEM) are shown in Fig. 2.32.

Observations indicate that particle morphology and PSD greatly influence the
quality of slurries in the reproduction of details and thin sections of ceramic molds.
Consequently, good cast-metal quality may be obtained. It is clear from the results

Fig. 2.29 Morphologies of fracture surfaces of green zirconia ceramic moulds with different
PSDs: a CSZ1; b CSZ2; c CSZ3 [15]. With kind permission of Elsevier

Fig. 2.30 Morphologies of fracture surfaces of sintered zirconia ceramic moulds with different
PSDs: a CSZ1; b CSZ2; c CSZ3 [15]. With kind permission of Elsevier

Fig. 2.31 Particle size
distributions of zirconia
powders [15]. With kind
permission of Elsevier
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that the surface roughness of castings is directly related to the fineness of the
investment powders. Decreasing the size of powders causes the formation of
extremely small pores in the zirconia ceramic mold which prevents the deeper
penetration of molten TiAl into these cavities under the same hydrostatic or cen-
trifugal pressure and, thus, improving surface quality. Thus, pore size, in particle-
size-dependent zirconia molds, greatly influences casting quality; the finer the
particle size, the smaller the pore diameter in the ceramic mold. The relation between
the zirconia powder characteristics determines the resulting mechanical properties
of the ceramic molds. The bend strength of zirconia ceramic molds is directly related
to the PSDs in the green and sintered ceramic (bar-shaped) specimens.

2.1.2 Ductile Ceramics at Low or Ambient Temperatures

This section deals with the features of ductile ceramics and, in some cases, the
modifications in composition that induce ductility at low temperatures, as well as
additives to base ceramics, such as metals, which also promote ductility.

Polycrystalline ceramics are of great interest for specific industrial applications,
but the primary drawback of using ceramic materials in structural applications is
their inherent brittleness, which results from the strong bonding between the
metallic and non-metallic components. In general, most ceramics are brittle and

Fig. 2.32 SEM micrographs of zirconia powder: a CSZ1; b CSZ2; c CSZ3 [15]. With kind
permission of Elsevier
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various internal imperfections, such as porosity, reduce both strength and ductility.
Due to the fact that most engineering ceramics are compacted from powders, the
presence of some porosity is inevitable, which makes most ceramics very brittle.
Furthermore, ceramics suffer from the presence of microcracks, which act as stress
raisers. Generally, tensile stresses must be kept low, if sudden failure is to be
avoided. Although the production of ductile polycrystalline ceramics (or other
ionic solids) at RT has not yet been achieved in a satisfactory manner, it has been
the objective of many research studies. Material purity is a contributing factor,
though not necessarily a controlling one in governing the RT ductility of solids, in
general, and of ceramics, in particular. Moreover, complications exist in poly-
crystalline ceramics, involving the presence of particles in the grain structure that
may induce grain-boundary sliding, thus masking the possibility of real ceramic
ductility in the absence of the contribution of grain-boundary sliding. Therefore,
attempts have been made to study ductility in single crystals, in which a contri-
bution from grain boundaries is ruled out.

A typical and much studied example of ductility in single crystals is MgO.
Parker et al. [6] were the first to suggest that single crystals of MgO could be
deformed at RT. Ever since the probability of RT ductility was confirmed, much
attention has been given to evaluate the factors that affect such ductility and the
mechanical properties of this structure. In addition to the other effects, crystal
orientation also affects the deformation of single crystals. Figure 2.33 relates

Fig. 2.33 Stress–strain
curves for single crystals of
MgO with a h111i loading
axis [23]. With kind
permission of Elsevier
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applied stress to true strain at three temperatures. The lowest temperature in this
figure is 349 �C, not strictly RT. However Fig. 2.34 also shows RT ductility
(strain). Figure 2.35 shows stress–strain curves for small-grained polycrystalline
material. When this polycrystalline material was yielded at RT using the Instron
machine, yielding was followed by a decrease in stress at an increasing rate until
final fracture occurred.

The temperature dependence of the bulk yield stress of the small-grained
polycrystalline specimens is included in Fig. 2.34 for comparison with the single-
crystal results. Note that the RT strain of the small-grained polycrystalline MgO is
0.005. Also notice that the loading axis orientation is h100i and not h111i as in
Fig. 2.33. Figure 2.36 shows the variation with temperature of yield stresses for
MgO single crystals with various loading axes. The yield-stress variation is also
indicated for polycrystalline MgO. Typical behavior for single crystals loaded with
a h111i axis at RT failed without plastic deformation.

A slip-band structure may be seen in Fig. 2.37, showing specimens deformed at
RT and at 1240 �C. This band structure is similar to the dislocation band structure
revealed by hot etching {100} faces of a h111i specimen just yielded at about
650 �C and then air-quenched (Fig. 2.38). In Fig. 2.34, the RT true strain at failure

Fig. 2.34 Total strain versus
temperature for single-crystal
MgO with a h100i loading
axis and for polycrystalline
MgO [23]. With kind
permission of Elsevier
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of [100] loaded specimen at 20 psi/s was about 0.05. The polycrystalline MgO at
RT had a strain at fracture of about 0.6 %, as seen in Fig. 2.34 and was about 2 %
above 600 �C. The observed poor ductility of the polycrystalline MgO is attributed
to cleavage fracture, slip non-uniformity and a lack of five independent slip sys-
tems, which is a requirement for polycrystalline ductility according to Taylor [45].
Above 600 �C, slip can occur on the {100} h110i slip system. At higher tem-
peratures, stress-induced climb and high dislocation mobility inhibit cleavage
fracture. Surface effects are extremely important and good ductility can be
obtained only with specimens having carefully prepared, chemically polished
surfaces. Thus, the h110i slip systems provide the additional slip systems neces-
sary to satisfy Taylor’s criterion. It was also found that MgO single crystals are
ductile at RT and elongation values in excess of 10 % were obtained regularly [6].
Elongations of as much as 20 % on the tension side of a single-crystal bend-test
specimen have also been reported. High purity is essential. Thus, purity and
environmental effects play major roles in brittleness [41].

Fig. 2.35 Stress–strain
curves far small-grained
polycrystalline MgO [23].
With kind permission of
Elsevier
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Studies on single crystals, bicrystals and polycrystalline materials of MgO have
shown that the strength of magnesium oxide depends on the availability of mobile
sources. Research on single crystals has shown that the mechanical properties of
magnesium oxide fall into two categories, namely, they are either extremely strong
and elastic in the complete absence of mobile dislocation sources or relatively
weak and ductile in their presence [43]. The mobility of a dislocation depends on a
number of factors, such as crystal structure, bond character, temperature and
microstructure. In pure magnesium oxide at RT, dislocations are very mobile at
comparatively low stresses [42]. Changing the microstructure, possibly by alloy-
ing, the mobility of dislocations may be reduced and an increase in strength may
be achieved.

As indicated above, the effects of impurities and surface reactions with com-
ponents of the air exert control over ductility. It was predicted by researchers that a
class of materials, normally considered brittle (i.e., ionic solids having cubic
crystal structures) would possess a degree of ductility. Experiments performed on
ionic materials indicate that face-centered cubic and body-centered cubic ionic
materials can exhibit a considerable amount of ductility under controlled condi-
tions, such as induced by impurities and surface effects. For instance, the ductility
of MgO is shown in Fig. 2.39.

Fig. 2.36 Yield stress versus
temperature for single-crystal
and polycrystalline MgO
[23]. With kind permission of
Elsevier
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The stress–deflection curve for a MgO single crystal is indicated in Fig. 2.40. To
eliminate the environmental effect, these specimens were cleaved and tested under
oil. The base material was of commercial grade, thus the crystals were impure,

Fig. 2.37 a Etched grains of polycrystalline MgO deformed at room temperature, X95;
b deformed at 1240 �C, X95; c deformed at 1240 �C, X190 [23]. With kind permission of
Elsevier

Fig. 2.38 Etched {100}
h110i slip bands (X75) [23].
With kind permission of
Elsevier
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containing *1/2 % or even more of foreign material (mostly silica). Nevertheless,
the amount of elongation on the tension side of the specimens varied from 0 to
20 %, with an average of perhaps 5 % for the batch tested. In Fig. 2.40, three
typical stress–deflection curves for MgO are seen. Undoubtedly, the variation in
ductility was due, in part, to variation in purity. The effect of impurities and ambient
gases, such as O or N, are assumed to be associated with the dislocation-impurity
interaction. O or N can diffuse from the surface into the interior of the ceramic,
acting like inherent impurities. It is well known that the reaction of the impurities
with the dislocations and their pinning form Cottrell-like atmospheres. Dragging
dislocations with their atmospheres and their immobilization are dependent on the
amount of impurities and the amount of locks formed by impurity-dislocations
interactions. Dislocation sources may have been activated by the high local stresses
required to activate the motion of the dislocations having impure atmospheres.
Eventually, when sufficient atmospheres form, the dislocation is immobilized and
cleavage sets in. Thus, the free motion of dislocations gradually becomes more

Fig. 2.39 MgO single
crystal which was bent in air
at room temperature [20].
With kind permission of John
Wiley and Sons

Fig. 2.40 MgO cleaved
under oil, stored 48 h, and
then tested under oil [20].
With kind permission of John
Wiley and Sons
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difficult and ductility becomes restricted, requiring higher stresses. The effect of
embrittlement by impurities or by ambient gases depends on their amount.

One interesting case is that of the ceramic SrTiO3, which belongs to the class of
ceramics having a perovskite structure. This ceramic is expected to fail in a brittle
manner at low temperatures, but, surprisingly, it was found to exhibit plastic
behavior when deformed by compression in the range of 78–1050 K. Above this
temperature, in the 1500–1800 K range, it behaved as a brittle material [13]. Such
materials are often used as substrates for electronic devices for high-temperature
superconductors. Therefore, there is a need to obtain information about the
mechanical properties of SrTiO3. Single crystals of SrTiO3 were tested by com-
pression in the h001i orientation at 78–1811 K. Figure 2.41 displays representative
curves of the true stress versus the nominal plastic strain in SrTiO3 specimens that
were deformed at 78–1811 K.

Several features may be observed in Fig. 2.41 at several temperatures:

(1) The stress at the beginning of plastic deformation is weakly dependent on
temperature;

(2) The stress plateau of plastic deformation, being the most pronounced at 296 K,
decreases with increasing temperature and;

(3) The work-hardening rate after the short plateau increases with increasing
temperature.

The most striking feature of the stress–strain curve at RT is the extended plastic
deformation, reaching a plastic compressive strain of up to 8 % before fracture. At
78 K, a specimen can be plastically strained to 9 % before fracture. Figure 2.42
shows the two side faces of a specimen that has been deformed to 3 % at RT in
transmitted polarized light. The bands of birefringence lie at an angle of 45� to the
[001] compression axis. These structures are typical of plastically-deformed
specimens at temperatures below 900 K; above 1500 K, no such structures can be
detected within the deformed, transparent samples, since no plastic deformation
has taken place. Figure 2.43 suggests that the temperature range under investi-
gation may be subdivided into four regimes: (i) regime I (T B 300 K), the low-
temperature regime, where rc (critical flow stress) decreases as the temperature

Fig. 2.41 Stress–strain
curves of SrTiO3 at different
temperatures (arrows indicate
load release) [13]. With kind
permission of John Wiley and
Sons

146 2 Ductile Ceramics



www.manaraa.com

increases and high ductility is observed; (ii) regime II (T = 300–1050 K), which is
characterized by an almost-constant rc value and ductile behavior decreases as the
temperature increases; (iii) regime III (T = 1050–1500 K), which is characterized
by complete brittleness of the specimens, but an increase in rFr (fracture stress) is
observed with increasing temperature; (iv) regime IV (T = 1500–1811 K), where
ductility occurs again, but rc rapidly decreases if the temperature is increased.
Thus, a ‘two-directional’ transition phenomenon-a ductile–brittle-ductile transi-
tion—is observed in these ceramics.

It can be summarized that a class of ceramics materials, normally considered
brittle could posses a degree of ductility depending on the production technique,

Fig. 2.42 Polarized-light
micrograph showing single-
crystal SrTiO3 after 3 %
plastic deformation at RT
[13]. With kind permission of
John Wiley and Sons

Fig. 2.43 Critical flow stress
(rc) and fracture stress (rFr),
as a function of temperature
[13]. With kind permission of
John Wiley and Sons
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and among the many factors the impurity concentration exerts control over the
degree of ductility. The restriction to use ceramic materials at low temperature by
the transition from ductile behavior to brittle fracture can thus be overcome in
cases when production occurs under strict controlled conditions.

2.1.3 Superplasticity in Ceramics

2.1.3.1 Introduction

A superplastic phenomenon occurs in solid crystalline materials, including
ceramics, and is a state in which the material may be deformed before fracture and
may reach large strains, well above 100 %, often even in the range of 200–500 %.
Figure 2.44 shows superplastic behavior in Si3N4 with a 470 % elongation.

This usually occurs at high, homologous temperatures of about 0.5 Tm, where
Tm is the absolute melting temperature. However, often a superplastic state is
found in metals and alloys even at RT. An essential feature of materials exhibiting
superplastic behavior is their fine grains. Superplastic materials may be thinned
down, usually in a uniform manner, before breaking, without neck formation,
unlike ductile metals, where necking is a common feature before fracture sets in.
Two-phase ceramics seem to be desirable for superplasticity, since the second-
phase particles are finely dispersed to pin the grain boundaries, thus maintaining
the FG structure. The particles in superplastic materials are thermally stable. In
addition, these ceramics must be strain-rate sensitive, with a value[0.3. Recently,
superplastic behavior was also observed in iron aluminides with coarse grain
structures. It is believed that this is due to recovery and dynamic recrystallization.
Some relate superplasticity to grain boundary sliding [31]. Most of the reports
consider ZrO2 (zirconia) as a typical superplastic ceramic. New developments
have also been achieved in the superplasticity of Si3N4 and SiC.

2.1.3.2 Oxide Superplastic Ceramics

As previously indicated, zirconia is a typical superplastic ceramic and was among the
first oxide ceramics to be studied. As early as 1986, Wakai et al. studied

Fig. 2.44 Undeformed and
superplastically deformed
Si3N4. An elongation over
470 % is noted [47]. With
kind permission of Elsevier
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yttria-stabilized tetragonal zirconia FG polycrystals (henceforth: Y-TZP) in the tem-
perature range of 1000–1500 �C. The grain size was B0.3 and the tensile experiments
were performed at strain rates of 1.1 9 10-4–5.5 9 10-4 s-1. Over 120 % strain was
obtained at 1450 �C. Furthermore, the interest in this ceramic is a consequence of its
excellent bending strength and toughness. The yttria (3 mol percent) was in solid
solution. Figure 2.45 illustrates the superplasticity observed in this alloy.

The Y-TZP specimen showed an elongation [120 %. It is compared with an
undeformed specimen. The elongation in the gage length was uniform and no local
necking was observed. These tests were performed at constant displacement in a uni-
versal tensile testing machine in air and at 1450 �C. The results of these tests are shown
in Fig. 2.46. As usual, the true strain, et, was obtained (see Chap. 1, Sect. 1.2.1) by using:

et ¼ ln
l

l0
¼ ln 1ffi Dl

l0

� �
ð1:9Þ

In the above, l and l0 are the elongated and original gage lengths, respectively.
The true stress is related to the true strain by:

Fig. 2.45 Superplastically
elongated specimen of
Y-TZP at 1450 �C [48]. With
kind permission of Professor
Wakai

Fig. 2.46 a Load-nominal strain under constant displacement rate; b estimated true stress–true
strain curves assuming a uniform deformation without necking [48]. With kind permission of
Professor Wakai
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rt ¼ r exp etð Þ ð2:15Þ

where the nominal stress is the ratio of the load, P, to the original cross-section of
the specimen, A0, i.e., r = (P/A0).

2.1.3.3 Other Non-oxide Superplastic Ceramics

Superplasticity is not limited to zirconia-type ceramics. Other ceramics have also
been found to exhibit superplasticity, such as nitrides or carbides. Representative
examples are Si3N4 and SiC. In these cases, superplasticity occurs in single-phase
ceramics. Section 2.1.3.1 (i) A superplasticity of * 470 % in Si3N4 (Fig. 2.44) has
been mentioned above.

Superplasticity is one of the common properties of FG ceramics at elevated
temperatures. Superplastic forming and strengthening by superplastic forging are
applicable to a wide range of ceramics, including oxides and non-oxides. Zhan
et al. [51] have studied the superplastic behavior of FG b-silicon nitrides (with
5 wt% Y2O3) under compression in the temperature range 1450–1650 �C at var-
ious strain rates. It was found that b-Si3N4 can be deformed at high strain rates
(*10-4–10-3 s-1) in a range of temperatures and at pressures of 5–100 MPa. No
strain hardening occurs even during slow deformation. Beside Eqs. (1.9) and
(2.15), the initial strain rate may be expressed as:

_e ¼
_l

l0
ð2:16Þ

Here, _l is a constant. The immediate strain rate is expressed as:

_e ¼ _e0 exp ffieð Þ ð2:17Þ

The corrected flow stress is given by:

rc ¼ r0 exp eð Þ½ �
1
n ð2:18Þ

For the corrected flow stress the stress exponent, n, must be known and is given as:

_e ¼ Arn ð2:19Þ

A typical, corrected true stress-true strain curve is shown in Fig. 2.47, together
with the uncorrected curve. The effect of the strain rate at 1550 �C during a
compression test is seen in Fig. 2.48. After the initial transient state, a steady state
is reached for all the strain rates. The true strain rates are based on the corrected
data. As can be seen, no strain hardening occurred in these tests, even at low strain
rates, unlike other cases in which pronounced strain hardening has been observed.
In those cases, the starting powder was a-Si3N4, rather than b-Si3N4. The strain
hardening was attributed to microstructural changes during deformation, such as
dynamic grain growth and a-to-b phase transformation. However, no shape change
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occurred in the present material, due to the uniform PSD of the starting powder
and the absence of an a-to-b phase transformation, as illustrated in Fig. 2.49.

The mechanism that controls the deformation rate at high temperatures, i.e., the
plastic flow, may be expressed (constitutive equation) by:

_e ¼ Arn

dp
exp ffi Q

RT

� �
ð2:20Þ

where _e is the strain rate, r the flow stress, A is a temperature-dependent constant,
d the grain size, n and p the stress and grain-size exponents, respectively, and Q the
activation energy for flow.

In order to use Eq. (2.20), the stress exponent, n, must be determined. A plot,
according to Eq. (2.19), expressed on a logarithmic scale at various temperatures
provides the values of n, as shown in Fig. 2.50. The slopes of these curves give the
values of n at the temperatures indicated. The initial flow stress regions were
ignored and only the quasi-steady-state part of the flow stress is plotted in Fig. 2.50.
Note that the values of n that barely change with temperature are *1–1.4.

Fig. 2.47 Typical correction
curve for a compression test
at 1550 �C and an initial
strain rate of 3 9 104/s, in the
as-hot-pressed b-Si3N4 [51].
With kind permission of John
Wiley and Sons

Fig. 2.48 Compressive
stress–strain curves for
various strain rates of the
as-hot-pressed Si3N4 at
1550 �C [51]. With kind
permission of John Wiley and
Sons
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The higher values of the stress exponent seem to occur at temperatures above
1823 K. The temperature dependence of the strain rate is shown in Fig. 2.51, where
the strain rate is plotted against the reciprocal, absolute temperature. The activation
energy, Q, calculated from the slopes of the lines in Fig. 2.51, are 344 ± 26 kJ/mol
at 20 MPa and 410 ± kJ/mol at 100 MPa. High-resolution transmission-electron
microscopy (henceforth: HRTEM) observations of materials, both before and after
deformation, are shown in Fig. 2.52. Observe that most of the grain boundaries have
a glass film, although some grain boundaries were free of such film. This indicates
that the formation of glass film is dependent on grain-boundary orientation and
whether they were perpendicular or parallel to the direction of the applied force and
on grain orientation. Those boundaries oriented in parallel show wide films
(Fig. 2.52a), whereas the film thickness on grain boundaries perpendicular to the
applied load direction were smaller (Fig. 2.52b).

It was also mentioned above that some relate superplasticity to grain-boundary
sliding (see, for example [31]). Guo-Dong Zhan et al. [51] report that grain-
boundary sliding may also be the mechanism of superplasticity in Si3N4, in

Fig. 2.49 TEM photographs of: a an undeformed sample and b a deformed sample at 1600 �C,
with a true strain of -1.1, showing no dynamic grain growth [51]. With kind permission of John
Wiley and Sons

Fig. 2.50 Strain rate versus
stress at various temperatures,
under compression
(n = slope), in the as-hot-
pressed b-Si3N4 [51]. With
kind permission of John
Wiley and Sons
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addition to grain rotation, accommodated by viscous flow. Furthermore, FG
b-Si3N4 exhibits high grain-size stability against dynamic grain growth during
sintering and deformation, a characteristic that satisfies the microstructural
requirement for classic superplasticity. This kind of Si3N4 does not work-harden as
do the other silicon nitrides discussed earlier.

2.1.3.4 Superplasticity in Carbides

‘Superplasticity’ is basically defined as the ability of a material to exhibit
exceptionally large tensile elongation during stretching. In addition to oxides and
nitride-like materials, some carbides also show large elongation and frequent

Fig. 2.51 Determination of activation energy for flow equation in the as-hot-pressed b-Si3N4

[51]. With kind permission of John Wiley and Sons

Fig. 2.52 Representative HRTEM photographs of boundaries oriented a parallel and b perpen-
dicular to the applied load direction, indicating that the grain-boundary film thickness decreased
after superplastic deformation, under compression ((?) applied stress direction during
deformation) [51]. With kind permission of John Wiley and Sons
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superplastic behavior. For better familiarity with carbide behavior, this section will
discuss SiC and FeC as exemplars.

(1) SiC
It is somewhat difficult to produce SiC without additives, because it is hard to
obtain a dense material due to its low self-diffusivity and covalent nature. Thus, the
role of the additives is to loosen or modify this bond structure. The most common
additives are B and C [8]. B additives, for instance, provide superior mechanical
strength at elevated temperatures. High superplasticity at a level of *140 % has
been observed in b-SiC doped with B or C and having a small grain size of 0.2 lm,
fabricated by ultra-high hot isostatic pressure (henceforth: UH-HIP). The B seg-
regated at the grain boundaries and apparently promoted grain-boundary sliding,
one mechanism of superplasticity [4]. However, when liquid-phase sintering is the
fabrication method and there is an amorphous phase at the grain boundary, rather
than solid-phase sintering with no amorphous phase, it is easier to deform the
product.

Basically, the degree of elongation depends on the additive. Thus, when 1 % B
and 3.5 % free C are added to SiC fabricated by HIP at 980 MPa at a temperature of
1660 �C with an average grain size of 200 nm, a 140 % superplastic elongation is
obtained at 1800 �C [40]. When b-SiC was produced by liquid-phase sintering,
prepared with different oxynitride glasses in an N2 atmosphere [4], the elongation
was either 74 or 153 % at the initial strain rate of 1 9 10-5 s-1 at 2023 K under
tension, depending on its composition (the additives forming the oxynitride glasses).
Figure 2.53 compares specimens before and after deformation. A superplastic
elongation of 140 % was achieved.

This specimen deformed uniformly. Stress–strain curves following HIP and
hot-pressed B, C-SiC are shown in Fig. 2.54. The hot-pressed SiC was sintered
under a pressure of 30 MPa at 2000 �C for 1 h and the average grain size was 2 lm.
The B, C-SiC, after HIP, exhibited a superplastic elongation of [100 %, whereas
the hot-pressed B, C-SiC fractured without significant plastic deformation. Thus,
grain refinement was effective for obtaining superplasticity in SiC. HRTEM
observation and electron energy-loss spectroscopy analysis revealed that there was
no glassy phase at the grain boundaries, but boron segregation and carbon excess

Fig. 2.53 HIPed B, C-SiC specimens before and after tensile deformation. The tensile test was
conducted at 1800 �C, and at an initial strain rate of 3 9 10-5 s-1 in an argon atmosphere. The
specimen deformed uniformly, and a superplastic elongation of 140 % was achieved [40]. With
kind permission of John Wiley and Sons
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were observed there. A small amount of oxygen segregation was also detected at the
grain boundaries. However, the amount of segregated atoms was not enough to
form an intergranular glassy phase, such as had formed in the experiments of
Nagano et al. [4]. Yet, Wang et al. [49] indicate that the microstructure of the
material, both before and after the superplastic deformation, retains the micro-
structural features of that material before its deformation.

In the work of Nagano et al. [4], the starting material was ultra-fine b-SiC
powder with a particle size of *90 nm. The mixtures of SiO2, MgO, Al2O3, Y2O3

and AlN were then rendered into oxynitride compositions by SiC ball milling in
n-hexane. The SiC was mixed with 9 wt% oxynitride powders by SiC ball milling
in n-hexane. The mixed powder was hot-pressed at 2073 K under a stress of
30 MPa in N2. The chemical compositions and other properties of the sintered
materials are shown in Table 2.4. Compression and tension tests at constant
crosshead speeds were performed using a universal testing machine with a furnace
at initial strain rates from 1 9 10-4 to 5 9 10-6 s-1 at temperatures ranging from
1973 to 2048 K in N2. The degree of specimen deformation was evaluated from
the displacement of the crosshead. Compressive and tensile directions were

Fig. 2.54 Stress–strain curves of HIPed B, C-SiC and hot-pressed B, C-SiC. The tensile tests
were conducted at 1800 �C and an initial strain rate of 1 9 10-4 s-1 in an argon atmosphere.
HIPed, B, C-SiC exhibited superplastic elongation of 114 %, because of grain refinement. On the
other hand, hot-pressed B, C-SiC fractured without plastic deformation [40]. With kind
permission of John Wiley and Sons

Table 2.4 Chemical compositions and some properties of as-sintered materials [4] (with kind
permission of Elsevier)

Material Additives (wt%) Grain size
(nm)

Density
(g/cm3)

Sintering
condition

SiO2 MgO Al2O3 Y2O3 AIN

SiC (G1) 3.78 0.981 1.17 2.13 0.936 260 3.15 2073 K 30 MPa
20 min in N2

SiC (G2) 5.022 3.321 0.657 230 3.21 2073 K 30 MPa
15 min in N2
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perpendicular to the hot-pressing direction. The true stress–true strain curves at
1998 K are shown in Fig. 2.55. No cracks were observed in both compressed
specimens. SiC (G1) showed higher flow stress and higher strain hardening in
comparison with SiC (G2). The true stress–true strain relation is seen in Fig. 2.57.
These tests were performed under tension. Strain hardening was observed in both
specimens, i.e., SiC (G1) and SiC (G2). The SiC (G1) showed higher strain
hardening and fractured at a 74 % elongation, while the SiC (G2) showed strain
hardening to a 110 % elongation and then showed strain softening. The final
elongation of SiC (G2) achieved was 153 % (Fig. 2.56).

These figures are based on Eqs. (2.16)–(2.19) and the strain-rate variation with
temperature for the activation energy evaluation is based on Eq. (2.20). To use
Eq. (2.20), the stress exponent, n, is required for various temperatures, which may
be evaluated by using Eq. (2.19). Plots of this relation are shown in Fig. 2.57.
HRTEM images at grain boundaries are shown in Fig. 2.58. An amorphous phase,
from 1 to 2 nm, is evident in SiC (G1) and SiC (G2). However, some grain
boundaries with no amorphous phases may be seen in SiC (G1). SEM photographs
of the gauge portions of the elongated specimens are shown in Fig. 2.59. The
cavitation damage of SiC (G1) after 74 % elongation was higher than that of SiC

Fig. 2.55 True stress–true
strain curves at 1998 K in
compression tests [4]. With
kind permission of Elsevier

Fig. 2.56 True stress–true
strain curves at 2023 K in
tension tests [4]. With kind
permission of Elsevier
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(G2) after 153 % elongation. On the one hand, the average grain sizes of SiC (G1)
after 74 % elongation were 350 and 500 nm in the vertical and horizontal direc-
tions of the tensile axis, respectively; on the other hand, the average grain sizes of
SiC (G2) after 153 % elongation were 300 and 430 nm in the vertical and hori-
zontal directions of tensile axis, respectively. Most of the residual grain-boundary
phase after 153 % elongation was at the triple points. The contribution of grain-
boundary sliding to the total strain was calculated to be in the order of *76 % in
elongated specimens of SiC (G1) and SiC (G2). Therefore, the critical deformation
mechanism was thought to be grain-boundary sliding in both the SiC (G1) and SiC
(G2) specimens. This being the case, the initial grain size of the as-sintered
material, the grain-growth rate, the cavitation damage during deformation, the
vaporization of the grain-boundary phase and the formation of crystalline phases at
triple points are all significant factors for the improvement of superplastic defor-
mation behavior in liquid-phase sintered SiC with an amorphous phase.

Fig. 2.57 Relationship between flow stress and strain rate [4]. With kind permission of Elsevier

Fig. 2.58 HRTEM images at grain boundaries of a SiC(G1) and b SiC(G2) in as-sintered
materials [4]. With kind permission of Elsevier
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(2) FeC
By now, it is clear that superplasticity is not restricted to a special group of
materials. Even other carbides than the aforementioned SiC show superplasticity
under certain conditions. Iron carbide, FeC, is such a carbide.

As indicated earlier, grain size, in general, is an important factor in superplastic
phenomena and, in this regard, FeC is no exception. Thus, the processing of FeC
for superplasticity studies is usually done on FG structures. As in other superplastic
ceramic materials, a second phase is present. In the work of Kim et al. [28], for
example, an iron-based second phase was added to the carbide. Strain-rate sensi-
tivity is usually evaluated by testing for strain-rate changes. In such tests, a certain
strain rate is applied to provide a strain creating isostructural conditions (similar
structures), in order to obtain a stable grain size. While the strain rate is changed by
specific strain-rate values, the stress must be recorded. A plot is made of flow stress
versus strain rate on a logarithmic scale and from the slope of such curves, m, the
strain-rate sensitivity is determined. It is necessary to perform such tests at various
temperatures to determine the activation energy. The relation used is

r ¼ K _e exp
Qc

RT

� �ffi 
m

ð2:21Þ

The term:

_e exp
Q

Rt

� �
ð2:21aÞ

is the Zener-Hollomon parameter (Dieter).
In Fig. 2.60, the flow stress is shown as a function of the strain rate-temperature

parameter, _e exp Qc
RT. The activation energy was evaluated as 200 kJ/mol. The

strain-rate sensitivity exponent, m, is 0.5 as derived from the slope. K is a material

Fig. 2.59 SEM photographs of a 74 % elongated SiC(G1) and b 153 % elongated SiC(G2) [4].
With kind permission of Elsevier
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constant, which is a structural factor and a function of the modulus; _e is the steady-
state strain rate and the other parameters are familiar.

The tensile ductility of various superplastic ceramics are compared with that of
iron carbide in Fig. 2.61. All the curves show the same tendency, namely that tensile
ductility decreases with increased strain rate-temperature, _e exp Qc

RT

� �
. This decrease

has been explained by grain growth. It is possible to superimpose all the superplastic
ceramics data shown in Fig. 2.51 on a common curve when _e exp Qc

RT

� �
is multiplied

by A, which is unique for each ceramic. The results are shown in Fig. 2.62.
Kim et al. [28], in their extensive work on superplasticity, classified materials

on the basis of their elongations, defining ‘superplasticity’ as being ductility
beyond 200 %. In accordance with their classification system: superplastic-like
materials are those with elongations in the 50–200 % range; ductile ceramics have

Fig. 2.60 The flow stress as
a function of the strain rate-
temperature parameter
_e exp Qc

RT for a superplastic fine
grained iron carbide (Fe2C–
20 % Fe) [28]. With kind
permission of Elsevier

Fig. 2.61 Tensile ductility of
fine-grained iron carbide as
function of the Zener-
Hollomon parameter is
compared with some
superplastic ceramics doped
with various impurities. The
strain rate sensitivity
parameter is in the range
m = 0.5–0.6 [28]. With kind
permission of Elsevier
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Fig. 2.62 Tensile ductility
for fine-grained ceramics as a
function of _e exp Qc

RT

� �
normalized by the material
parameter [28]. With kind
permission of Elsevier

elongations ranging from 3 to 50 %; and in brittle ceramics, elongations are below
3 %. They obtained tensile elongations as high as 600 % in FG iron carbide
(Fe3C–20 % Fe). The strain-rate sensitivity is an important parameter.

In an additional work, Kim [27] indicated a tensile elongation to fracture in the
200–400 % range, as shown Fig. 2.63. Here, strain hardening may be observed in
the curve. The deformation mechanism in his tests was grain-boundary sliding. To
calculate the grain-size exponent, p, one can use Eq. (2.20), as follows:

Rewrite relation (2.20) as

_e ¼ Arn

dp
exp ffi Q

RT

� �
ð2:20Þ

This relation is often expressed as:

_e ¼ K
b

L

� �p

rn exp ffi Qc

RT

� �
ð2:22Þ

Clearly, these relations are equivalent when A � Kbp. In Eq. (2.22), L � d and
b is the Burgers vector. Expressing Eq. (2.22) on a logarithmic scale and taking the
derivative for the constant strain rate and temperature, one obtains the grain size
exponent:

p ¼ n
o ln r
o ln L


_e;T

ð2:23Þ

The final grain size, evaluated from fracture test specimens, is related to the
maximum flow stress of the tensile test. Table 2.5 lists the final grain sizes, the
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stress exponents, the grain-size exponents and other relevant parameters of this
test.

In addition to the extruded and pressed carbides, also fabrication by HIP and
pressure were performed. A comparison of the strain rate versus flow stress of
these two kinds fabrication methods in carbides may be seen in Fig. 2.64 at three
temperatures. Figure 2.65 shows the variations of strain rate versus flow stress on a
logarithmic scale for extruded and pressed iron carbide at several temperatures.
Depending on the temperatures, two values of the stress exponent were calculated
from the slopes, as shown in Fig. 2.65: the value of 2 represents testing at the

Fig. 2.63 True stress–true strain curves obtained by tension of extruded and pressed iron carbide
at the temperatures indicated and at various constant true strain rates [27]. With kind permission
from Springer Science+Business Media B.V.

Table 2.5 Values of grain size exponent, p for the extruded and pressed 5.25 % C carbide [27]
(with kind permission from Springer Science+Business Media B.V.)

T (�C) _e ðsffi1Þ Linitial (lm) Lfinal (lm) rmax (MPa) rmin (MPa) n p

1000 1 9 10-4 3.4 6.70 3.75 1.25 1.66 2.69
1000 2 9 10-4 3.4 5.36 3.70 1.5 1.66 3.28
1000 9 9 10-4 3.4 5.10 13.2 7.0 1.66 2.73
950 9 9 10-4 3.4 4.94 16.0 8.7 1.66 2.71
800 2 9 10-4 3.4 3.98 40.05 30.05 1.66 3.03

Average 2.9
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725–1050 �C temperature range, whereas, above this temperature, the value is 1.
The change in slope value is likely indicative of a different plastic flow mecha-
nism. It is possible that at these low stresses and higher temperatures creep occurs.

The strain rate change with flow stress relation determined by tension is
compared with the data obtained under compression, shown in Fig. 2.66 at two
temperatures. Note the microstructure of the hipped and pressed iron carbide after
large compressive deformation at 950 �C and at an initial strain rate of
6.67 9 10-3 s-1, as shown in Fig. 2.67. Observe the grains that remain equiaxed
after the deformation, suggesting that the deformation mechanism was, indeed,
grain-boundary sliding. Also note that no cracks developed (see Fig. 2.67). The
activation energy may be expressed either from Eq. (2.20) or (2.22). Consider

Fig. 2.64 Comparison of
strain rate versus flow stress
for the carbide fabricated by
the methods indicated in the
figure at three temperatures
[27]. With kind permission
from Springer
Science+Business Media
B.V.
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Eq. (2.22); express it on a logarithmic scale and take the derivative of strain rate
with 1/T at constant stress and grain size to obtain the expression:

Qc ¼ ffiR
o ln _e
o 1=T


r;L

ð2:24Þ

A plot expressing this relation for deformation under tension and compression
is shown in Fig. 2.68 for several stress exponents. The activation-energy values are
indicated on the plot and they are in the range of 200–420 kJ/mol; the lower value
is for n = 2 and the higher activation energy is for n = *1.

Fig. 2.65 Strain rate versus
flow stress by tension test is
indicated for iron carbide
[27]. With kind permission
from Springer
Science+Business Media
B.V.

Fig. 2.66 Comparison of the
tension and compression of
the strain rate change versus
flow stress at two
temperatures [27]. With kind
permission from Springer
Science+Business Media
B.V.
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2.2 Ductility in Single Crystal Ceramics

Figure 2.69 shows additional stress–strain curves of single crystals of MgO,
deformed under compression in the [100] direction and temperature range of -196
to 1200 �C. In Fig. 2.33, the loading axis was h111i and in Fig. 2.36, the defor-
mation was performed on a polycrystalline material. Note that the temperature
range in Fig. 2.33 is 349–1204 �C, different than in Fig. 2.69. These crystals show
considerable elongation at all temperatures and, at RT, they may be deformed
plastically to about 6 %, as seen in Fig. 2.69a, before fracture sets in. This value of
strain is considerably higher than the one obtained for polycrystalline MgO
(as shown in Fig. 2.36), where only a strain of *0.0075 is indicated. Strain
hardening is observed in these figures at all temperatures. It is known that the
resistance of a material to deformation increases with the number of slip systems
activated and the dislocation bands, which act as barriers to dislocation movement,
generally occurring at slip-band intersections. Figure 2.70 shows the dislocation

Fig. 2.67 Microstructure of
the hipped and pressed iron
carbide after large
compressive deformation
(e = -2.81) [27]. With kind
permission from Springer
Science+Business Media
B.V.

Fig. 2.68 Activation
energies from tension and
compression strain rate
change [27]

164 2 Ductile Ceramics



www.manaraa.com

band structure deformed in the [100] direction. In this figure, the slip on one set of
(110) planes encountered difficulty in passing through the slip bands formed on
conjugate planes, a set of (110) planes. The thickness of the bands increases the
resistance of the dislocations passing through them.

The stress–strain data were obtained at a constant rate of loading. The effect of
the loading rate at three different rates is shown in Fig. 2.71. As may be seen from
the curve, the slower loading rate resulted in (a) a lowering of the yield stress, (b)
an increase in the plastic strain and (c) a decrease in the work-hardening rate. In
other words, when testing these MgO crystals at a loading rate of 0.382 lbs/sq. in./
s, the elongation was above 9 %.

Bear in mind that tests providing mechanical property data, such as ultimate
strength, etc., may be considered extremely sensitive to the experimental condi-
tions and the data are usually more scattered than those in similar tests of metallic
materials.

Fig. 2.69 Stress–strain curves of MgO single crystals deformed by compression in the [100]
direction at various temperatures. a Temperature range -196 to 820 �C; b temperature range
972–1200 �C [2]. With kind permission of Wiley and Sons

Fig. 2.70 Dislocation band
structure. The single crystal
was deformed in [100]
direction [2]. With kind
permission of Wiley and Sons
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Another good example of single-crystal data regarding ductility or stress–strain
relations is the case of zirconia (ZrO2). ZrO2 is considered to be a promising
engineering material in comparison with other ceramics, because it reveals higher
serviceability under different loading conditions, even up to 1400 �C.

Figure 2.72 presents an Y2O3-stabilized single crystal of ZrO2 with other
ceramics. Here, the crosshead speed, Vch, is in the 0.005–5.0 mm/min range.
These specimens were loaded in four-point bending under isothermal conditions.
In this figure, the power parameter in the relation V ¼ M:KN

I is on the ordinate
N ð� n in other terminology), where M is a parameter and KI is the stress-intensity
factor at the crack tip. Here, the deformation and strength of zirconia crystals at
different temperatures and deformation rates are compared with the most widely
used engineering ceramics, such as silicon nitride and alumina, under similar
loading conditions. Thus, a general, comparative picture of the mechanical
behavior of different types of ceramics and zirconia single crystals, over a wide
range of temperatures and deformation rates, is obtained.

Compare the stress values and the deflection of the single-crystal zirconia (in
particular, Y-PSZ-3) with those of the other ceramics presented. Table 2.6 shows
some of the properties investigated, among them that of Y-PSZ-3. Note its ultimate
strain reaching 44.0 9 10-4 m/m, obtained at a crosshead rate of Vch = 0.5 mm/min.
Furthermore, Table 2.7 may be also consulted for some of the properties of the
various zirconia at 1400 �C. The deviation from linearity (elastic deformation) for
zirconia was in the l000–l100 �C range (not shown in Fig. 2.72). The strain at the
elastic limit was in the range of 31.2–35.8 9 10-4 m/m, depending on the rate of
deformation (see Table 2.7). Also note that the ultimate strain of Y-PSZ-3 at an
orientation of h111i is the highest of the various zirconia. In Fig. 2.73, the load versus
the deflection is indicated for different strain rates and temperatures.

Load versus deflection diagrams for Y-FSZC-10 and Y-PSZC-3 are compared
in Fig. 2.74.

Additional experiments on stress and strain, providing information on ductility,
may be seen in Fig. 2.75. This figure illustrates the brittle and ductile failure
modes and the strain-rate dependence of yield stress. These different failure

Fig. 2.71 Stress–strain
curves of MgO obtained by
compression in the [100]
direction loaded at the strain
rates of A 80.7, B 3.48 and
C 0.382 lbs/sq. in./s. The +
sign indicates the appearance
of first visible crack [2]. With
kind permission of Wiley and
Sons
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Fig. 2.72 The influence of the temperature, T (diagrams a, c, e) at Vch = 0.5 mm/min and of the
speed Vch, (diagrams b, d, f) at T = 1200 �C on the appearance of the load (P) versus deflection
d: a, b SN-1; c, d A-l; e, f Y-PSZ-3. SN-1 is a silicon nitride-based ceramic with additions of
Y2O3 and Al2O3; A-1 is an alumina-based ceramic with an addition of MgO; and Y-PSZ-3 is a
Y2O3 stabilized zirconia based single crystal [18]. With kind permission of Elsevier
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modes, which relate to the presence or absence of plastic deformation, presumably
result from the various orientations of the easy slip planes in the specimens,
relative to the applied stress. Notice the inset indicating a 7.8 % permanent strain.
In Fig. 2.76, strength is plotted versus test temperature for partially-stabilized
zirconia (henceforth: PSZ), cubic ZrO2 crystals, polycrystalline PSZ and hot-
pressed Si3N4. At 1500 �C, the cubic ZrO2 specimens either failed in a brittle
manner or exhibited significant plasticity, depending on their crystallographic
orientation. The strengths of those cubic ZrO2 specimens exhibiting plasticity
depended significantly on strain rate, with their flexural strengths decreasing with
decreasing strain rate.

Table 2.6 Physico-mechanical characteristics of investigated ceramics and crystals at ambient
temperature (average values) [18] (with kind permission of Elsevier)

Material (orientation
of the specimen
axis)

Density
(g/cm3)

Ultrasonic
velocity (m/
s)

Elastic modulus
(GPa)

Bending
strength
(MOR)a (MPa)

Ultimate
straina

(910-4 m/m)
Dynamic Statica

Ceramics
SN-1 3.21 9289 277 280 465 16.6
SN-2a 3.27 9690 307 305 510 16.7
A-1 3.70 9347 323 320 300 9.4
Y-PSZ-3 5.94 5951 210 207 908 44.0
Crystals
Y-FSZC-10 (h101i) 5.87 5933 207 180 134 7.4
Y-FSZC-20 (h101i) 5.76 6116 215 185 140 7.6
Y-PSZC-3 (h111i) 6.04 5394 176 149 642 43.0

Table 2.7 Average values of mechanical characteristics of investigated crystals at 1400 �C [18]
(with kind permission of Elsevier)

Material Vch

(mm/
min)

Elastic
limit
(MPa)

Upper
yield
pointa

(MPa)

Lower
yield
point
(MPa)

Strain at
elastic limit
(910-4 m/m)

Straina at
upper yield
point (MPa)

Elastic
modulus
(GPa)

Y-FSZC-10 5.0 274 – – 17.5 – 157
0.5 327 445 445 23.2 51.5 141
0.05 269 338 318 18.7 32.2 144
0.005 210 250 234 16.9 28.4 124

Y-FSZC-20 5.0 213 – – –15.3 – 140
0.5 300 – – 21.6 – 139
0.005 276 324 295 23.2 35.7 119

Y-PSZC-3 5.0 393 444 – 31.2 37.5 126
0.5 403 475 – 33.0 42.5 122
0.05 400 550 – 32.8 75.2 122
0.005 390 556 – 35.8 74.4 109

a For Y-PSZC-3 crystals—ultimate stress and strain values
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Fig. 2.73 Load versus deflection diagrams for a SN-1 and b Y-PSZ-3 under different conditions
of deformation [18]. With kind permission of Elsevier

Fig. 2.74 Load versus deflection diagrams for a Y-FSZC-10 and b Y-PSZC-3 at various Vch and
T = 20 �C (1) and 1400 �C (2–9). Arrows show specimen unloading [18]. With kind permission
of Elsevier
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Fig. 2.75 Stress–strain behavior at 1500 �C of partially and fully stabilized zirconia single
crystals vis. strain rate. Inset shows permanent deformation achieved in fully stabilized specimen
[24]. With kind permission of Wiley and Sons

Fig. 2.76 Temperature dependence of flexural strength of partially and fully stabilized zirconia
single crystals, polycrystalline PSZ, and hot-pressed Si3N4 (HPSN). PSZ is partially stabilized
ZrO2 with Y2O3 [24]. With kind permission of Wiley and Sons
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The results for strength and toughness of PSZ single crystals indicate a sig-
nificant potential for the development of high-strength, high-temperature structural
ceramics, in which excellent retention of mechanical properties up to *1500 �C is
achieved. Thus, in contrast to many ceramics, the strength of zirconia crystals
remains practically unchanged in partially-stabilized crystals and even increases in
fully-stabilized ones.

2.3 Summary

The challenge of ceramists and materials scientists is to make ceramics ductile at
RT and low temperatures, in order to extend the use of ceramic materials to more
applications. This is not a trivial goal, since the nature of ionic and covalent
bonding must be overcome by introducing dislocations and making their mobility
possible. Dislocations are primarily responsible for plastic deformation. In the last
decade, much effort has been made to develop ductile materials exhibiting proper
slip planes that enable dislocation movement. Dislocations are present in ceramics
and their role, in most ceramics, is best observed at high temperatures. However, at
low and moderate temperatures, their motion is limited, since the stress required
for their movement is high, usually above their fracture stress, so that fracture sets
in before yielding. Different mechanisms may be responsible for the BDT, such as:
grain size, an additional second phase, structural modification (preferably to
nanostructure), etc. Single crystals are likely to be the best candidates for the
development of appreciable ductility, since they have no inherent grain boundaries
(or sliding) to interfere with dislocation motion.
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Chapter 3
Imperfections (Defects) in Ceramics

Abstract The periodic nature of crystalline materials can be interrupted by
imperfections. The relevant imperfection determining the mechanical properties of
ceramics are point defects, or dislocations, or both. The major point defects con-
sidered in the chapter are vacancies and interstitials, which are responsible for some
observed phenomena via diffusional exchange with atoms in their vicinity. One
such process relates to climb which is an essential process in creep phenomena.
Edge dislocations are involved in the climb process which occurs by leaving the
glide plane, either in the positive, or the negative direction. Point defect-atom
exchange by diffusion is the basic mechanism. Although one can talk about point
defect hardening, the important defects that determine the mechanical properties of
materials are line defects, commonly known as dislocations (edge or screw char-
acter). Their presence in crystals is essential, because of the orders of difference
between the theoretical and actual strength of materials. The presence of disloca-
tions makes deformation easier by the application of smaller stress than would be
required in their absence. Conservative motion of dislocations occurs by slip,
whereas non-conservative motion is associated with climb. The strengthening of
material is a consequence of retarding the motion of dislocations, either by their
intersection, or by particles of a second phase or by grain boundaries. Closely
associated with dislocations are partial dislocations which usually produce stacking
faults when they form. Basically stacking faults are surface defects. The association
of partial dislocations and stacking faults define the extended dislocation, which
makes cross slip more difficult, thus strengthening the material against deformation.
Various properties of dislocations are one of the subjects of this chapter.

3.1 Introduction

When the periodic arrangement of a crystal is interrupted, a deviation from a
perfect and orderly arrangement of the array of the lattice points generally occurs.
Such a deviation from the periodic arrangement may be localized, in the

J. Pelleg, Mechanical Properties of Ceramics, Solid Mechanics
and Its Applications 213, DOI: 10.1007/978-3-319-04492-7_3,
� Springer International Publishing Switzerland 2014
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immediate vicinity of an atom or a few atoms, or it may occur across microscopic
regions of a crystal. On this basis, it is customary to classify imperfections as being
either:

(a) point defects;
(b) line defects;
(c) planar defects; and
(d) volume defects.

Although a ‘point defect’ may be considered to be a volume defect of atomic
dimensions, in this section the common term ‘point defect’ will be used. Impurity
atoms are often also considered to be point defects. Perhaps a solute atom at a
substitutional or interstitial site should also be considered as an imperfection,
namely as a point defect, since there is a deviation from the original periodicity of
the pure crystal. However, an impurity atom is present in a crystal unintentionally,
whereas solute atoms are purposely added to a pure material. Generally, atoms are
added to pure materials to enhance certain properties, mechanical or physical.
Regarding mechanical properties, bear in mind that some impurities may
strengthen a material, but others may be detrimental to its mechanical properties.
Clearly, the common interest is to enhance the mechanical properties of a given
material.

The basic, structural point defects in very pure crystals are the vacancies and
the interstitials, the former representing a vacant lattice site, while the latter is an
extra atom at a non-lattice site. Either one of them is highly localized and char-
acterized, as mentioned above, by the disturbance around a single atomic site.
A perfect crystal is thermodynamically stable only at absolute zero temperature. At
any higher temperature, the crystal must contain a certain number of point defects.
For example, it is probable that an atomic site is vacant at low temperature, i.e., a
vacancy is only *10-6, whereas, at the melting point, this probability is *10-3.
Thus, point defects are a thermodynamic feature, unlike other defects such as line
defects.

‘Line defect’ is the term used for the various configurations of dislocations.
Since this kind of defect, as mentioned above, extends through a microscopic
region, a common term used is ‘lattice imperfection’. Such dislocations have either
of edge or screw orientations or are of a mixed character. Their connotations are
derived from the way in which they propagate in crystals.

Various internal and external surfaces, such as grain boundaries and stacking
faults [henceforth: SF], are considered as two-dimensional defects and they
comprise the class known as planar defects.

Finally, voids, pores and precipitates are also defects that interrupt the peri-
odicity of a crystal and are known as ‘volume defects’. This chapter begins with
various point defects followed by lattice defects; no extensive coverage of surface
or volume defects is included here.
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3.2 Point Defects

3.2.1 Schematic Illustration of Point Defects

3.2.1.1 Vacancy

The first materials under consideration are ionic crystals, rather than metals that
have a simpler structure. Figure 3.1 illustrates a vacancy schematically; note
where a lattice site is missing.

3.2.1.2 Interstitial

An atom of a lattice site may become displaced to an interstitial position, as shown
in Fig. 3.2.

The displaced atom may be an atom of the crystal and, in that case, the term
‘self- interstitialcy’ is used, or it may be a foreign atom in the structure, located at
an interstitial site. In Fig. 3.2, a self-interstitial or ‘self-interstitialcy’ is shown.

Point defects in crystals can have mixed configurations and are best illustrated
by ionic systems, in which ions with positive and negative charges occur.
Ceramics provide good examples of mixed point configurations. However, for the
sake of clarity, no specific substance is discussed here. Examples of multiple point
defects are shown below. The main requirement is to maintain charge neutrality,
namely charges should be balanced. Figure 3.3 is an illustration of an ionic crystal
representing AB compounds, where A is a metal, such as Na or Mg, and B is a
non-metallic constituent, such as Cl or O.

Note that in Fig. 3.3 charge neutrality is maintained, since one positive and one
negative ion are missing. The larger atom is a non-metallic element, an anion (car-
rying a negative charge) and the smaller one represents a metallic atom and is known
as a ‘cation’ when charged. This kind of defect is known as a ‘Schottkey defect’.
Figure 3.4 shows a defect known as a ‘Frenkel defect’, in which a positively charged
cation (marked red) is displaced from its normal site into an interstitial, leaving a
positively charged vacancy behind. Charge neutrality is maintained, since no
charged atom was removed from the structure, only displaced to a different location.

To summarize, Fig. 3.5 presents all the above point defects in one figure,
showing the possible configurations in ceramics.

Both these kinds of vacancies may occur in ceramics, but, only cation inter-
stitials are likely to form, because anion interstitials are too large and the very
heavy distortion prevents such a defect formation.

As mentioned in the introduction, impurities are considered as point defects.
There are no perfect crystals; in addition to point defects, they also contain a large
number of various impurities.
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3.2.2 Thermodynamics of Vacancy Formation

As stated above, point defects can be characterized by thermodynamics. Though
processes, like the formation of point defects, are associated with positive entropy,

Vacancy
Observe the distortion around the vacancy

Fig. 3.1 Schematic illustration of a vacancy

Self InterstialMajor distortion around the self  
interstitial

Fig. 3.2 Self-interstitialcy

Schottkey defect

Fig. 3.3 Two vacancies with opposite signs; a ‘Schottkey defect’
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they are usually expressed by their free energy. Forming a point defect requires a
certain amount of positive work, which increases the internal energy of a crystal.
Entropy contains a term known as ‘configurational entropy’ (or ‘the entropy of
mixing’), which expresses the way of distributing point defects in a material on the
lattice sites. There are many ways to arrange point defects at a certain temperature.
At any temperature above absolute zero, the free energy will be minimal for a
certain amount of point defects, as determined by both terms of the free energy,
F, given as:

F ¼ nEF � TS ð3:1Þ

where EF is the energy to form a single defect and S is the entropy. As indicated,
entropy has a configurational entropy component, which determines the number of
ways that point defects may be arranged on the lattice sites of a crystal. Denote the
number of ways to arrange defects on N lattice sites as W and express it as:

Frenkel defectFig. 3.4 A ‘Frenkel defect’
is shown; a positive ion has
been displaced to an
interstitial site leaving behind
a vacancy. Charge neutrality
is maintained

Cation VacancyAnion Vacancy

Cation interstitial

Fig. 3.5 An illustration of
point defects in ceramics
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W ¼ NðN � 1ÞðN � 2ÞðN � 3Þ. . .ðN � nþ 3ÞðN � nþ 2ðN � nþ 1Þ
n!

ð3:2Þ

Multiply the numerator and denominator by (N–n)! and rearrange Eq. (3.2)
giving:

W ¼ N!

N � nð Þ!n!
ð3:3Þ

The component of the aforementioned entropy is the ‘configurational entropy’,
which is related to W on the basis of statistical mechanics as:

S ¼ k ln W ¼ k ln
N!

N � nð Þ!n!
ð3:4Þ

For large numbers, the logarithm of the factorial may be approximated by
Stirling’s relation:

ln x! ffi x ln x� x ð3:5Þ

Using Stirling’s approximation, Eq. (3.4) may be expressed as:

S ¼ k N ln N � N � nð Þ ln N � nð Þ � n ln n½ � ð3:6Þ

Equation (3.1) gives the free energy to form n defects where EF refers to one
defect. Substituting for S in the free energy Eqs. (3.1) from (3.6) and taking the
derivative, with respect to the number of defects to get the minimum, results in:

oF

on
¼ 0 ¼ EF � kT ln

N � n

n

� �
ð3:7Þ

Equation (3.7) may be rearranged as:

n

N � nð Þ ¼ exp �EF

kT

� �
ð3:8Þ

For n \\ N, Eq. (3.8) may be expressed as:

n

N
¼ exp �EF

kT

� �
ð3:9Þ

This relation indicates that at absolute zero the concentration of defects is zero
and with increasing temperature, the number of defects increases rapidly. The
radiation of specimens largely increases its defect concentration. In the derivation
of Eq. (3.9), only the configurational entropy was used and all the other entropy
terms were neglected. Therefore, Eq. (3.9) is usually given as:

n

N
¼ A exp �EF

kT

� �
ð3:10Þ
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Recall from thermodynamics that in a process at constant volume DE = Q (see,
for example, Cahn [4] or any book on thermodynamics). Equation (3.10) may also
be expressed in terms of activation energy, Q, to form a vacancy:

n

N
¼ A0 exp � Q

kT

� �
ð3:11Þ

A0 is known as the ‘pre-exponential factor’. Taking a semi-logarithm on both
sides of Eq. (3.11) enables the plotting of n/N versus 1/T and the derivation of Q
by proper experimentation (see Fig. 3.6).

Of the experimental methods used to determine Q, an often-used method is the
resistivity technique; resistivity is measured, since electrical conductivity in most
ceramics is determined by the number and type of defects present. This technique
involves quenching a specimen and then measuring and evaluating its resistivity,
as given by:

Dq ¼ A expð�EF

kT
Þ ð3:12Þ

A schematic illustration on a semi-logarithmic scale of Eq. (3.12) is shown in
Fig. 3.7.

Water is the best quenching medium and is used in such experiments. Quenched
specimens should not be oxidized and no reaction with the quenching medium
should occur. Electrical conductivity (or its inverse) is directly related to the
concentration of mobile electronic defects.

Fig. 3.6 The plot for
determining the activation
energy needed to form a
defect
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3.2.3 Strengthening (Hardening) in Ceramics by Point
Defects

Radiation more effectively increases the concentration of point defects than an
increase in temperature. To study the effect of point defects on mechanical
properties, such as strength or hardness-related features, large amounts of point
defects are preferable. Therefore, radiation is useful for studying the effects of
point defects in crystals and studies on the effects of point defects are done on
irradiated materials.

MgO.3A1203 spinels provide a good example of the hardening effect of point
defects. Neutron irradiation results in an increase in compressive strength and
toughness [51]. In order to eliminate dislocation strengthening, irradiation must be
performed at low temperatures, as in the case of the MgO.3Al2O3 spinel. Irradia-
tion-induced hardening was observed only in a sample irradiated at 100 �C, with no
clear dislocation loops observed. Thus, hardening is due mainly to point defects,
i.e., interstitials and vacancies. Although small defect clusters are probably present
in any sample, the assumption is, for the sake of simplicity, that the point defects are
present in a dispersed state. During the irradiation process, interstitial and vacancy
formation occurs. Swelling is an additional effect of irradiation and is associated
with point defect formation. Annealing induces softening in ceramic spinels and the
properties of the pre-radiated state are restored. During annealing, the point defects
become mobile, like in metals. Spinel interstitials probably have higher mobility
than vacancies and when they encounter vacancies, interstitial-vacancy recombi-
nation occurs. Recombination is the predominant mechanism in irradiated ceramics

Fig. 3.7 Schematic, semi-
logarithmic plot of quenched-
in resistivity versus reciprocal
absolute quench temperature
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during annealing and has also been observed in SiC [39]. Irradiation at relatively
low temperatures induces point defects with consequent strengthening. However, at
high-temperature irradiation, softening occurs with a reduction of point defects
(vacancies), because the more mobile interstitials recombine with the vacancies
and, by doing so, the remaining number of point defects is reduced with the con-
sequent reduction in strengthening. As stated above, irradiated samples softened
after being annealed. Table 3.1 shows the irradiation conditions and the swelling
after the irradiation. The smaller swelling after irradiation at 470 �C is the result of
interstitial and vacancy recombination.

Figure 3.8 is a plot of hardness versus temperature of spinel irradiated at 100 �C
with a fluence shown in Table 3.1 and then isochronally annealed.

The hardness decreases with increasing annealing temperature above the irra-
diation temperature and eventually reaches the value of the unirradiated spinel,
when annealed at 600 �C and above. The most rapid decrease in hardness occurs
between 200 and 600 �C, the latter is just above the temperature of 470 �C, at
which the irradiation by 2.4 9 1024 n/m2 induced practically no hardening.
Compare the hardness change versus the temperature shown in Fig. 3.9 irradiated
at 470 �C at a fluence of 2.4 9 1024 after isochronal annealing; almost no hardness
change is observed following annealing, because most of the point defects have
been annealed out. The length change in the same sample as that for Fig. 3.8
follows the same pattern of hardness versus temperature. The length change also
decreases gradually at the irradiation temperature of 100 �C. Almost no change is

Table 3.1 Irradiation conditions and the consequent swelling [51] (with kind permission of John
Wiley and Sons and Professor Suematsu)

Irradiation temperature (�C) Fluence (n/m2) Swelling (%)

100 8.3 9 1022 0.083
470 2.4 9 1024 0.008

*E [ 1 MeV

Fig. 3.8 Hardness irradiated
at 100 �C and annealed in the
temperature range shown
[51]. With kind permission of
John Wiley and Sons and
Professor Suematsu
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observed at of 500 �C and higher, and the sample length becomes equal to that
before irradiation (i.e., zero change). This is shown in Fig. 3.10, which should be
compared to Fig. 3.11 for specimens irradiated at 470 �C to a fluence of 2.4 9 l024

n/m2 after isochronal annealing. The length change is *zero. This sample showed
almost no swelling. As expected, practically no change in length was detected,
which explains the absence of hardness change in Fig. 3.9.

TEM images have revealed the following. Irradiation at 100 �C (fluence
8.3 9 1022 n/m2) did not induce observable dislocation loops and the defects
produced are isolated point defects or small clusters. This means that irradiation-
induced hardening in a sample irradiated at 100 �C, which had no clear dislocation
loops, is due mainly to point defects, i.e., interstitials and vacancies. Probably
Frenkel pairs are formed in this manner. At 470 �C with a fluence of 2.4 9 1024,
dislocation loops were also found by TEM observations

In general, an increase in hardness (or strength) is the result of retarded dis-
location movement due to point defects introduced by the irradiation. This is

Fig. 3.9 Hardness of spinel
irradiated at 470 �C at a
fluence of 2.4 9 1024 n/m2

after isochronal annealing
[51]. With kind permission of
John Wiley and Sons and
Professor Suematsu

Fig. 3.10 Length change of
spinel irradiated at 100 �C to
a fluence of 8.3 9 1022 n/m2

during isochronal annealing
[51]. With kind permission of
John Wiley and Sons and
Professor Suematsu
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similar to strengthening by impurities, which is commonly known as ‘dislocation
pinning’.

Similar hardening results were also observed in single crystal MgO.3Al2O3, as
can be seen in Fig. 3.12. Note that also in the single crystal the 100 �C irradiation
gave a highest hardness result comparable to the irradiated specimen at 470 �C
with the higher flux and to the unirradiated one. This trend is similar to the one
observed in polycrystalline MgO.3Al2O3. Here, the mechanism of hardening is
dislocation pinning.

Radiation-induced point defects are usually preferred over thermal point defects
(obtained by quench-in from some higher temperature and freeze-in these point
defects) for studying their effects on the physical and mechanical behavior of
ceramics. Radiation affects mechanical properties by way of changes in strength,

Fig. 3.11 Length change of
spinel irradiated at 470 �C to
a fluence of 2.4 9 l022 n/m2

after isochronal annealing
[51]. With kind permission of
John Wiley and Sons and
Professor Suematsu

Fig. 3.12 Comparison of
unirradiated, 100 �C and 470
�C irradiated samples of
single crystal MgO.3Al2O3

after isochronal annealing
[52]. With kind permission of
John Wiley and Sons and
Professor Suematsu
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ductility, etc. These changes stem from changes in micro-structural characteristics.
In general, the types of radiation applied can be neutron, ionic or X-ray and their
corresponding effects on materials are:

(a) Impurity production usually occurs during neutron radiation. The resultant
changes are related to fission and capture. The creation of hydrogen or helium
when a proton or alpha particle becomes neutralized in a material may be
involved in impurity formation. Atoms displaced from their normal positions
due to radiation may leave behind vacancies and, simultaneously, interstitials
are created;

(b) During ionic radiation, electrons may be removed from atoms to form ion
pairs in the path of the charged particles;

(c) Thermal heating may be involved when a large amount of energy is released in
a small volume.

In general, nuclear radiation tends to destroy the crystalline structure of a
material and may eventually lead to amorphization. Radiation effects (damage) are
mainly due to the formation of point defects. These imperfections alter the original
properties of the material. As indicated earlier, point defects can interact with
dislocations, inhibiting their slip process. This means that more energy will be
required for dislocation slip initiation and that the resistance to penetration by
hardness indentation and the stress required to initiate failure will increase, due to
the resistance of the material. At the same time, radiation is accompanied by a
decrease in energy to failure, namely fracture strength, (because of lower tough-
ness) and ductility. These observations may be of special interest and importance
for material exposed to radiation, such as in nuclear reactors.

Now, materials based on alumina will be considered. Figure 3.13 shows the
effect of radiation fluence on hardness in Al2O3 at several temperatures. Observe
that, in this and following graphs, the fluence is shown on the abscissa, which is
proportional to the point defects induced in the material during radiation. In the
above figure, DH is the difference between unirradiated and irradiated samples.
During RT irradiation, three stages can be seen in the DH vis. fluence relation. DH
increases with fluence and reaches a maximum at 5 9 1019 He+/m2 (stage I). At
slightly higher fluences, DH decreases sharply (stage II). At fluences higher than
7 9 1019 He+/m2, DH increases again gradually with fluence (stage III). These
stages are also observed at higher temperatures, but DH at stages I and III
decreases with increasing temperature.

In Fig. 3.14, the changes in several ceramics are shown at the same fluence and
at an irradiation temperature of 300 K. The radiation hardening at stage I in Al2O3

is attributed to both plastic and elastic hardening. This interpretation by Izumi
et al. [11] is based on the dissipation of the elastic and plastic energies, We and
Wp, respectively during the indentation process.

Figure 3.14 indicates the variation of We and Wp as a function of the He fluence
for the materials investigated. The Wp in a-Al2O3 decreases at the beginning of
irradiation and keeps a constant value up to 5 9 1019 He+/m2 (stage I), but then
recovers to the same value as in an unirradiated sample (stage II). However, We in
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Fig. 3.13 Change in
apparent hardness DH in a-
Al2O3 as a function of
100 keV He-ion fluence at
irradiation temperatures 300,
470, 670 and 870 K [11].
With kind permission of
Elsevier

Fig. 3.14 Variations of Wp

and We of a a-Al2O3,
b MgO.Al2O3 and c MgO.
2.4Al2O3 against 100 keV
He-ion fluence at an
irradiation temperature of
300 K [11]. With kind
permission of Elsevier
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a-Al2O3 decreases sharply around 2 9 1019 He+/m2 (stage I) and gradually
decreases with increasing fluence (stage II and III). Analogous variations of Wp

and We are seen at higher temperatures of 470, 670 and 870 K, as indicated in
Fig. 3.13. The amount of change in Wp and We, however, decreases with
increasing temperature. Yet in MgO.Al2O3 and MgO.2.4Al2O3, Wp decreases
monotonically with increasing fluence (though We increases slightly with fluence
in the lower fluence range and almost recovers to the level of the unirradiated
sample). From a comparison of Figs. 3.13 and 3.14, the increase in DH of a-Al2O3

in stage I is due to the decrease in Wp and We. Radiation hardening at stage I is,
therefore, attributed to both plastic and elastic hardening. The decrease in DH of
a-Al2O3 at stage II is attributed to the recovery of Wp to the same level of the
unirradiated sample, indicating that plastic softening is the main reason for the
decrease in DH at stages II and III. No significant changes are observed in We

against fluence for MgO.Al2O3 and MgO 2.4Al2O3 (Fig. 3.14b and c), indicating
that the variation of DH is mainly due to the decrease of Wp with fluence. Thus,
plastic and elastic hardenings are responsible for the variation of DH in a-Al2O3,
whereas plastic hardening is the main hardening mechanism in MgO.Al2O3 and
MgO.2.4Al2O3. In the case of a-Al2O3, DH has three stages, whereas in
MgO.Al2O3 and MgO.2.4Al2O3 it increases monotonically with fluence. As such,
the difference in the recombination rates of point defects in a-Al2O3, MgO.Al2O3

and MgO.2.4Al2O3 is probably the reason for the difference in their hardening
mechanisms. Note that point defect formation and mobility in ceramics vary vastly
from material to material.

In summary, TEM observations suggest that point defects and/or ‘invisible’
defect clusters are the main cause of the radiation hardening in a-Al2O3,
MgO.Al2O3 and MgO.2.4Al2O3. Point defects and/or ‘invisible’ defect clusters are
more effective in radiation hardening than ‘visible’ dislocation loops (also
observed in microstructures). The decrease of DH in a-Al2O3 at stage II may be
explained by the decrease in point defect concentration, due to aggregation with
dislocation loops.

3.2.4 Point Defects in Amorphous Ceramics and Their
Strengthening (Effect)

The most representative amorphous ceramics are the various glasses, among them
the well-known silica glass. There are various silicate ceramics, such as oxide and
halide glasses. Amorphous ceramics can be obtained by several means:

(a) Radiation damage;
(b) Polymer-derived ceramics (PDCs);
(c) Ion implantation, etc.;
(d) Mechanochemical activation (amorphous powders are hot-pressed and

sintered).
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A major characteristic of amorphous ceramics, such as glasses, is their glass
temperature, Tg, which is usually observed by the change in the slope of a plot of
specific volume against temperature, as shown schematically in Fig. 3.15 (other
properties may be used instead of the volume, for example, enthalpy vs. temper-
ature); however, some amorphous materials or ceramics first form as glassy
materials and then crystallize. Point defects are present in various stages of for-
mation in amorphous ceramics and have an effect on the mechanical behavior of
those amorphous ceramics, including softening at some stage.

For instance, Zr-based, bulk amorphous metallic glasses, obtained by arc
melting and drop casting (Zr55Cu30Al10Ni5), induction melting and injection
casting (Zr52.5Al10Ti5Cu17.9Ni14.6), have been studied by both tensile and
compressive tests at RT in various test environments [32]. That these materials
were indeed amorphous may be seen in Fig. 3.16, which presents the TEM and
XRD results.

TEM electron diffraction and XRD show no evidence of crystalline phases in
the cast alloy bars. Tensile tests were performed on both alloys at RT in various
test environments, including air, water, vacuum and dry oxygen. Figure 3.17
shows a photo of BAA-11 at the moment of tensile fracture.

Tables 3.2 and 3.3 show the test results for the Zr55Cu30Al10Ni5 (BAA 10)
and BAA 11 specimens, respectively.

Shear deformation was observed in the tension test indicating some ductility of
these glasses before fracture. Ductile fracture of the specimen is generally char-
acterized by slip bands and necking down before fracture.

These ductile features of these glasses may be observed microscopically in
Fig. 3.18a and b, respectively. However, the stress–strain curves of these Zr-based
amorphous glasses did not display appreciable macroscopic plastic deformation
prior to catastrophic fracture, rather they mainly deformed elastically, followed by
catastrophic failure along their shear bands. Examination of the fracture regions
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Fig. 3.15 Schematic
illustration comparing
crystalline and glassy
amorphous materials
(supercooled liquids)
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revealed ductile fracture features, as indicated above, resulting from the substantial
increase in temperature, attributed to the conversion of the stored elastic strain
energy into heat.

As mentioned above, one of the methods to amorphisize ceramics is by ion
irradiation. Changes in strength properties occur following irradiation due to
irradiation-induced structural modifications. Hardness measurement is an accepted
method for evaluating the properties of ceramics after irradiation in the wake of
atomic displacements. Information on ionization-induced changes in materials is
particularly important in nuclear applications, where it is essential to evaluate
reactor lifetimes. It is important to know the mechanical properties of materials

Fig. 3.16 Electron diffraction and XRD showing the formation of amorphous structures in
Zr52.5Al10Ti5Cu17.9Ni14.6 (BAA-11) ingot [32]. With kind permission from Springer
Science+Business Media B.V.

Fig. 3.17 Photo showing the
moment of fracturing a BAA
11 specimen tested at room
temperature in air [32]. With
kind permission from
Springer Science+Business
Media B.V.
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and, specifically, the resistance of structural materials during long exposure to
energetic particle irradiation. Defects, such as lattice and point defects, are induced
during irradiation and influence the elastic and plastic properties of structural
materials.

Figure 3.19 shows the changes in hardness as a function of the irradiation dose
estimated by the nano-indentation finite element method [henceforth: NI-FEM]. In
Fig. 3.19, it is seen for all the crystalline samples tested, that hardness increased
during the initial stage of ion irradiation and then gradually decreased with the
dose. The irradiation doses at which hardness starts to decrease, in the case of SiC
and a-quartz, approximately correspond to their reported critical doses for amor-
phization. Equation (3.13), for the line fitting curves, is given by:

H ¼ C1H1 þ C2H2 þ C3H3 ð3:13Þ

Table 3.2 Effect of Test Environment on Room-Temperature Tensile and Compressive Prop-
erties of BAA 11 [32] (with kind permission from Springer Science+Business Media B.V.)

Alloy
number

Test
environment

Elastic limit
(MPa)

Fracture strength
(MPa)

Fracture strain
(Pct)

Tensile properties
BAA-11-23 air – 1650 1.8
BAA-11-16 air – 1650 2.0
BAA-11-23 vacum – 1750 *2.0
BAA-11-28 vacum – 1720 *2.0
Compressive properties
BAA-11-25 air 1670 1850 2.6
BAA-11-25 air 1770 1880 2.5

*Prepared from drop-cast 7-mm ingots

Table 3.3 Effect of Test Environment on Room-Temperature Tensile Properties of
Zr55Cu30Al10Ni5 (BAA 10) [32] (with kind permission from Springer Science+Business Media
B.V.)

Alloy preparation* (and Ingot
diameter)

Test
environment

Fracture strength
(MPa)

Fracture strain
(Pct)

Alloy Ingots made at Tohoku University
IC, 5 mm water 1210 1.40
IC, 5 mm air 1310 –
IC, 5 mm vacum 1410 –
IC, 5 mm dry oxygen 1320 –
Alloy Ingots made at ORNL
IC, 5 mm water 1640 1.63
IC, 5 mm air 1340 1.33
DC, 7 mm air 1450 1.60

*IC = injection casting. DC = drop casting
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and

C1 þ C2 þ C3 ¼ 1 ð3:14Þ

Ci and Hi (i = 1, 2, 3) correspond, respectively, to the concentration and
hardness of the crystalline (non-irradiated) phase, hardened phase and amorphous
(softened) phase.

Fig. 3.18 Shear deformation indicating ductile behavior a neck formation in tension; b shear-
deformation bands [32]. With kind permission from Springer Science+Business Media B.V.

Fig. 3.19 Variation in hardness with irradiation dose in He+ irradiated materials: a SiC; b SiO2

(a-quartz and silica glass); c estimated by the present NI-FEM method. Broken lines are fitting
curves based on Eq. (3.1). Solid triangles in (b) represent the experimental data of neutron-
irradiated silica glass [42]. With kind permission of Ms. Etsuko Hasebe JIM staff member, The
Japan Institute of Metals and Materials
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According to the work of Nakano on the mechanical properties of ion-irradiated
ceramics, the increase in hardness of crystalline materials (Fig. 3.19) at the initial
stage of irradiation suggests that covalent and ionic materials can be plastically
deformed through local dislocation motion, which is hindered by the defects
generated. These defects are likely to be point defects. The increase is seen to
occur up to 0.1–0.2 dose per atom. This suggests that the deformation of crys-
talline ceramics is induced by dislocation motion. Upon prolonged irradiation, the
hardness of crystalline materials decreases and, as a result of amorphization,
asymptotically approaches a certain value. This behavior is basically related to a
change in interatomic bonds, since irradiation induces bond breakage. The plastic
deformation of amorphous structures proceeds slowly, like creep deformation.

Ion implantation was previously mentioned as being one of the methods for
obtaining amorphous ceramics. Actually, the structure of ion-implanted ceramics
may either be crystalline, having large concentrations of point defects, point defect
clusters and dislocations, or it may be amorphous [35]. The implanted micro-
structure depends upon the implantation parameters, including ion species, fluence
and substrate temperature. The chemical bonding present in a ceramic also plays a
significant role. The amorphous state may contain different short-range order for
different implanted ion species. Covalent-bonded SiC is amorphized at deposited
damage-energy densities of 0.02 keV/atom at RT, but remains crystalline to values
as high as 1.6 keV/atom for implantation at 1050 K. Therefore, effective amor-
phization is performed at low temperatures [35]. There is a critical, temperature-
dependent dose for amorphization. Some researchers claim that Frenkel pairs and
‘antisite defects’ (a type of point defect distinct from a vacancy, interstitial or
impurity) play significant roles in the amorphization process [33]. Molecular
dynamic [henceforth: MD] calculation results suggest that a large number of
irradiation-induced Frenkel pairs are formed in metastable configurations and
majority of close pairs would recombine during annealing at 200 and 300 K.
Figure 3.20 shows typical results for the variations of elastic modulus E, and bulk
modulus, B.

Fig. 3.20 Variation of the
elastic modulus, E, and the
bulk modulus, B, with dose.
(dpa is displacement per
atom) [18]. Free to copy
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As seen in Fig. 3.20, these elastic properties decrease rapidly at doses less than
0.1 MD-dpa and the decrease becomes smaller at high dose levels. Due to the dose
dependence of the formation and coalescence of point defects and small clusters, it
was concluded [18] that point defects and small clusters contribute much more
than topological disorder to the degradation of the elastic properties of a-SiC. The
elastic constants and elastic modulus showed the expected softening behavior
under irradiation for the dose range of interest.

Stress–strain curves for amorphous SiC samples (a -SiC) are indicated in
Fig. 3.21 for various values of the chemical disorder, v. Experimental simulation
and MD calculations indicate a strong correlation between chemical and topo-
logical disorders. To maintain topological perfection for v C 0.54 seems impos-
sible and so a stable amorphous structure is achieved.

Point defects, small clusters and topological disorder, as forms of defect
accumulation, may somehow indicate the dependence of the mechanical properties
of a-SiC on the disordered microstructure. For example, by the irradiation-induced
amorphization of SiC, it was shown via MD calculations that a fully amorphous
state is reached at a dose of about 0.28 MD-dpa and it was suggested that point
defects and small clusters may contribute more significantly to the changes of
elastic constants than the topological disorder associated with amorphization dose.
These changes involve the degradation of the elastic properties of a-SiC, attributed
to the dose-dependent formation of point defects and small clusters. As stated for
v C 0.54, topological perfection seems impossible to maintain though a stable
amorphous structure is achieved. In Fig. 3.21, simulated axial tensile testing is
carried out on a set of SiC assemblies with varying chemical disorder, v, repre-
senting a range of disordered structures from crystalline to completely amorphous.
The full stress–strain dependencies for different SiC assemblies with varying v are
shown. An appreciable softening of SiC, after the stress reaches rmax, is evidenced

Fig. 3.21 Stress versus strain curves: a for a-SiC samples with varying chemical disorder at a
strain rate of 108 s-1. b Stress versus strain curves for 3C-SiC, nc-SiC and melt-quenched a-SiC
with an extension rate of 100 m/s [18, 29]. (dpa is displacement per atom)
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by the decrease of the stress before fracture. This ductile-like behavior increases
with increasing v and a pronounced plastic-flow plateau is observed with increased
strain. Such plastic-like behavior is reproduced in the tension of simulated melt-
quenched a-SiC, with a drastic reduction in the number of tetrahedrally-coordi-
nated atoms [29]. Note that in Fig. 3.21b the stress–strain dependencies of the SiC
structures were obtained from rod extension tests.

In single-crystal Al2O3 (i.e., sapphire), optical absorption measurements pro-
vide ample evidence for charged-point defect formation [35]. The presence of an
‘F-center’ (i.e., an oxygen vacancy containing two electrons) and an ‘F+- center’
(i.e., an oxygen vacancy containing one electron) has been definitively established
in both doped crystals and irradiated crystals. The ion implantation of ceramics,
such as Al2O3 and SiC, may produce either a highly damaged, but crystalline,
surface layer or an amorphous surface [36]. The specific structure depends upon
the implantation parameters. Studies using microindentation show that a crystal-
line-implanted surface has a higher hardness (by 10–50 %) than a corresponding
unimplanted crystal, but the MOE is essentially unchanged. The hardness and
elastic modulus of amorphous implanted surfaces are less than those of crystalline
materials (See Fig. 3.21b). Estimates of the residual stress may be obtained from
microindentation tests.

3.3 Introduction to Dislocations

3.3.1 Introduction

Important defects that determine the mechanical properties of materials are line
defects, commonly known as ‘dislocations’. The original postulate for the exis-
tence of such defects was put forward in 1934 by Taylor, Orowan and Polanyi, the
fathers of modern dislocation theory. Their postulate was intended to explain the
large discrepancies in strength between the theory and actual observations of
deformation. Their postulate for solids has been confirmed by TEM, field ion
microscopy [henceforth: FIM] and atom probe techniques, which permit direct
observations of dislocations at high magnification on an atomic scale. Etch-pit
techniques may also be used as indirect techniques to detect the presence of
dislocations in solids. An exemplary use of the etch pit technique in a grain of
polycrystalline Nb is illustrated in Fig. 3.22. The etch pits outline the substructure
inside the grain, as do the dislocation arrays.

This technique involves etching a surface of the material with an etching
solution appropriate to the material under study. When a dislocation line emerges
from the surface of a metallic material and intersects it, the local strain field
existing around it increases the relative susceptibility of that material to etching
and an etch pit of some geometrical shape forms. These etch pits can be counted,
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giving some idea of the density of the dislocations. The shapes of these etch pits
are orientation dependent [14]. Such dislocation structures in the TEM bright field
[henceforth: BF] in Y2O3-stabilized zirconia [henceforth: YSZ] are shown in
Fig. 3.23. Cubic zirconia has a fluoric-type structure and {001} h110i and
{111} h110i slip systems [28]. In Fig. 3.23, the main slip system is the
{001} h110i system. FIM micrographs, before and after field evaporation, appear
in Fig. 3.24 [46]. The location of the dislocation is outlined by a closed red loop.
FIM (developed by Muller [12]) allows for the study of structures on an atomic
scale, at a resolution of 2–3 Å. By means of field evaporation, a layer of atoms can
be peeled off in order to observe the successive layer of the remaining structure
and to study point-defect concentration and dislocations. Sharp tungsten tips,
electro-polished to a hemispherical shape of *300 Ǻ or less and positively
charged at high voltages in the kV range, are used. After reaching a high vacuum,
He atoms are bled into the system, which is then ionized and produces an ionic
image on a screen equipped with a channel plate. The FIM micrograph in Fig. 3.24
shows that the field-evaporated zirconiated W tip at 8.75 kV, obtained at a He
pressure of 2.93 9 10-3 Pa and 7.48 kV, is oriented at h100i .

Fig. 3.22 Etch pits in one
grain of a polycrystalline Nb,
outlining the substructure in
the grain [14]
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The line defects discussed in the next part of this chapter determine not only the
role played by dislocations in the deformation characteristics of materials, but in
determining their mechanical properties. Understanding dislocation theory makes
it possible to better grasp the properties of materials, especially the mechanical
properties of engineering materials, such as ceramics. However, before discussing
the theoretical strength of crystals, the characteristics of dislocation lines should be
considered.

Fig. 3.23 Bright field images of the dislocation structures in (YSZ) for the specimens deformed
up to a 1 and b 10 % strain with the incident beam parallel to the 1�10½ � direction, which is parallel
to the dislocation lines introduced by primary slip [28]. With kind permission of Professor Yuichi
Ikuhara

Fig. 3.24 a Field ion micrograph of clean W tip outlining the location of a disloca-
tion; h100i oriented tip; 7.48 kV and He pressure of 2.93 9 10-3 Pa. b. Pattern after field
evaporation at 9.76 kV. Dislocation is outlined in the micrograph after stripping Zr from the tip.
8.75 kV [46]
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3.3.2 Deformation or No Deformation in Crystals

Assuming familiarity with the concept of a line defect, this section deals first with
what makes a material brittle or deformable without detailed consideration of
various aspects of dislocations. A schematic figure of a dislocation (edge) is shown
in Fig. 3.25 (more on its formation and motion will be discussed below). The edge
of the red line defines an ‘edge dislocation’. The parameter of ‘width’ is used as a
measure of the disruption of a perfect crystal, as a consequence of the presence of a
line dislocation. One may also define a ‘dislocation’ as the area between slipped
and unslipped locations following deformation, in which case ‘width’ basically
indicates the number of neighboring atoms pushed aside while maintaining bond
continuity across the plane (slip plane) below the edge where the dislocation ends.
Thus, ‘width’ means the width of the area on a slip plane where the atoms are out
of register by a certain amount, conventionally given as one-half the maximum
shear strain. Dislocated individual atoms move less than the Burgers vector when a
material is deformed along its slip plane.

The ‘width’ of a dislocation determines whether deformation will occur or not
and whether a material will show brittleness. Figure 3.26 is a schematic illustration
of the width of a dislocation and the disregistry of the atoms in the dislocation
surroundings.

At the center of a perfect edge dislocation, the disregistry is always b/2. The
edge dislocation width, w, is defined as the distance over which the disregistry is
greater than one quarter of the magnitude of the Burgers vector, b. The disregistry
is the magnitude of the displacement of the atoms from their perfect crystal
positions. When the displacement of the upper half-plane is b, the crystal is again
in complete registry. The magnitude of the ‘width’ is defined according to the
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Fig. 3.25 Line DC defines
an edge dislocation, which is
the termination of an extra
plane in a cubic crystal. A
missing atom is also shown
which is a vacancy [14]
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number of atomic spacings (an atomic spacing equals the distance between the
atomic nuclei), where the disregistry is pronounced. If w is of the order of one or
two atomic spacings, the width of the dislocation is considered narrow; contrasting
cases have several atomic spacings and are considered to have a wide dimension;
the dislocation is ‘wide’. Glide in a material readily occurs when dislocation is
wide; this occurs in materials classified as ductile. The opposite is true in cases
with narrow dislocation width, such as most ceramics at RT, in which no glide
generally occurs; they are brittle and most feature high strength. The tendency to
fail suddenly, with little or no plastic deformation, limits the wider use of ceramics
than exists today. When the dislocation width is between narrow and wide
dimensions, materials with low ductility can be expected.

Several researchers have observed that the halides and some sulphides and
carbonates are among the ceramics showing plasticity at ambient temperatures. Of
the oxide ceramics, MgO is one that shows ductility at RT, a behavior quite
exceptional in the family of oxide ceramics. Usually, most plastic deformation
experiments are conducted at high temperatures under compression.

3.3.3 The Theoretical Strength of Crystals

Although Orowan [13] has calculated the strength under tension of a perfect
crystal, the following section will discuss theoretical strength under shear, since
plastic deformation involves shear stress acting on some preferential slip plane.
Frenkel [26] has calculated the critical amount of shear stress required to move
adjacent atomic planes past one another, i.e., the energy-per-unit area involved in
shearing an atomic layer from its equilibrium configuration past the one below it.
Figure 3.27 schematically depicts two rows of atoms in a closely-packed structure,
one of which is sheared over the other one inter-atomic distance.

b/4b/4

W

b/4b/4 b/4b/4

W

Fig. 3.26 A schematic illustration showing the width, w, of a dislocation. Actual distortion of
the atoms is not indicated. The magnitude, b, is the slip vector (Burgers vector)
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The top row had to move a distance, a, from one atomic equilibrium position to
another. An approximation, made using a sinusoidal function, was employed to
evaluate the theoretical shear stress, s, given below as:

s ¼ k sin
2px

a
ð3:15Þ

The applied shear stress, s, produces a displacement, x, of ‘‘a’’, which is
basically the inter-atomic distance. This shear brings the atoms in the two rows of
atoms in the crystal into registry again. For small displacements, the value of the
sine in Eq. (3.15) equals: 2px

a and, thus, Eq. (3.15) becomes

s ¼ k
2px

a
ð3:15aÞ

Expressing Hooke’s Law in terms of the shear modulus and shear stress one
obtains:

s ¼ Gx

h
ð3:16Þ

where h is the height between the two rows (or planes of atoms) and G is the shear
modulus. x/h is obviously the shear strain, since x represents the displacement of
the atoms from their equilibrium position. (recalling that the shear strain is
tana % sina and for small values of tan or sin it is % the value itself, namely,
tana = x/h and thus the shear strain = x/h): By equating Eqs. (3.16) and (3.15a), a
value can be obtained for k as:

k ¼ Ga

2ph
ð3:15aÞ

h

a

a

h

a

a

τ

τ

τ

Fig. 3.27 The slip of one
row of atoms over another by
a distance, a, of the lattice
spacing. A sinusoidal motion
is assumed for the application
of shear stress [14]
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Substituting this value of k into Eq. (3.15), we can write:

s ¼ Ga

2ph
sin

2px

a

� �
ð3:15bÞ

When sin 2px
a ¼ 1, the shear stress is maximal; this occurs at x = a/4 (since

sin(p/2) = 1) and Eq. (3.15b) becomes:

smax ¼ s0 ¼
Ga

2ph
ð3:17Þ

At a/4, the lattice becomes unstable, i.e., it will yield at a value of s0, which is
the critical shear stress. Since h % a, the maximum shear stress for the instability
of the lattice is about:

smax ¼ s0�
G

2p
� G

6
ð3:18Þ

For metals, G is *27–77 GPa (for W * 161). Thus, according to Eq. (3.18),
s0 * 4.5–13 GPa. The observed critical shear-stress value is *0.0069 GPa and,
as such are two to three orders of magnitude smaller than the theoretical value. In a
more realistic, refined approach, without using a sinusoidal function, smax is &
G/10–G/30. Even these refined values are *2 orders of magnitude greater than the
experimental values.

The inevitable conclusion is that real crystals must contain defects, such as
dislocations suggested by Taylor, Orowan and Polanyi, which reduce their
mechanical strength or, more specifically, their resistance to slip when the applied
stress reaches a critical value. The 1934 postulate showed that shear is possible at
much lower stresses than in a perfect crystal.

3.3.4 The Geometric Characterization of Dislocations

As indicated in Sect. 3.3.1, dislocations are line defects. The two basic types of
dislocations are the edge and screw dislocations. A schematic three-dimensional
(3D) illustration of an edge dislocation appears in Fig. 3.25. A (100) plane of
Fig. 3.25 in a simple cubic crystal is illustrated schematically in Fig. 3.28. This
illustration will help to define the Burgers vector later on. Figure 3.29 is a sche-
matic view of edge and screw dislocations.

Again, a dislocation is characterized by its ‘Burgers vector’, which is defined by
what is known as the ‘Burgers circuit’. A dislocation has two properties–a line
direction and its Burgers vector. In an edge dislocation, the Burgers vector is
perpendicular to the line direction, whereas, in screw dislocations, it is parallel.
Figure 3.30 illustrates how to describe a ‘Burgers circuit’ and a ‘Burgers vector’.
There are two ways to proceed with the formation of the stepwise circuits. One

3.3 Introduction to Dislocations 199



www.manaraa.com

way is to start a circuit from S (for start) and end it at F (for finish), as shown in
Fig. 3.30.

This circuit closes perfectly on itself (see Fig. 3.30a). In a chosen region of the
crystal, a loop is made by a stepwise procedure, moving from one atomic position
to the next, starting at some point, S. The conventional direction is clockwise and,
while performing this procedure, the number of lattice steps in each direction is

Fig. 3.28 A (100) plane of a
cubic crystal (front plane of
Fig. 3.25) showing an extra
half-plane terminating in an
edge dislocation [14]

E
A

F

B C

DA
B

(a)

(c)

(b)

Fig. 3.29 Dislocations outlined: a an edge dislocation, EF; b a screw dislocation, AD, formed by
slip by a pair of shear stresses; c the same as b, but more detailed [14]
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counted until the loop is closed at F. The circuit finishes at the starting point S (not
shown for clarity). In Fig. 3.30a, this represents a perfect region of a dislocation
free crystal. In the faulted region of a crystal, a dislocation is shown. Making the
same circuit, as done in the perfect crystal, no closure of the circuit occurs and the
excess step indicates the presence of a dislocation as seen in Fig. 3.30b. The
excess step is the Burgers vector. The number of excess steps is an indication of
the number of dislocations in the faulty crystal.

The Burgers vector, which is a unit-slip vector, is supposed to be the same as an
interatomic distance of the lattice; however, this is not so, as seen in Fig. 3.30b. In
the vicinity of this dislocation, the lattice is strained elastically, as indicated.
Performing a Burgers circuit by the second method, the Burgers vector indeed has
the interatomic distance shown in Fig. 3.31b. Initially, a closed circuit is made in a
crystal containing a dislocation, starting at point S and finishing at F; the same
lattice point is chosen for this step-by-step procedure as was done for Fig. 3.30
(shown in Fig. 3.32). Then, exactly the same circuit is done in the reference
crystal, counting the same number of steps in all directions. In this method for
making a Burgers circuit, the position of F is separated from S by one lattice unit,
which is the special vector needed to close the circuit in the reference crystal–by
definition, this is the true Burgers vector, b. Again, in an edge dislocation, the
Burgers vector is perpendicular to the line direction, whereas, in screw disloca-
tions, it is parallel. The true Burgers vector, b, appears in the reference crystal,
rather than in the lattice containing the dislocation (Fig. 3.31), as indicated in the
first version (Fig. 3.30). Note that if, in the first method (see Fig. 3.30), the circuit
is sufficiently farther away from the ‘bad region’ (near the dislocation), then the
vector b obtained would be practically the same as the one obtained by the second

T

b

b is the Burgers vector.  The stepwise circuit did not close the circuit. 

The excess step indicates the presence of a dislocation.       

S S
F

(a) (b)

Fig. 3.30 The Burgers circuits in a perfect crystal and in a faulted one. The steps of the circuit
from one atomic position to the next must be the same in both lattices: a the circuit in a
dislocation-free crystal; b the circuit around a dislocation. b is the Burgers vector [14]
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Fig. 3.31 Burgers circuits to show the strength of vector b as having the magnitude of the
distance between the atoms of the lattice; a around a dislocation, b in the reference crystal
(dislocation free) [14] and c a Burgers circuit around a screw dislocation (schematic). The
Burgers vector b is required to complete the circuit

b1
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b3

b2 + b3

b1 = b2 + b3

b1
b2

b3

Fig. 3.32 Schematic
illustration of a dislocation
with Burgers vector b1 is
branching off into two
dislocations with vectors b2

and b3 [14]
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method (see Fig. 3.31), since distortion decreases with distance. It follows from
the above that the Burgers vector of a (perfect) dislocation is, by necessity, a lattice
vector.

The Burgers vector has both magnitude and orientation showing the direction of
slip during deformation. There is a significant controversy among researchers in
the literature regarding the sign of the dislocation and a question still remains
regarding the notation of the direction of slip in the Burgers vector. One school
favors the method indicated in Figs. 3.30 and 3.31, assuming that the direction of
the dislocation line is into the drawing and that the circuit is made clockwise. In
this case, the dislocation is considered to be positive, as the dislocation symbol
appears in the figure. Another group of researchers in the dislocation field
(including Burgers himself) takes an opposite approach. Thus, one must clearly
define whether the circuit is drawn clockwise or counter-clockwise around the
dislocation. The vector is always the same, but its sign will be different and,
therefore, consistency in describing a dislocation is important. The presentation of
a Burgers circuit for the evaluation of b is called the right-handed [henceforth:
RH] convention’ (i.e., the right-handed convention, clockwise and positive). The
opposite approach defines what is called the ‘LH convention’ (i.e., the left-handed
convention). In Fig. 3.31c, a Burgers circuit is drawn around a screw dislocation
on the front plane of a parallelepiped. Deformation (slip) has occurred on the plane
ABCD by applying a pair of shear stresses, as indicated. Deformation has resulted
as a screw dislocation marked as EF, demarcating the slipped from the unslipped
regions. The step required to close the circuit is the Burgers vector b.

A dislocation can change from an edge orientation to a screw one. In real crystals,
a dislocation is seldom pure edge or pure screw. Furthermore, dislocations are rarely
found only in one plane. In general, dislocations are curved or form a loop.

3.3.4.1 A Few Comments on the Burgers Vector

A dislocation line cannot end inside a crystal, because the Burgers vector cannot
become zero (it is constant) at some point along its line. It can terminate at a free
surface, internal surface or interface (e.g., a grain boundary), form a closed loop
inside a crystal or branch into other dislocations (forming a node). At a node
(where a dislocation branches out), for all dislocations pointing away from it,
Burgers-vector conservation must exist, analogous to Kirchoff’’s Law for the flow
of electric current. This is Frank’s Rule of the conservation of the Burgers vector.
Thus:

b1 þ b2 þ b3 ¼ 0 ð3:19Þ

and more generally:

Xn

i

bi ¼ 0 ð3:20Þ
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So, for three dislocations, or rather for a dislocation that branches into two other
dislocations (not all dislocation lines leave the node), one may write:

b1 ¼ b2 þ b3 ð3:21Þ

This is shown graphically in Fig. 3.32. In Fig. 3.32, Burgers circuits are drawn
around the dislocation line entering the node and around the two lines leaving the
node in the positive direction. After the node, the dislocations can be enclosed by
one single extended Burgers circuit, like the one drawn around the dislocation
before the branching. The sum of the Burgers vectors given in Eq. (3.21) clearly
applies in this case, as is indicated above, because the dislocation line branches out
and not all of them are pointing away from the node. In summary (and since no
agreement on the convention for b is available), in order to define a dislocation
line, a unit vector, t (which is the same as a translation vector in crystals), is
chosen, such that it is tangent to the dislocation line and the positive direction of
the dislocation is taken in the positive direction of t. This helps to establish the
sign of the b vector. Thus, Fig. 3.30b or 3.31c, view the dislocation line as running
into the sheet of paper and consider it to be positive; therefore, the Burgers vector,
b, is defined by the RH convention. When reversing the direction of t (i.e., the
dislocation line is running out of the drawing), the sign of b is also reversed.
On the basis of the above convention, a dislocation may be characterized by
t and b as: a) edge dislocation b � t = 0 (i.e., the direction and Burgers vector
are perpendicular); RH screw dislocation b � t = b and LH screw dislocation
b � t = -b (in both directions the dislocation and Burgers vector are parallel).

Thus, one can sum up this section by stating that the most important feature of a
dislocation is its Burgers vector.

3.3.5 Producing Dislocations in an Elastic Body (Schematic)

Hypothetically, one might imagine two ways of producing a dislocation
artificially:

(i) Look at Figs. 3.25 and 3.26 or the simple two-dimensional illustration in
Fig. 3.28. Assume that a slot has been cut in any of the materials represented by
these figures by means of a knife of atomic scale; now insert a partial plane (not
necessarily a half-plane) of atoms into that slot and then glue them together. The
termination of the plane at its edge, as defined by the row of atoms, is a line defect
in the crystal, i.e., an ‘edge dislocation’ (Fig. 3.25). This imaginative method of
producing a dislocation distorts the region around the line defect, as shown in
Fig. 3.26. This procedure can be further visualized by an analogy to a stack of
cards. If half a card is inserted in a deck of cards, a defect is formed in the deck at
the termination line of the half-card. In real crystals, due to the straining caused by
the extra half-plane, elastic distortion occurs around it and in its immediate
vicinity extending out for several planes. The dislocation line itself has a high
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energy, while strain decreases over distance. Clearly, this method of producing
dislocations is useful for understanding their nature.

(ii) In addition, one may produce a dislocation as is indicated in Fig. 3.29a,
redrawn in Fig. 3.33a. Visualize Fig. 3.33a as being the result of cutting a slot part
way into a plane of an elastic body (a parallelepiped), applying shear stress at the
start of the deformation and gluing the faces together to form a solid body. A
dislocation line formed in this way is clearly the demarcation line or the boundary
between the slipped and unslipped parts indicated in Fig. 3.33a (line EF). Here, the
upper part illustrated slipped over the shaded slip plane, marked as ABCD,
forming one atomic displacement b. In Fig. 3.33b, this slip has progressed over the
shaded slip plane and a dislocation line has formed at AB. In a similar manner, a
screw dislocation may be formed (see Fig. 3.29b), but the slip vector, in that case,
will be parallel to the dislocation line.

Dislocations in a real crystal are present in sufficient amounts, depending on the
material and its production history. The growth of a single crystal by itself is
pictured as occurring via a process of screw dislocation (which is an integral
necessity for growth per se). However, the dislocation concept of strain hardening,
for example, requires the formation of a large number of dislocations and their
multiplication. Plastic deformation can produce large numbers of dislocations
(discussed below). During plastic deformation, the density of the dislocations
increases greatly, even to a level of 1010/mm2, depending on the severity of the
deformation. Annealed material has a density of *106–107/mm2. Silicon wafers
usually have a very low dislocation density, \100 cm-2, while semi-insulating
GaAs wafers have a density on the order of *105 cm-2.

Three mechanisms for dislocation formation in polycrystalline materials are
considered here: (a) by homogeneous nucleation; (b) by induction at grain
boundaries and interfaces in the lattice; and (c) by surface stress. In regard to
homogeneous nucleation, it is very unlikely, since it requires high stresses of about
the same level as the theoretical stress in a dislocation-free crystal. When con-
sidering grain boundaries in materials, they can produce dislocations which
propagate into the grain; in particular, sites of irregularities and steps or ledges at
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(a) (b)

Fig. 3.33 Dislocation formation by cutting a slot in the body and gluing the faces formed
together: a ABCD is the slip plane and EF is the dislocation line at the start of deformation;
b edge dislocation AB, formed by shear displacement in the slip plane ABCD following a cut in
the plane and the gluing of the faces formed by the cut [14]
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the boundaries are dislocation sources in the early stages of plastic deformation.
Lastly, stresses on surfaces are usually larger than the average stress within the
lattice; the presence of irregularities, such as steps, can induce dislocation prop-
agation in crystals. Thus, dislocations nucleate from the surface.

In single crystals, dislocations are formed at the free surfaces. Suffice it to say
that sites, such as precipitates, dispersed phases, oxides, etc., can all serve as
sources for dislocation initiation and generation. Note that an important concept
for dislocation generation is the collapse of vacancies to form disc-shaped dislo-
cations, as suggested by Nabarro [41].

3.3.6 The Motion of Dislocations

The motion of dislocations is directly linked to the fact that the plastic deformation
of crystalline materials is mostly carried out by either their (a) conservative or (b)
non-conservative advance. Non-conservative motion refers to ‘climb’. When
enough force is applied to a crystal structure (but by orders-of-magnitude less than
the theoretical strength in a dislocation-free crystal), the atoms at the edge of the
extra plane (the dislocation line) pass through the planes of atoms, breaking and
forming bonds with them, until they leave from the opposite side of the crystal,
forming a step, as shown in Fig. 3.34. This procedure occurs in many discrete
steps, until the dislocation has moved through the entire lattice, leaving plastic
deformation in its wake. One question immediately arises: Why does this defor-
mation require so much force? The atoms around these dislocations are sym-
metrically located on opposite sides of the extra half-plane. In Fig. 3.34, this is
indicated by short dashes at the dislocation site, such that the forces acting on the
dislocation, on its both sides, are equal and opposite in sign.

The force opposing the motion of a dislocation is balanced by the force
encouraging its motion. Thus, in a first approximation, there is no net force on the
dislocation and the motive stress required is *zero. Nevertheless, the small force
actually required to move a dislocation has been explained by Peierls-Nabarro.
‘Peierls-Nabarro stress’, as it became known, is given as:

sPN ¼
2G

ð1� vÞ exp � 2pw

b

� �
ð3:22Þ

Here, w is the width of the dislocation defined in Fig. 3.26 (Sect. 3.3.2), written
as:

w ¼ a

2 1� mð Þ ð3:23Þ

In Eq. (3.17), h was used for the distance between the interatomic planes, ‘‘a’’.
Equation (3.22) may be substituted for the width in Eq. (3.23) to obtain:
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sPN ¼
2G

ð1� vÞ exp � pa

ð1� mÞb

� �
ð3:24Þ

The width of the dislocation, Eq. (3.23), defines the magnitude of the Peierls-
Nabarro stress and is a measure of the degree of distortion that has occurred due to
dislocation. It is basically the distance over which the dislocation causes disreg-
istry; thus, it is the magnitude of the displacement of the atoms from their perfect-
crystal positions. As indicated in Sect. 3.3.2, when w is several atomic spacings, a
dislocation is considered to be wide; if it is on the order of one or two atomic
spacings, it is narrow.

Wide dislocations glide easily, such as in closely-packed crystal structures,
where the atomic spacing is large. Hence, these materials are ductile and only
small stresses are needed to produce large strains. Ceramics, for example, tend to
be narrow in width, so that high stresses are required to move dislocations and the
ceramics become hard and brittle as a result. Therefore, w is defined in terms of a,
the atomic spacing in Eq. (3.23). The Peirels-Nabaro shear stress, sPN, varies
exponentially with a

b

� �
, i.e., for large, inter-planar spacing, which corresponds to

the distance between closely-packed planes, the shear stress is minimal; inter-
atomic bonds across such slip planes are weak and the stress is small. Having a
small b makes the ratio in the exponent larger, so it is clear why dislocations tend
to move in the closest-packed direction; shear stress is much smaller than theo-
retical strength in closely-packed planes. Actual calculations for an FCC lattice

gives sPN * 10-3G, which can be obtained on an FCC (111) plane with a ¼ b
ffiffi
2
3

q
.

Thus, we understand why the stress to move a dislocation is not zero. Though the
Peirels-Nabaro equation indicates the low stress required for dislocation motion, it
is not accurate, since the structure at the core of the dislocation and the changes in
energy during slip are not known.

To briefly review, the dislocation motion described above largely explains, for
example, why FCC metals can be ductile, as long as some obstacle does not retard

slip plane

b

b

τ

τ

Fig. 3.34 The motion of a dislocation involves the breaking and reforming of a bond (short
dashes) between an edge atom of the dislocation and its two neighbors, only one bond at a time,
resulting in plastic deformation. A step is formed when the dislocation leaves the crystal [14]
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their motion. Contrary to the breaking of all the atomic bonds on a plane simul-
taneously (requiring high stress, as calculated in the section above on theoretical
strength), in order to break the bonds between individual neighboring atoms at a
dislocation site, the stress required is lower by orders. The motion of a dislocation
line (depicted in Fig. 3.34) relates to an edge dislocation, but the motion of a screw
dislocation is also the result of shear stress; the difference between these two kinds
of dislocations is in the direction of their motion. Whereas the direction of motion
of an edge dislocation is parallel to the applied stress, in screw dislocation, it is
perpendicular. Nevertheless, the net plastic deformation of both the edge and
screw dislocations is the same. It has been indicated above that, in general, most
dislocations are of a mixed type, exhibiting both characteristics, i.e., at one part of
the line there is an edge, while at the other, there is a screw orientation.

3.3.6.1 Conservative Motion

In conservative motion, only shear stresses are of interest, since a shear component
acting in the glide plane is effectively involved in the dislocation motion. A normal
stress component acting on the same glide plane will not contribute to this motion.
Glide occurs on a slip plane without any change in the extra half-plane atomic
configuration, namely no atoms are added or removed while the dislocation
advances under the influence of stress. Glide does occur in preferential planes and
directions, depending on structure type. In conservative motion, whether caused by
edge or screw dislocations, the resultant step formed is the same, despite the
difference in movement direction, as shown in Fig. 3.35 for both positive and
negative edge dislocations under the same shear stresses. These figures schemat-
ically depict dislocation motion in three dimensions in a simple cubic structure.

Regarding screw dislocations–the directions of the motion of positive and
negative screw dislocations are opposite, yet the end results will be similar, as long
as the screw dislocation is moving according to the same pair of shear stresses.
Both the RH and LH screw dislocations produce the same steps under the same
stress as an edge dislocation (Fig. 3.35). LH screw dislocations move to the rear,
while RH screw dislocations progress to the front. Students should practice
schematically drawing the motions of RH and LH screw dislocations. Figure 3.36
is a schematic presentation of the motion of a positive-edge dislocation on a (100)
plane.

Figure 3.36a shows the (100) plane before deformation. Crystal deformation is
indicated in Fig. 3.36b–d. Schematic d depicts the step after the dislocation has
covered the entire slip plane.

At a first glance, one might suggest how to make a perfect, defect-free crystal.
One would simply have to apply an appropriate shear and squeeze the dislocation
out of the crystal, leaving behind a dislocation-free crystal, thus obtaining a high-
strength material (as calculated in Sect. 3.3.3). This is a naive thought, since
during the deformation process so many dislocations are formed, multiply and
interact as stress is applied that their movement is often blocked by a host of
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possible obstacles. In fact, materials actually become stronger, not because the
dislocations have been squeezed out of them, but rather due to the application of
stress and the resulting interactions between those dislocations formed.

TT

TT

TT

TT

(a) (b)

(d)(c)

Fig. 3.36 Edge-dislocation
motion on its slip plane under
the influence of shear stress.
The crystal deforms as seen
in illustrations a–d. When the
dislocation has left the crystal
(d), a step is formed having
the slip vector’s dimension
[14]
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Fig. 3.35 Movements of positive and negative dislocations acting under the same shear stresses:
top figures are positive dislocations; those at the bottom are negative dislocations. The movement
directions of the dislocations are opposite, but the results of the shear are the same–a step is
formed on the same crystal plane (slip plane). The step b is the Burgers vector [14]
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When more than one set of dislocations leave a crystal, more steps are formed.
To illustrate this effect, take the following Fig. 3.37, having two positive and two
negative edge dislocations in their respective slip planes and apply a pair of shear
stresses. The slip planes, shown (partially) in Fig. 3.37b, reflect the planes shown
in Fig. 3.37a, where the dislocations have moved forming the steps upon leaving
the crystal. If the positive and negative dislocations were on the same planes, as
shown in Fig. 3.38, they would annihilate each other, resulting in a perfect lattice.
One must realize that, above an edge dislocation, the atomic planes experience
compression (because an extra half-plane has been inserted), while, below it, the
atoms are being pulled apart by tension. In other words, the strain fields above and
below a dislocation line are compressive and tensile, respectively. The energy of a
crystal is reduced by the reaction of the compressive and tensile strain fields,
resulting in the cancellation of the pair of dislocations.

An edge dislocation is able to glide across a plane, containing its edge dislo-
cation line and its Burgers vector. Thus, an edge dislocation is confined to
movement within one plane, unlike the motion of screw dislocation. A glide plane
is defined by its normal, given as b 9 t. A screw dislocation does not have a

T

T

T

T

⇒

(a) (b)

Fig. 3.37 Steps formed by shear stress caused by dislocations leaving their respective slip planes
[14]

T

T

T

T

⇒

Fig. 3.38 Two sets of dislocations having opposite signs on the same slip plane. They annihilate
each other, resulting in a perfect crystal [14]
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defined glide plane, since b 9 t = 0 and it has a cylindrical symmetry about its
axis. Every plane passing through that axis (known as the ‘zone axis’) may become
a glide plane through which a screw dislocation may move. Therefore, screw
dislocation is not restricted to only one plane. Often, the step-by-step motion of
edge dislocation, breaking and reforming each individual bond, is more easily
explained by an analogy to the motion of a caterpillar or to the removal of a
wrinkle in a large carpet. The localized force employed by the special motion of a
caterpillar or the force needed to move each carpet wrinkle into its correct place is
much smaller than that required to pull an entire carpet straight.

3.3.6.2 Non-conservative Motion (‘Climb’)

The non-conservative motion (or ‘climb’) of a dislocation is indicated in a series of
illustrations in Fig. 3.39 for positive and negative edge dislocations.

The motion of an edge dislocation is restricted to one plane only–the glide (or
slip) plane. Both a positive and a negative edge dislocation can only exit a glide
plane by means of the climb process, as illustrated in Fig. 3.39. For climb to
happen in a positive dislocation (the upper illustrations in Fig. 3.39), vacancies,
arriving by diffusion, must occur adjacent to the dislocation line by replacing one

T

T

T

T

T
T

(a)

(d) (e) (f)

(b) (c)

Fig. 3.39 Climb in positive and negative dislocations. When a point defect, such as a vacancy,
reaches the vicinity of a dislocation, as shown in (a) it changes places with the indicated atom of
the dislocation and climb occurs, resulting in (b) and (c). Dislocation climb means that a part of the
dislocation has left its slip plane. Illustrations d–f indicate the same for a negative dislocation [14]
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or more of its atoms. This is a thermally activated process, causing part of the extra
plane defining the dislocation become shorter. Since these vacancies never appear
at the same time in sufficient amounts, only part of the dislocation climbs. The
climb of a segment of a dislocation forms a ‘jog’ (i.e., a segment of a dislocation
line having a vector normal to the glide plane). Jog formation is shown in
Fig. 3.40. Here, the dislocation segment that climbed, CD, and the jogs formed are
heavily outlined by dashed lines. Thus, rather than an entire dislocation line
shifting all at once, only segments of a dislocation climb. In addition to the jogs,
‘kinks’ are also formed during the process of climb; these are the segments of the
dislocation line that have remained within the glide plane that did not climb. Jogs
are immobile, unlike kinks, and cannot glide together with the dislocation seg-
ments that did not climb (i.e., kinks), since their direction of motion is in a plane
normal to the glide plane and not within the glide plane itself. This is shown in
Fig. 3.41. A kink is basically an edge dislocation and, if it is lying in the slip plane,
it does not provide resistance to motion and may be considered a step in the
dislocation line. Diffusion of vacancies (or interstitials) is required for the motion
of jogs. Jogs and kinks can also be formed by dislocation interactions (discussed
later on).

A screw dislocation cannot climb, since it does not have a specific, well-defined
glide plane. Every plane passing through the zone axis may be considered a glide
plane; when in the motion, a screw dislocation can pass from one glide plane to
another, within the family of planes sharing a common zone axis. ‘Cross-slip’ is the
term used for the process of passing a screw dislocation from one plane onto another
with an equivalent glide plane to that of the original one. Thus, cross-slip involves
the initial slip plane and the cross-slip plane, where the glide continues. Usually,
when a screw dislocation meets some obstacle during its glide, it can circumvent that
obstacle by the process of cross-slip. Many obstacles can impede dislocation
movement, such as: other dislocations, precipitates, grain boundaries, etc.

A
B

jog

C D

Fig. 3.40 Jog formation by
climb [14]
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To conclude Sect. 3.3.6 on dislocation motion, the following may be added.
Dislocations that are able to move by pure slip are called ‘glissiles’ and dislocations
which cannot glide without some thermal process, such as point defect diffusion,
are called ‘sessiles’. Glissile dislocations play a role in plastic deformation, in
which good elongation is of importance, since large strains can be achieved by the
motion of many dislocations without considerable impedance to their motion.
Sessile dislocations, on the other hand, are among the factors responsible for high
strength, but lower strains. Thus far, nothing has been said about a very important
factor that influences the motion of dislocations, namely the structure of materials,
which will be discussed in a later section in regard to FCC metals.

3.3.7 The Energy of Dislocations

Dislocation formation requires work and so the resultant energy becomes stored in
the material. The application of stress to produce strain introduces elastic strain
energy caused by atoms displaced from their equilibrium position. Whenever
atoms are displaced from their lattice equilibrium position, strain energy is
introduced into the lattice. A dislocation must have some strain energy, since it
distorts the lattice and displaces atoms from their lattice equilibrium position;
therefore, a strain is introduced into the surroundings. A strain field, thus, exists at
the site of a dislocation, affecting its motion. Bonds outside the radius of the
dislocation line, say at a distance r0, are elastically strained, but some of the energy
lies within the radius, r0, stored in what is known as the ‘core of the dislocation’.
Thus, the total energy-per-unit length of the dislocation line, ETE, is composed of
the core energy and the energy outside, r0, given by:

ETE ¼ E þ Ecore ð3:25Þ

glide plane of the jog DD”,                                
normal to the dislocation glide plane ABEF      

A

B

C
D

C’

D’

glide plane ABEF of segments AC’ or D’B

E

F

glide plane of the jog DD”,                                
normal to the dislocation glide plane ABEF      

A

B

C
D

C’

D’

glide plane ABEF of segments AC’ or D’B

E

F

A

B

C
D

C’

D’

glide plane ABEF of segments AC’ or D’B

E

F

Fig. 3.41 One of the jogs, DD, is shown with its glide plane shaded; it is normal to the glide
plane of the dislocation before its climb [14]
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For the present, consider only E (discussion on the contribution of the core
follows later on).

Tension applied to a rod of length, l, and cross-section, A, extends the rod by dl
and a strain energy, dE, is introduced. This may be expressed as:

dE ¼ Fdl ð3:26Þ

Force is given by:

F ¼ rA ð3:27Þ

Also, based on Chap. 1, one can write:

de ¼ dl

l
ð3:28Þ

Volume V = Al remains constant during deformation and, by simple substi-
tution, one can write:

dE ¼ rV
dl

l
¼ rVde ð3:29Þ

This is obtained as follows: Rewrite Eq. (3.26), substitute F from Eq. (3.27);
then express A in terms of volume and express dl/l by de from Eq. (3.28). This
produces Eq. (3.30):

dE ¼ Fdl ¼ rAdl ¼ rV
dl

l
¼ rVde ð3:30Þ

Due to the constancy of the volume (V = Al), Eq. (3.30) can now be replaced
by the energy-per-unit volume, dE0:

dE

V
¼ dE0 ¼

Ze

0

rde ð3:31Þ

After integrating Eq. (3.31) and applying Hooke’s Law, Eq. (3.32) is obtained
for the energy-per-unit volume:

E0 ¼ 1
2
re ¼ 1

2
Ee2 ð3:32Þ

In terms of shear stress and shear modulus, Eq. (3.32) should be written as:

E0 ¼ 1=2sc ¼ 1=2Gc2 ð3:33Þ

The general relation from the principle of superposition is:

E0 ¼ 1
2

rxxexx þ ryyeyy þ rzzezz þ sxycxy þ sxzcxz þ syzcyz

� �
ð3:34Þ
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However, when a single strain component exists, the strain energy per volume
is either 1/2Ee2 or 1/2Gc2. In Eq. (3.32), E is Young’s modulus and not the energy.

3.3.7.1 Screw Dislocation

It is simpler to consider a case of screw dislocation in which only a shear stress is
active, resulting in shear strain. Consider a segment taken from a cylinder with
length, l, and radius, r, as shown in Fig. 3.42a (in polar coordinates) and which
behaves like an elastic continuum. The strain in the shell of radius dr is presented
below. A radial slit has been cut in the cylinder (not shown) parallel to the z axis
and then the cut surfaces were displaced one over the other by shear deformation at
amount b and glued together. This displacement by the shear is b pointing in the
direction of z. Now, unfold this shell and spread it flat, for the sake of under-
standing the derivation. The unfolded cylindrical shell from Fig. 3.42a is shown in
Fig. 3.43, indicating the distortion that has occurred due to shear stress. The cir-
cumference is 2pr and the angle of the shear strain is c = b/2pr. The displacement
is in the z direction and the stored energy-per-unit volume, between r and dr in this

z

x

y
b

Z

x

y

b

r

x

y

b

rθ

(a) (b)

Fig. 3.42 Elastic distortion of a cylindrical ring a produced by screw dislocation; b formed by
edge dislocation [14]
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case may be written as Gb2ldr/4pr. Then after integrating, Eq. (3.35) may be
obtained for r, between the limits r0 and r:

E0 ¼
Zr

r0

Gb2l

4p
dr

r
¼ Gb2l

4p
ln

r

r0
ð3:35Þ

For a unit dislocation line, E0/l = E, one can give the energy of the screw
dislocation in Eq. (3.35) as:

E ¼ Gb2

4p
ln

r

r0
ð3:36Þ

Equation (3.36) is the result of the following steps:

(a) the area under a stress–strain curve is the strain energy-per-unit volume (see
Eqs. 3.31 and 3.32); in our case, for shear, it is: E0 ¼ 1

2 sc;
(b) s ¼ Gc;
(c) substituting for s leads to E0 ¼ 1

2 Gc2;
(d) the volume of the thin shell (Fig. 3.42 or rather 3.43) is dV ¼ 2prl; therefore,

the energy in the elemental volume is:
(e)

E0 ¼ 1
2

Gb2

ð2prÞ2
2prldr ¼ Gb2

4pr
ldr;

(f) integrating between the limits r0 and r and taking the energy-per-unit line gives
Eq. (3.36).

Since the above displacement is in the z direction, there are no displacements in
the x and y directions. Thus, all the hydrostatic and shear components are inactive
except for the shear stress in the z direction and its respective strain, as derived
above. This strain is c and, thus, the stress is s = Gb/2pr (see the shear strain in
Fig. 3.43). Note that, in the above equation, the strain should actually be written as
czh = chz and the shear stress, accordingly, as szh = shz; but for simplicity, these
indexes were dropped. The above is a consequence of the fact that screw

b

2 r
dr

l

π

γ

Fig. 3.43 The segment of
the cylinder seen in
Fig. 3.42a in unfolded form
[14]
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dislocation has only two active shear stresses, one on a radial plane in the z
direction and the other on a plane perpendicular to the z axis and parallel to the
radius, respectively for shz and szh. The stress field has radial symmetry and is
independent of h, as seen in Eq. (3.36). Recall that in the system under consid-
eration (polar coordinates) the shear and, thus, the displacement are in the z
direction, such that no strains exist in the x and y directions and the corresponding
strains are zero, as are the stresses shown below:

rr ¼ rh ¼ rz ¼ srh ¼ shr ¼ szr ¼ srz ¼ 0 ð3:37Þ

There is a limit to the validity of Eq. (3.36). For instance, it is unlikely that in
the expression s = Gb/2pr, r ? 0 the stress is infinite, since s ? ?. Equation
(3.36) is valid only outside a radius of *5–10 Ǻ. By using reasonable values for r
and r0, Eq. (3.36) may be approximated as:

E � Gb2 ð3:38Þ

This can be obtained as follows. Assume that r * 105b (providing a dislocation
density of *1010 dislocations/m2). Since Hooke’s Law only applies to small
strains and not to the very high values that exist in dislocation cores, a value of b/4
has often been suggested for r0. By substituting these values into Eqs. (3.36),
(3.38) is obtained.

An estimated value of the core energy is then:

Ecore ffi pð5bÞ2 G

30

� �
1
G
� Gb2

10
ð3:39Þ

This expression is obtained by the following assumptions:

(a) that the stress level in the vicinity of the core is s = G/6, as indicated in
Eq. (3.18);

(b) that the radius is approximately 5b;
(c) that the area is *p (5b)2;
(d) that the elastic energy-per-unit volume acting on the dislocation core, is E0 ¼

1=2Gc ¼ 1=2s2=G (Eq. 3.33);
(e) by using the last term in (d) with the assumption in (a) and multiplying by the

area of (c), Eq. (3.39) is obtained:

1=2s2=G ¼ 1
2
s2

G
¼ pð5bÞ2 1

2
G

30

� �2 1
G
� Gb2

10
:

The total energy, according to Eq. (3.25), can now be expressed by Eqs. (3.38)
and (3.39), yielding:

ETE � Gb2 þ Gb2=10 ffi Gb2 1þ 1=10ð Þ: ð3:40Þ

A core energy of 0.1, according to the estimated expressions, is small or even
negligible in its contribution to the overall energy, so it is often neglected.
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3.3.7.2 Edge Dislocation

The analysis of an edge dislocation is somewhat more complicated, but it can be
done in a manner similar to that of a screw dislocation, again using a ring-shaped
segment of a material. An edge dislocation line is also parallel to the z axis, as in
the case of a screw dislocation, but the Burgers vector is normal to the z axis, as
shown in Fig. 3.42. Thus, the t vector of the dislocation line points in the direction
of the z axis. Since the line is in the z direction and its displacement is parallel to
the x axis, i.e., the Burgers vector is normal to the z axis, there will be no strain (no
displacement) in the z direction, though the stress will not be zero.

The energy of an edge dislocation per unit length of the dislocation line (stated
without proof) is similar to the energy of a screw dislocation, but it is divided by
(1 - m), where m is Poisson’s ratio, is given by:

Eedge ¼
Gb2

ð1� mÞ4p
ln

r

r0
ð3:41Þ

As indicated above, a value of *0.1 Gb2 is the contribution of the dislocation
core, which is neglected. Equation (3.41) indicates that the energy of an edge
dislocation is larger by 1/(1 - m), i.e., 1.5 times greater than that of a screw
dislocation with the same length, l.

It is known that, in materials, the dislocation line’s direction and the Burgers
vector are neither perpendicular nor parallel, being mixed dislocations, consisting
of both screw and edge characteristics. Therefore, it is appropriate to sum up the
dislocation energies given in Eqs. (3.36) and (3.41), while neglecting the contri-
bution of the core. This may be expressed as:

Etotal ¼
Gb2

4p
ln

r

r0
þ Gb2

ð1� mÞ4p
ln

r

r0
¼ Gb2

4p
ln

r

r0
1þ 1
ð1� mÞ

� �
ð3:42Þ

In this summation, done in order to estimate the energies of mixed dislocations,
the interactions between the edge and screw components are ignored. Figure 3.44
shows a ‘general dislocation line’ indicating its mixed character. Note that, here,
energy is given per unit length. Several comments are now in order:

(a) Energy is proportional to b2; thus, a dislocation having a large Burgers vector,
e.g. of strength 2b, is not stable and is likely to decompose into two vectors,
with lower energies:

b2 þ b2 ¼ 2b2\ 2bð Þ2

(b) The energy of dislocations, as seen in Eqs. (3.36), (3.41) and (3.42), is pro-
portional to b2; therefore, the most stable dislocations are those with minimum
Burgers vectors, namely those with the closest-packed directions.
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(c) Since r0 = 0 is not reasonable, providing an infinite value for energy, it is
customary in the continuum model to avoid this by introducing a hole along
the dislocation line. Thus, r0 is the radius of a hole with a diameter of about
10-7cm.

Equation (3.42) may also be presented in a different form. To this end, one needs
a schematic drawing of a mixed dislocation in a slip plane, as shown in Fig. 3.44a.
In Fig. 3.44, the dislocation is in the shape of a closed line and, for a given dis-
placement of the vector, b, both the edge and screw orientations are shown. Some
mixed characteristics may be seen, for example at point B. The Burgers vector is
constant, pointing to the displacement of the line, but the dislocation line changes
direction. At point A, the line is parallel to b and, therefore, it has the character of a
screw dislocation, while at point C, the segment of the dislocation line is perpen-
dicular, like a pure edge. At point B, b can be resolved into two components with
edge and screw orientations, designated as bedge and bscrew (Fig. 3.44b). In
Fig. 3.44a, the slipped region is shaded and the direction of the dislocation line at
point B is shown. For the edge and screw components, one may write:

bedge ¼b sin h

bscrew ¼b cos h:

b
b1 b2

B
dislocation line

dislocation line

b
bedge

bscrew

C

A

B

slipped region

θ

θ

(b)

(a)Fig. 3.44 A ‘general
dislocation line’ is the
boundary between the slipped
and unslipped regions: a at
point B, the Burgers vector,
b, can be resolved into bedge

and bscrew; b the dislocation
at point B is shown
(magnified) and b is resolved
into edge and screw
components [14]
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Substituting these values into Eq. (3.41), one finds the mixed dislocation at
point B in Eq. (3.42) to get:

Etotal ¼
Gb2 cos2 h

4p
þ Gb2 sin2 h
ð1� mÞ4p

� �
ln

r

r0
¼ Gb2

4pð1� mÞ ln
r

r0
½1� m cos2 h� ð3:43Þ

Thus, the value of a mixed dislocation is between that of screw and edge
dislocations.

3.3.8 Line Tension

The expressions for the energies above were given per unit length of dislocation.
When not normalized for a unit length, this energy is proportional to the length of
the dislocation:

E � lGb2 ð3:44Þ

As a consequence, a dislocation will tend to decrease its length to a minimum to
decrease its energy. A curved dislocation line has a tension, T, which acts along its
line and may be expressed as a change in energy with the length:

T ¼ oE

ol
� Gb2 ð3:45Þ

The units of line tension in Eq. (3.45) are in energy-per-unit length.
A dislocation line can encounter various obstacles to its motion. In such a case,

the dislocation becomes pinned by the obstacle and curves, due to the forces
exerted by the obstacle resisting its motion. Small forces cannot make such a
dislocation move. Figure 3.45 shows the bowing of a dislocation line after it has
been pinned at both ends, at points A and B, by obstacles, perhaps foreign particles
in the material or some other precipitates. In order to better understand this phe-
nomenon, consider Eq. (3.35), which allows (3.45) to be rewritten as:

T ¼ aGb2 ¼ lGb2

4p
ln

r

5b
ð3:46Þ

In Eq. (3.35), r0 was replaced by 5b, assumed to represent the core of the
dislocation. The line tension, T, is acting tangentially to shorten the dislocation
line and, thus, to reduce the dislocation energy. The curving of the dislocation line
segment, due to its normal force, sbl, as a result of the applied shear stress, is
shown in Fig. 3.45. For force equilibrium in the y direction, since it is balanced by
the line tension, it is possible to write:

sbl ¼ 2T sin
h
2

ð3:47Þ
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The coefficient 2 arises from the fact that the line tension acts at points A and B
of the dislocation line segment. For small angles, sin (h/2) = h/2. Substituting for
T from Eq. (3.46), s can be expressed as:

s ¼ aGbh
l
¼ a

l
Gb

l

r
¼ aGb

r
ð3:48Þ

The last term in Eq. (3.48) is a consequence of substituting h = l/r for h/2 from
Fig. 3.45. Note (from the first term in Eq. 3.48) that the stress required to motivate
a dislocation being detained by some obstacle depends on its length, l. For small
values of l, the required force is higher.

The line tension of dislocations will be significant for the later discussion of
dislocation multiplication sources, according to the ideas of Frank-Read.

3.3.9 The Stress Field of a Dislocation

It has been mentioned above that it is simpler to consider screw dislocations, since
they possess a cylindrical symmetry and only shear stress acts when displacement
occurs in the z direction. Elastic distortion occurs with the introduction of a
dislocation into an isotropic material.

3.3.9.1 Screw Dislocations

Here is another case of a cylindrical ring cut from good material surrounding a
screw dislocation, as shown in Fig. 3.42a. Recall that dislocations are defects in

bl

r

TT

l

A B

sin( /2) sin( /2)θ θ

/2θ /2θ

/2θ/2θ

τ

τ τ

Fig. 3.45 The line tension of
a dislocation when blocked
by obstacles A and B [14]
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crystals and, therefore, are accompanied by elastic stress fields. Now, a radial cut is
made parallel to the z axis (as shown in Fig. 3.42a), displaced by b, and the
surfaces are joined together. The shear strain obtained is:

chz ¼ czh ¼
b

2pr
ð3:49Þ

The stress field of a screw dislocation is pure shear. As indicated earlier, high
strains exist in the core region and, therefore, Hooke’s Law of elasticity does not
apply and so will not be considered. The dislocation line is parallel to the z axis;
there are no displacements in the x and y directions and the other stress compo-
nents are zero:

rr ¼ rh ¼ rz ¼ srh ¼ shr ¼ srz ¼ szr ¼ 0

Once again, the magnitude of the elastic stress is directly proportional to the
shear modulus, G, and the Burgers vector, b, and inversely proportional with
increasing distance from the dislocation, given as:

shz ¼ sz# ¼
Gb

2p
1
r

ð3:49aÞ

The stress field of a screw dislocation is manifested by two active stresses: shz,

acting in radial planes parallel to the z axis and szh, acting in planes normal to the z
axis. The stress has a long range, because it is inversely proportional to r and
perpendicular to the radius. To get a feeling for this, take a distance of 104b; for 1/
r, the stress is *10-5G, which is about the yield stress of some crystals. The stress
vanishes at infinity.

Generally, these displacements can be expressed as:

u ¼ 0

v ¼ 0

w ¼ b

2p
arctan

y

x
¼ b

2p
h

ð3:50Þ

The above is obtained from the equilibrium equations of elasticity:

cxy ¼
ou

oy
þ ov

ox

cxz ¼
ow

ox
þ ou

oz

cyz ¼
ow

oy
þ ov

oz

ð3:51Þ

or generally:

cij ¼
1
2

oui

oxj
þ ouj

oxi

� �
ð3:51aÞ
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The expression for w in Eq. (3.50) is obtained as follows. While making a circuit
around a dislocation line, the arctan changes by 2p and, thus, w changes as p.

For rectangular coordinates and by applying Eq. (3.51), while displacements u
and v = 0, one gets:

cxz ¼
ow

ox
þ ou

oz
¼ � b

2p
y

x2 þ y2ð Þ ¼
b

4p
sin

h
r

cyz ¼
ow

oy
þ ov

oz
¼ b

2p
x

x2 þ y2ð Þ ¼
b

4p
cos

h
r

cxy ¼
ou

oy
þ ov

ox
¼ 0

ð3:51bÞ

When deriving displacement via these relations for the strain, the stress is given
by multiplying by G. Rectangular coordinates have only two stress components:

sxz ¼ G
ow

ox
þ ou

oz

� �
¼ �Gb

2p
y

ðx2 þ y2Þ

syz ¼ G
ow

oy
þ ov

oz

� �
¼ Gb

2p
x

x2 þ y2ð Þ

ð3:51cÞ

Note that no normal stresses act and, of all the shear stresses, only the two
above exist. All the other stresses are zero, as indicated below:

rx ¼ ry ¼ rz ¼ sxy ¼ syx ¼ 0

Also note that when going from Cartesian to cylindrical coordinates (or vice
versa), the following relations may be used:

r2 ¼ x2 þ y2

tanh ¼ y=x

z ¼ z

ð3:52Þ

The last term in Eq. (3.52) is a consequence of Fig. 3.42a, schematically rep-
resenting all the relevant parameters of the cylinder, but not drawn for clarity.

3.3.9.2 Edge Dislocations

As shown in Fig. 3.42b, b is parallel to the x axis and vector t is in the z direction.
The displacement is in the x direction; therefore, no strain in z direction exists. For
cylindrical coordinates, one may write:

rr ¼ rh ¼ �D
sin h

r

shr ¼ srh ¼ D
cos h

r
rz ¼ m rr þ rhð Þ

ð3:53Þ
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where:

D ¼ Gb

2p 1� mð Þ ð3:53aÞ

and:

srz ¼ szr ¼ szh ¼ shz ¼ 0:

For Cartesian coordinates, the above takes the form of:

rx ¼ �Dy
3x2 þ y2ð Þ
x2 þ y2ð Þ2

ry ¼ Dy
x2 � y2ð Þ
x2 þ y2ð Þ2

syx ¼ sxy � Dx
x2 � y2ð Þ
x2 þ y2ð Þ2

rz ¼ m rx þ ry

� �

ð3:54Þ

and:

rxz ¼ rzx ¼ ryz ¼ rzy ¼ sxz ¼ szx ¼ syz ¼ szy ¼ 0:

Note that, although no displacement and strain evolves in the z direction, a
stress is acting, as shown in the above equations. Clearly, dilatational (expanding)
stresses are also active, in addition to shear stress. The largest normal stress is rx,
which acts parallel to the slip vector b. The slip plane, according to Fig. 3.42b, is
along the plane passing through y = 0. The sign above the edge dislocation is
negative; therefore, the stress is compressive and maximal just above the slip plane
of the dislocation, whereas the stress is tensile, thus, positive (rx) and maximal just
below the slip plane. The signs of the stress and the strain reverse if the sign of the
Burgers vector is reversed.

In cases of mixed dislocations, it is possible to combine their components,
namely the solutions of their screw and edge orientations.

Cases with arbitrary orientations in an isotropic material (i.e., when stress
depends on the orientation of the dislocation and the Burgers vector and the crystal
axes are significant), stress fields and stress distributions around edge dislocations
are shown and discussed in detail in Read’s book.

3.3.10 Forces Acting on Dislocations

The presence of forces acting on dislocation lines, balancing line tension, was
discussed in Sect. 3.3.8. When an external stress is applied to a dislocation, the
dislocation will tend to move. In general, dislocations in stress fields sense a force
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that tends to move them. The motion of a dislocation (as seen in Sect. 3.3.6) can
either be a glide or a climb by edge dislocations or cross-slips made by screw
dislocations.

3.3.10.1 Glide Forces

An external force acting on a dislocation may induce its glide; this effect may be
seen in Fig. 3.46. A slip plane, A, is shown, where a segment, dl, of a dislocation is
depicted after moving a distance, dx. The ratio of the area swept out by the motion
of the segment, dA = dldx to the total slip area, multiplied by b, gives the dis-
placement, which may be written as:

displacement ¼ dldx

A
b ð3:55Þ

The applied force is F = sA and, therefore, the work, dw, performed by that
force is given by F x distance (i.e., displacement), namely:

dw ¼ F
dldx

A
b ¼ As

dldx

A
b ð3:56Þ

If one defines the force on a unit length of dislocation as ‘the work done when
the unit length of the dislocation segment, dl, moves a unit distance, dx’, one gets:

F ¼ dw

dldx
¼ dw

dA
¼ sb ð3:57Þ

dx
dl

b

glide plane

A

Fig. 3.46 A segment of
dislocation, dl, has moved a
distance, dx, in the glide
plane of area A, as a result of
a force acting on it
perpendicularly [14]

3.3 Introduction to Dislocations 225



www.manaraa.com

This force is normal to the dislocation line. Apparently, only a shear stress,
acting on the dislocation in this plane, is necessary for its motion and only a force
component, lying in the glide plane, is effective in this regard. A normal com-
ponent of force or stress will not contribute to glide motion, since only components
of force acting in the glide plane in the direction of the Burgers vector can move a
dislocation. Practically speaking, the dislocation line never moves in total, because
it may be anchored somewhere by an obstacle (as in Sect. 3.3.8 on line tension,
where the dislocation became curved).

The above relation might also have been obtained in the following way. The
work, w, done by moving a dislocation a distance, b, on slip area, A, is:

w ¼ Asb ð3:58Þ

where As = F. Incremental work, dw, done on an incremental area is dldx (the
area swept out by the elemental dislocation line, dl, when moving an incremental
distance, dx) and may be related to the work of moving the dislocation. Thus:

dw

w
¼ dldx

A
ð3:59Þ

Following all the prior relations, dw may be expressed as:

dw ¼ Asb
dldx

A
¼ sbdldx ð3:60Þ

but dw = Fdx and, when acting on the dislocation segment, dl, dw = Fdxdl.
Redefining the force acting on a unit dislocation as F0 = F/dl, one obtains for
Eq. (3.57):

F0 ¼ sb ð3:61Þ

F0 is the same as F, given and defined in Eq. (3.57).

3.3.10.2 Climb

Climb was first discussed in Sect. 3.3.6.2. Figure 3.39 illustrated the climb process
and Fig. 3.41 showed the jog formation resulting from climb. Climb is the
movement of dislocations out of their glide planes as a result of interactions with
vacancies (or interstitials, for negative climbs, i.e., the growth of an extra plane or
part of it). It is possible that a force acting on an edge dislocation will be directed
perpendicularly to the slip plane, normal to its Burgers vector, allowing the edge
dislocation to leave its slip plane. The driving force for dislocation climb is the
movement of vacancies through a crystal lattice. If a vacancy moves next to the
extra half-plane of atoms that defines an edge dislocation, the atom in the half-
plane that is closest to the vacancy can trade places with that vacancy, thus causing
climbing. Compressive force produces positive climb in the positive y direction,
whereas tensile force induces negative climb. During positive climb, a crystal
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shrinks in the direction perpendicular to the extra atomic half-plane, because atoms
are being removed from it. Since a negative climb involves the addition of atoms
to a half-plane, the crystal grows in the direction perpendicular to that half-plane.
Therefore, compressive stress, in the direction perpendicular to the half-plane,
promotes positive climb, while tensile stress promotes negative climb. Figure 3.47
illustrates negative climb schematically.

Assume that climb occurred over a distance L in the y direction. The work done
is then:

w ¼ FL ¼ rxbL ð3:62Þ

The work per unit distance of the tensile stress, rx, in the crystal has been given
in Eq. (3.61). Thus, the force per unit length is:

F0 ¼ rxb ð3:61aÞ

Jogs are formed by climb. They are favorable sites for the absorption and
emission of point defects. In thermal equilibrium, the atoms at jog sites are in
dynamic equilibrium and arrive and leave the jog at equal rates. If there is an
increase in vacancies, for example, in the vicinity of a dislocation line above the
thermal equilibrium value, the probability of atomic exchange at a jog with a
vacancy increases, climb occurs and the extra plane (defining the dislocation line)
shrinks. Therefore, excess vacancies promote the process of climb. Similarly, an
excess of interstitial atoms adds atoms to the existing jog, which causes it to grow.
In summary, when atoms are removed from an extra plane, the crystal collapses

Tσx
σx

y

xz

2R+b

2R

F

Fig. 3.47 This force is
acting in the negative y
direction, because tensile
stress induces the negative
climb of a dislocation. Note
that the width at the lower
edge of the curve is less by
b than at the upper edge,
since a dislocation is defined
by the extra half-plane [14]
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locally, but when atoms are added, the atomic plane expands locally. As stated
above, either compressive or tensile strains are induced during the climb process.
These stresses work during climb and the direction of the climb depends on the
type of stress. In Fig. 3.47, tensile stress is shown promoting negative climb. If,
however, a compressive stress were applied, the process would appear to squeeze
out the extra plane.

The formation of jogs by climb may be considered to be a thermally activated
process, since point defects are involved. It is proper to talk about nucleation and
the motion of jogs. An activation energy exists, expressed by:

nj ¼ n0 exp � Uj

kT

� �
ð3:63Þ

where n0 is the number of atom sites per unit length of dislocation and Uj is the
activation energy of jog formation. The activation energies for vacancy formation
(for positive climb), Ef, and motion, Em, determine the activation energy, ESD, of
self-diffusion. Thus, the activation energy of climb, Uc, may be expressed as:

Uc ¼ Uj þ Uf þ Um ¼ Uj þ USD ð3:64Þ

Excess point defects are also a driving force for climb.

3.3.11 Forces Between Dislocations

A dislocation senses a force due to the presence of a stress field around it. The
presence of more dislocations, each with its own surrounding stress field, means
that all these forces influence one another. Consider the presence of two dislo-
cations without the application of an external stress. The total force is assumed to
be the sum of the individual forces. In Sect. 3.3.7, it was indicated that a dislo-
cation must have certain strain energy and, indeed, a strain field exists at the site of
each dislocation, affecting its motion.

3.3.11.1 Screw Dislocations

Given two parallel dislocations with the same sign at sites 1 (the origin) and 2 (as
shown schematically in Fig. 3.48a), the stress fields at these screw dislocations
have a radial symmetry and their Burgers vectors are parallel to the z axis. Due to
their radial symmetry, their stress is:

szh ¼
Gb1

2pr
ð3:65Þ
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There is only one force, because of the radial symmetry, Fr, which is a radial
component. The first stress field is acting on dislocation 2 at a distance, r, from the
first dislocation and, therefore, this force is:

Fr ¼ szhb2 ¼
Gb1b2

2pr
ð3:66Þ

These two same-signed, parallel dislocations repel each other, depending
inversely on the distance, r, (how far apart they are from each other) and, therefore,
they stay relatively distant on the same or on near slip planes.

In Cartesian coordinates, two forces exist, those of Fx and Fy, expressed as:

Fx ¼
Gb1b2x

2pðx2 þ y2Þ ð3:67Þ

Fy ¼
Gb1b2y

2pðx2 þ y2Þ ð3:68Þ

3.3.11.2 Edge Dislocations

Again, consider two parallel edge dislocations, as shown in Fig. 3.48b. They act in
plane zx. Here, the dislocation line is parallel to the z axis. The first stress field is
acting on dislocation 2, which is a parallel slip plane. The force has two com-
ponents, Fx and Fy, in the x and y directions, as indicated by the subscripts. For the
dislocation at the point of origin, these two components may be expressed as:

Fx ¼ sxyb2 ¼
Gb1; b2

2pð1� mÞ
xðx2 � y2Þ
ðx2 þ y2Þ2

ð3:69Þ

T

r

y

x

z

θ

1

2

b

r

y

x

z

θ

1

2

b

T

(a) (b)

Fig. 3.48 Two same-signed, parallel dislocations at sites 1 and 2: a screw; b edge [14]
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Fx exerts a glide force on the second dislocation in the x direction. The dis-
location at the origin (dislocation 1) exerts a climb force component, Fy, on
dislocation 2, shown in Fig. 3.48b in the y direction (a force component perpen-
dicular to the glide plane).

Fy ¼ �r1b2 ¼
Gb1b2

2pð1� mÞ
yð3x2 þ y2Þ
ðx2 þ y2Þ2

ð3:70Þ

Note that when dislocation 2 is above dislocation 1, i.e., when its coordinates
are (0, y), they do not exert glide force on each other. For polar coordinates, these
forces are given as:

Fr ¼ Fx cos hþ Fy sin h ¼ Gb1b2

2pð1� mÞ
1
r

ð3:71Þ

Fh ¼ Fy cos h� Fx sin h ¼ Gb1b2

2pð1� mÞ
sin 2h

r
ð3:72Þ

Equations (3.66–3.72) are based on the expressions in Sect. 3.3.9, specifically
Sects. 3.3.9.1 and 3.3.9.2 for screw and edge dislocations, respectively. In
Fig. 3.48a and b, the Burgers vectors are parallel to the z and x axes of the screw
and edge dislocations, respectively. As mentioned in Sect. 3.3.11.1, there is a
repulsive force between same-signed dislocations, an attractive force between
unlike dislocations. When y = 0, Eq. (3.69) reduces to

Fx ¼
Gb1b2

2pð1� mÞ
1
x

ð3:73Þ

indicating that the force depends only on the distance between the dislocations and
also that Fy = 0.

3.3.12 Intersection of Dislocations

In earlier sections, the characteristics of single dislocations were discussed. It was
indicated that a dislocation moves quite freely in certain glide planes under applied
shear stress. However, even well-annealed crystals contain many dislocations at a
level of *104. Therefore, it is quite probable that moving dislocations will
encounter others, known as ‘forest dislocations’, which will hinder their freedom
to glide. Even the most favored planes will contain dislocations and, thus, moving
dislocations will interact with those others present in the material. The term
‘dislocation intersection’ refers to an interaction occurring between a moving
dislocation and the others encountered while in motion. For the sake of simplicity,
this section will describe the interactions between two dislocations.

When dislocations intersect jogs, ‘kinks’ may form. ‘Kinks’ are steps occurring
in dislocation lines within the same slip plane, while ‘jogs’ are steps in another slip
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plane. Jogs may form during processes of thermal activation (as mentioned in
Sect. 3.3.10.2), at an elevated temperature or at low temperatures by some inter-
section of dislocations. Of the many possibilities, the simplest case is when two
edge dislocations, moving on two planes normal to each other, intersect. In
Fig. 3.49, the intersection of two edge dislocations is shown before and after jog
formation.

A jog, PP0, is formed after dislocation CD cuts through the AB dislocation line
(Fig. 3.49b). The size of the step is that of Burgers vector b1, but remains a part of
dislocation AB. The segment is of edge character, since its Burgers vector is b2

(that of the overall dislocation AB of which it is a part). Since the Burgers vector
and the dislocation line APP’B are in the same glide plane, jog PP0 will not hinder
the motion of that dislocation. There is an energy increase in dislocation AB by the
length of b (i.e., b1), which may be expressed by aGb2b = aGb3.

The intersection of two orthogonal dislocations with parallel Burgers vectors is
illustrated in Fig. 3.50, before and after intersection. In this case, two kinks are
formed with the Burgers vectors, namely b1 and b2 for the AB and CD disloca-
tions, respectively. Both these kinks have a screw orientation and an increase in
energy occurs in each of their dislocation lines.

Other cases are the intersections between edge-screw and screw-screw dislo-
cations, illustrated in Figs. 3.51 and 3.52, respectively. Simply drawn, the inter-
secting planes in the figures below are orthogonal, but they do not have to be.

Figure 3.52 illustrates that, in the edge-screw case, a jog PP0 in the edge and a
kink QQ0 in the screw dislocations, respectively, are formed. The jog is formed,
because plane PAB, where dislocation AB is moving, is a spiral surface, not unlike
a ramp, so its motion, after cutting the screw dislocation, is not at the same level as
it was at the beginning of its motion. The PP0 jog has an edge character and can
move with dislocation AB in the PAB plane, whereas QQ0 must climb, since it
cannot move up along the screw dislocation. Segments PP0 and QQ0 (in Fig. 3.52)

A
B

b2

b1

C

D

PAB

PCD b2

A

B

b1

C

D

P

P

PAB

PCD

(a) (b)

’

Fig. 3.49 The intersection of two edge dislocations: a before intersection; the dislocation in
plane PCD is moving in the direction shown; b after intersection, jog PP0 is formed on plane PAB

[14]
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Fig. 3.50 Two orthogonal dislocations with parallel Burgers vectors: a before intersection;
b after intersection [14]

TT b1

b2

A
B

C

D

PAB

PCD

T
T

b1

b2

A
B

C

D

PAB

PCD

P
P’

Q Q’

(a) (b)

Fig. 3.51 The intersection of edge and screw dislocations: a before intersection; b after
intersection [14]
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Fig. 3.52 The intersection of screw dislocations: a before intersection; b after intersection. Two
steps are formed, both having an edge character [14]
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both have an edge character, since the respective Burgers vectors are perpendicular
to them. The AB screw dislocation, after cutting through dislocation CD and
moving into PXD again (as described in Fig. 3.51), also concludes its motion at a
level higher than where it began, thus forming a jog. The segment, PP0, is actually
a jog, but it is not easily drawn. However, by means of Fig. 3.53, the jog formation
in Fig. 3.52 and its motion may be better understood. Note that the shaded area
defines the glide plane of the jog, which has an edge orientation and, thus, its
motion is along the screw axis of AP0PB. The only motion of the screw dislocation
to A0B0 is by climb.

Some comments in summation:

(a) the movement of dislocations generates steps as jogs and kinks;
(b) jogs severely influence the glide of dislocations;
(c) jogs and kinks can occur in any dislocation, not just edge dislocations, though

they are often difficult to render graphically;
(d) as will be discussed in a next chapter, the role of jogs in strain hardening is of

great importance, since no easy glide is possible.

3.3.13 Dislocation Multiplication

As indicated in earlier sections, well-annealed crystals have *104 dislocations
and, in heavily deformed ones, that number may even reach *1010. Therefore, a
means for producing such a large number of dislocations is required. Several
sources of dislocations in materials were mentioned above (Sect. 3.3.5). The
formation of a large number of dislocations is a prerequisite for understanding
much of the mechanical behavior of materials, such as large plastic strains. One of
the well-known concepts for generating a large number of high-velocity disloca-
tions is by means of the ‘Frank-Read mechanism’, also known as the ‘Frank-Read
generator’. In essence, according to this method, one single dislocation is sufficient
to produce a large number of them at the deformation velocity. Figure 3.54 is the
graphic method used by most publications in the field to show how this is done. A

A

P’

P

B

A’

B’

b2

A

P’

P

B

A’

B’

b2

Fig. 3.53 The jog, PP0, and
the screw dislocation line,
AP0PB, after intersection.
This jog has an edge
character and its glide plane
(i.e., where the jog can glide)
is defined by the shaded area.
Movement of the screw
dislocation to A0B0 can occur
only by climb [14]
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well-documented Frank-Read dislocation source in action in silicon was demon-
strated by Dash and is readily available elsewhere in the literature. The stepwise
operation of a Frank-Read source on a slip plane is as follows:

(a) assume that a dislocation segment, D-D0, is pinned at both ends, as seen in the
illustration;

D
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Fig. 3.54 Schematic multiplications of a single dislocation according to the concept of a Frank-
Read source [14]
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(b) an applied stress produces a glide force, sb, acting on this segment in its glide
plane, causing it to curve maximally into a semicircle shape. The line tension
balances the force on the dislocation;

(c) the stress, s, is increased beyond a critical value (illustration b) and the dis-
location becomes unstable, tending to expand indefinitely. The expanding
dislocation loop doubles back on itself, forming spirals at each end of the
dislocation;

(d) this dislocation continues to expand. In c) and d), slip occurs, as indicated by
the area of the expanding loop;

(e) the spirals of the slipped area have joined, forming a closed dislocation loop
and that segment of the dislocation is ready to start a new cycle.

The dislocation parts at A and B (illustration d) have opposite signs and attract
each other until the loop closes (illustration e). The dislocation segment, D-D0,
which was left behind, repeats the same sequence as described above. The force
acting on the dislocation, causing it to curve, is balanced by the line tension
(discussed in Sect. 3.3.8). The line tension per unit length in that section is equal to
the force acting normally on the dislocation segment. In equilibrium with the
applied stress, the relation derived as Eq. (3.74) may be rewritten here as:

s ¼ aGb

r
ð3:74Þ

which may also be expressed in terms of the radius, r, as:

r ¼ aGb

s
ð3:74aÞ

Beyond this radius, at the point of the applied stress, the dislocation becomes
unstable, as previously mentioned, and the Frank-Read source, pinned at both
ends, expands under a diminishing force. Equation (3.74) represents the stress
required to generate dislocations from a Frank-Read source. If the shear stress
increases any further and the dislocation passes the semicircular equilibrium state,
it will spontaneously continue to bend and grow, spiraling around the A and B
pinning points until the segments spiraling around the A and B pinning points
collide and cancel each other out, as described earlier. This process results in a
dislocation loop around D and D0 in the slip plane, which expands under continued
shear stress. In addition, the dislocation line between D and D0 may continue to
generate dislocation loops in the manner described above. A Frank-Read source
can, thus, generate many dislocations in a crystal plane under applied stress. A
single Frank-Read source may also operate when the line is pinned only at one
end. Intersections with other dislocations, which form jogs that increase the length
of the line, may even act as Frank-Read sources.
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3.3.14 Partial Dislocations

Usually, there are preferred slip planes and directions in certain crystal systems.
The combination of both the slip plane and the direction define a slip system. Slip
planes are generally the closest-packed planes in a structure. The slip direction of a
slip plane is the one with the highest linear atomic density. Up to this point, no
specific consideration has been given to structure; however, when discussing
partial dislocations, one cannot avoid the structural aspect. The most common
approach is to consider FCC structures. However, before entering into the details,
one must define the term ‘partial dislocation’. Unlike the dislocation cases dis-
cussed thus far, in which the most characteristic feature was the Burgers vector,
which is also a ‘translation vector’ of the lattice, in ‘partial dislocation’, the
Burgers vector is not a translation vector of the lattice and partial dislocations are
usually bordered by planar defects called ‘stacking faults’ (SF). For the purpose of
illustration, closely-packed planes make a good example. In FCC, slip occurs on
{111} planes in h110i directions. In Fig. 3.55, closely-packed planes and their
arrangement in an FCC structure are shown. Note that the apexes of the triangular-
shaped voids have two orientations, with the apex pointing upward or downward.
Plane B can occupy any of these voids. Assume that those with the apex pointing
upwards are occupied by this plane. In an FCC structure, in which the sequence of
planes is A, B and C, plane C will occupy the voids with the apexes pointing
downward (as in the considered case). The entire stacking is shown in the last
illustration, such that all three planes may be observed. Thus, by necessity, plane C
is only partially shown. An FCC unit cell and one of the {111} planes are depicted
in Fig. 3.56.

plane A in a FCC structure

apex pointing up

apex pointing down

plane B in a FCC structure

plane C in a FCC structure ABC planes characterizing an FCC structure

Fig. 3.55 Packed planes in an FCC metal. The sequence of the planes is A, B and C [14]
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3.3.14.1 Shockley Partial Dislocation

As indicated above, the translation vector in FCC structures is of type a/2 h110i ;
therefore, it should also be the Burgers vector. Yet, for energetic and topographic
reasons, this vector splits into what is known as ‘partial dislocations’. Two partials
are formed and are termed ‘Shockley partial dislocations’ or simply ‘Shockley
partials’. First, consider the topological reason why a Burgers vector might split. In
Fig. 3.56b, one sees Burger vector b1, which is the translational vector. To attain
motion, it would have to surmount the peak formed by the central atom. Rather
than taking the proverbial ‘high road’, an easier strategy is adopted—it splits into
two steps and goes, as it were, ‘‘round the mountain’’, by passing through ‘the
valleys’ on either side, between each of the two neighboring atoms, as represented
by vectors b2 and b3. The crystallographic orientations of these partials (students
should verify this as an exercise) are of the type a/6 h211i .

As indicated in Sect. 3.3.7, the energy of a dislocation is proportional to b2 in
the form of:

E ¼ aGb2 ð3:75Þ

where a takes the type of dislocation into account. Note from the following
reaction that dislocation splitting is energetically favored. One such reaction is:

a

2
½110� ¼ a

6
½211� þ a

6
½12�1� ð3:76Þ

Before looking at the energetic profile of this reaction, one must verify its
correctness according to the following steps:

(a) (b)

b1

b2 b3

Fig. 3.56 FCC unit cell: a shaded area a {111} plane; b the shaded {111} plane showing the
splitting of Burgers vector b1 into b2 and b3 [14]
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The un-dissociated vector The partials

component x 1/2 2/6 ? 1/6 = 3/6 = 1/2
component y 1/2 1/6 ? 2/6 = 3/6 = 1/2
component z 0 1/6 - 1/6 = 0

Thus, this reaction is proven correct and both sides of Eq. (3.76) are balanced.
Next, one must check the energetic aspect. For this purpose, take the absolute values
of the indexes of the Burgers vectors. Since their energies are proportional to their
squares (as seen in Eq. 3.75), for the left side of Eq. (3.76), one gets a2/2 and, for the
sum of the squares on the right-hand side, a2/3. Clearly, a2/2 [ a2/3 and there is a
decrease in energy, thus the splitting of the dislocation is also favored energetically.

In Fig. 3.57, the separation of a perfect dislocation in FCC metals is illustrated.
As indicated in Fig. 3.55, the planes are designated as A, B and C and the same

notation is also used for the voids between the atoms with up or down apexes. The
reaction shown in Fig. 3.57 is:

1
2

10�1ð Þ ¼ 1
6

21�1ð Þ þ 1
6

�1�12ð Þ

This is another form of Eq. (3.76).
In Fig. 3.57a, one row of atoms indicates the formation of the partial disloca-

tions. The dislocation in plane A, with b1 normal to it, is of edge orientation (it is

(a) (b)

(c)

Fig. 3.57 Partial dislocations in an FCC structure: a the split motion of atoms from site B to site
C; partial dislocation with Burgers vectors b2 and b3; b extended dislocation composed of the two
partials and the SF between them; c schematic presentation of a SF [14]
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the total dislocation). The single row of atoms in plane B is zig-zagged on both
sides, which is characteristic of partial dislocations. The first movement of the row,
by the amount of b2, shifts it into a zig-zag position, while the second movement,
indicated by vector b3, brings the atoms to the final position, as would have
occurred with a single displacement of b1. These two partial dislocations will repel
each other to a point where a balance is reached between the elastic energy
decrease, due to the splitting of the dislocation, and the increase in SF energy. The
SF energy varies widely from metal to metal, depending on the width of the fault.
Thus, the width of a SF in Cu is about 10 atomic spacings, whereas, in Al, it is
only *2 atomic separations. This means that the SF energy of Cu is low (*80)
compared to that of Al (*200 mJ/m2). The combined defect created by partials
and a SF is called an ‘extended dislocation’. Schematically, the partials and the SF
are shown in Fig. 3.57c.

The width of a SF is a consequence of the balance between the repulsive force
separating its two partial dislocations and its attractive force. When the SF energy
is high, the splitting of the perfect dislocation into two partials is unlikely and glide
in the material occurs only as a result of perfect dislocation glide. Lower SF energy
will promote the formation of wider SFs and cross-slip or climb will be more
difficult consequently. As a result, the mobility of the extended dislocation in
materials with low SF energy decreases.

The usual schematic presentation of the splitting of a perfect dislocation into
Shockley partials with a fault between them is shown in Fig. 3.57c.

In Sect. 3.3.11, the force between two dislocations is given either by Eq. (3.73)
or by Eq. (3.67). In analogy to Eq. (3.67), the repulsive force between the two
partial dislocations, in terms of the distance, d, may be rewritten as:

F ¼ Gb�2b3

2p
1
d

ð3:77Þ

where d, in Eq. (3.77), stands for the thickness of the SF ribbon formed by the
partial dislocations with vectors b2 and b3. The SF energy-per-unit area is c (not
shear angle!) and, when multiplied by the area, the energy of the fault is obtained.
Thus, the force of the SF (i.e., energy per distance) is equivalent to c:

c ¼ Gb2b3

2p
1
d

ð3:78Þ

By balancing these forces, the equilibrium distance, d, of the separation
between the partials may be obtained

d ¼ Gb2:b3

2p
1
c

ð3:78aÞ

The extended dislocation, discussed hitherto, consists of Shockley partials and a
SF, which can glide within its own glide plane; therefore, the accepted notation is
glissile dislocation.
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3.3.14.2 Frank Partial Dislocations

Partial dislocations can form not only by splitting a perfect dislocation, but also by
inserting or partly removing a {111} plane. In Fig. 3.58a, the FCC stacking of slip
planes is illustrated schematically before the removal of a plane. The sequence of
the stacking of the {111} planes is modified at the region where the fault exists
from the FCC to a hexagonal closely-packed [henceforth: HCP] structure, as seen
in Fig. 3.58b.

In the center of this figure, in the region of the fault, the sequence is not
…ABCABC…, but …ABCBCA…; the underlined bold letters are characteristic
of HCP packing. The Burgers vector indicated is in the h111i direction; its actual
value is b = a/3 h111i. The missing plane (indicated in Fig. 3.58b) may have been
removed by the condensation and collapse of the vacancies, forming a disc-shaped
layer. As seen in Fig. 3.58, this fault is bounded by an edge-oriented dislocation at
each side. The Burgers vectors are normal to the {111} planes and are not in the
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Fig. 3.58 SF formation: a the FCC stacking of slip planes before removal of a plane; b the
stacking sequence of the {111} planes is modified at the region where the fault exists from the
FCC to an HCP structure; c the sequence before the insertion of an additional plane (indicating
the place of insertion); d the re-insertion of the plane produces a thin HCP structure
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slip direction in FCC crystals. This is known as ‘Frank sessile dislocation’.
A Frank dislocation may also be formed by inserting part of a plane, which is also
a sessile dislocation, since it cannot glide in any of the ABC slip planes, as shown
in Fig. 3.58c. A dislocation formed in this way can only move non-conservatively,
which requires the transport of either atoms or vacancies. Note that, when part of a
plane is removed, the fault is described as ‘intrinsic’ while, when a partial plane is
inserted, it is called an ‘extrinsic-stacking fault’. In practice, both types of Frank
partial dislocations may occur, either due to the condensation of excess vacancies
during crystal growth or by the condensation of interstitial atoms. Such partial
dislocations are also known as ‘negative’ or ‘positive Frank partials’, respectively.

3.3.14.3 Cross Slip of Partial Dislocations

As stated earlier, in edge dislocations, the slip direction and the dislocation line
define the slip system; however, in screw dislocations, the Burgers vector is par-
allel to the dislocation line and, thus, it may cross-slip into planes belonging to the
same form. The situation is different in cases of extended dislocations, where SFs
influence cross-slip. Figure 3.59 illustrates cross-slip in a faulted crystal bounded
by two partial dislocations, in accordance with ideas promoted by Seeger [17].

An edge dislocation with partials is able to move within its glide plane along
with its faulted region–the extended dislocation–but it will not be able to move
into another octahedral plane unless it climbs. A screw dislocation or a screw
component will not have such a problem, as long as the direction of slip and the
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Fig. 3.59 The cross-slip of a screw dislocation: a schematic constriction in an extended
dislocation, making cross-slip possible; b the stages of cross-slip from one octahedral plane to an
other in (a) a SF before cross-slip; (b) the partial dislocations of the extended dislocation
combined along distance l; (c) the dislocation, after combination of the partials curves under the
influence of stress, cross-slipping into the �111 cross-slip plane; and (d) the extended screw
dislocation and the SF continue on from one slip plane into another
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Burgers vector are common to both {111} planes. However, cross-slip can occur
only if a ‘constriction’ (i.e., a joining of the partials) forms. Figure 3.59a shows
such a constriction in a fault at the point at which the partials come together,
allowing cross-slip to occur. In Fig. 3.59b, the stages of cross-slip are indicated:
(a) the faulted region in its glide plane; (b) the partial dislocations reunited by an
applied stress over a length of l to form an un-extended dislocation, before it can
cross-slip from 1�10ð Þ to another {111} plane (here, an �111ð Þ plane is illustrated,
which is a cross-slip plane); (c) the dislocation, after the partials have combined
under the influence of stress in the �111ð Þ cross-slip plane, bows out, also after
having first been anchored at two constrictions and then spread as a new extended
dislocation; and (d) the extended screw dislocation and the SF continue in another
plane (i.e., a cross-slip plane).

Cross-slip depends on the width of the SF. Wide ribbons require considerable
force to bring the partials together for cross-slip. Aluminum, for example (as
indicated in Sect. 3.3.14.1), has high SF energy and, thus, due to its very thin
ribbon, cross-slip will occur very readily as compared to copper. As a matter of
fact, it is often stated that, in Al, the dislocations are relatively un-extended and,
thus, frequent cross-slip is observed. HCP structures behave quite similarly to FCC
metals. In transition BCC crystals or in cubic ionic crystals (NaCl, MgO, etc.) with
narrow SFs, cross- slip occurs readily. Note that the process of cross-slip occurs
more readily at higher temperatures, since activation energy may be required for
the removal of SFs, especially in cases in which the ribbon is broad.

3.3.14.4 Thompson Tetrahedron

It is usually difficult to predict the outcome of dislocation reactions that will occur,
especially when partial dislocations are involved. Without having elaborate
crystallographic understanding of the subject, it is usual (and practical) to visualize
such possible reactions with the help of a Thompson tetrahedron. Figure 3.60
presents a schematic diagram of this commonly used tetrahedron, based on
Thompson’s concept. Four {111} planes form this tetrahedron, labeled ABCD,
where the external edges, such as AB, indicate the h110i slip directions common
in FCC structures before their dissociation into partials. The Burgers vector of the
Shockley partial dislocations, a/6 h112i , is obtained by the dissociation of
a/2 h110i. The Burgers vectors are indicated by lines connecting the corners to the
centers of the faces, such as Ac, Bc, etc.

Frank partial having a/3 h111i Burgers vectors are represented by lines, such as
Aa, Bc, etc., which connect the corners of the triangles to the opposite triangle
centers, labeled by Greek letters. Furthermore, stair-rod dislocations obtained by
the intersection of two Shockley partials on two intersecting {111} planes are
indicated as reactions between the lines connecting the centers of the triangles (i.e.,
{111} planes), for example:

abþ bc ¼ ac:
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3.3.14.5 Lomer-Cottrell Locks

Dislocation gliding on intersecting {111} planes may form a series of obstacles
known as ‘Lomer-Cottrell barriers’, preventing further glide. Since, in FCC
crystals (and also in HCP and BCC structures), dislocations generally tend to
dissociate into partials, causing extended dislocation faults, it is important to
consider the case of Lomer-Cottrell barrier formation. Figure 3.61 illustrates the
formation of such a barrier. In Fig. 3.61a, SFs, bounded by partial dislocations,
glide on intersecting {111} planes before their interaction. In Fig. 3.61b, the result
of the reactions between these partials is shown, forming a ‘Lomer-Cottrell lock‘.
Here, partial leading and tracking dislocations, with a SF between them, glide on
their respective planes. The leading partial dislocations on the intersecting planes
have formed a new partial dislocation with Burgers vector a=6½1�10�, according to:

a=6½�1�21� þ a=6½21�1� ¼ a=6½1�10�:

This reaction is correct, as may be seen by checking the components of the
Burgers vectors and it is also energetically favorable. A consequence of the above
reaction is the formation of a sessile dislocation, beyond which the trailing dis-
locations pile up. The Burgers vector of the newly-formed partial dislocation, i.e.
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a/6 h110i , shown in the above reaction, is not the vector of the FCC lattice (but
rather a/2 h110i) located in plane {001}, which is not a slip plane in the FCC
structure, so it cannot glide. As a matter of fact, all three partial dislocations—both
the leading partials which entered into the reaction and the newly-formed partial
dislocation–form a very stable lock, which prevents the movement of other
dislocations.

3.3.15 Dislocation Pile-Ups

Dislocations generated by a Frank-Read source quite often pile-up at various
barriers, such as grain boundaries, precipitates, etc. and cannot glide easily. The
later dislocations exert forces on the prior ones. Pushing dislocations into a pile-up
configuration requires stresses higher than those which act in the absence of pile-
up dislocations. Figure 3.62 schematically illustrates a dislocation pile-up on a
{111} plane, where movement is blocked by some barrier, e.g., a Lomer-Cottrell
lock. High stress concentration is acting on the leading dislocations and, when the
pile-up stress is greater than the theoretical shear stress, yielding is induced. A
back stress acts on the obstacle, preventing further motion of the dislocations. Near
the obstacle, the density of the pile-ups is the greatest, but the distance between the
individual dislocations increases as same-signed dislocations repel each other.
Since repelling forces are additive, they increase. One could say that a stress
concentration exists at or close to the obstacle.

The key factor in the motion of these dislocations is the first or leading dis-
location in the vicinity of the obstacle. Assume that the leading dislocation has
moved a distance, dx; all the trailing dislocations will move the same distance. The
work done per unit length of the dislocation is:

work ¼ nsbdx ð3:79Þ
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Fig. 3.61 A Lomer-Cottrell lock: a two partial dislocations before interaction, b after interaction
of the leading partials forming a stair-rod dislocation
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where n is the number of dislocations and s is the applied stress. The leading
dislocation, si, works against the local stress (internal stress) of the obstacle. Thus,
the work of the leading dislocation is:

work ¼ sibdx ð3:79aÞ

At equilibrium, these equations should be equal and, thus, it is possible to
derive the following from Eqs. (3.79) and (3.79a):

ns ¼ sib ð3:79bÞ

In other words, the internal stress at the head of the pile-up, composed of n
dislocations, is n times greater than the applied stress. As seen in later chapters,
stress concentration plays an important role both in strain hardening and in brittle-
fracture formation. The back stress of the pile-up, sb, acts on the source to create
new dislocations. As long as:

sb � sa ¼ s ð3:79cÞ

where sa is the stress required to operate a source, it will function to produce
dislocations.

Eshelby et al. [24] have calculated the number and distribution of dislocations
that can pile-up in a slip plane of length, L, with acting shear stress, s, to be:

n ¼ pLsk

Gb
ð3:80Þ

Here, k = 1 for screw and (1 - m) for edge dislocations.
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Fig. 3.62 Dislocation pile-ups (partials and their faults are shown) behind a Lomer-Cottrell lock,
acting as obstacles to their movement
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A pile-up of n dislocations along a distance, L, may be considered to be a giant
dislocation with Burgers vector nb. The breakdown of a barrier occurs due to:

(a) slip on a new plane or if the material is polycrystalline in a new grain;
(b) climb;
(c) crack formation due to the high stress.

3.3.16 Low- (Small)-Angle Grain Boundaries

Materials are usually polycrystalline, but in order to study crystal properties
without the complexities caused by grain boundaries, single crystals are more
suitable subjects. However, if the difference between the grain orientations in a
polycrystalline material is sufficiently small, then the problem of studying crystal
properties becomes limited to the presentation of an array of dislocations. Fig-
ure 3.63a shows two crystals with a tilt misorientation angle of h before joining.
The two grains share a common axis about which both are rotated, defining the
angle h. By joining these two crystals into a bi-crystal, a dislocation wall is
formed by an array of dislocations, each dislocation having the same sign and
Burgers vector. These dislocations in the array line up one above the other to
reduce the system energy, as shown in Fig. 3.63b. Each individual dislocation
may be resolved up to a misorientation of *10o, above which analysis of the
grain boundary (in terms of an array of dislocations) is not possible. A simple
relation may be obtained from Fig. 3.63b connecting the distance between dis-
locations, the tilt angle and the Burgers vector (in the simple cubic bi-crystal),
given as:

2sin
h

2
� h ¼ b

D
ð3:81Þ

For h = 1� and for b * 2.5 9 10-8, the value of D * 140 Å. In simple cubic
materials, b = h100i . The larger the angle h is, the closer the spacing between the
dislocations will be. Thus, for an angle of *15o (when the dislocation model is no
longer valid), the dislocations are approximately a few atomic spacings one from
another, at *9.5 9 10-8, and it is impossible to distinguish between the indi-
vidual dislocations.

This kind of presentation, of a bi-crystal as an array of edge dislocations,
defines a ‘low-angle grain boundary’, which is also known as a ‘simple tilt
boundary’. Low-angle grain boundaries are not usually pure tilt boundaries, since
the formation of a bi-crystal may occur via a process of screw dislocation and,
thus, may include some characteristics of screw dislocation. Such a low-angle
boundary is also known as a ‘twist low-angle grain boundary’, originating from the
fact that the lattices of the grains are twisted when a screw dislocation component
is present.
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The energy of a small-angle grain boundary may be calculated on the basis of
the dislocation model. Schematically, the relative energy, as a function of the
angle of orientation difference, is shown in Fig. 3.63c. One may express this
energy as:

Eb ¼ E0hðA� lnhÞ ð3:82Þ

This relation may be obtained as follows:

(a) in Sect. 3.3.7, Eq. (3.25) gives ETE, which includes the core energy:

ETE ¼ Eþ Ecore ð3:25Þ

(b) the core energy in Eq. (3.39) is given by:

Ecore ffi pð5bÞ2 G

30

� �
1
G
� Gb2

10
¼ CGb2 ð3:39Þ

(c) in Eq. (3.41), the energy-per-unit length of dislocation is given as:

Eedge ¼
Gb2

ð1� mÞ4p
ln

r

r0
ð3:41Þ

(d) the energy of the unit-cell area is ETEx1 and ETE is the energy-per-unit length
of a dislocation passing or cutting through this area. Therefore, the energy per
area of the boundary is ETE x1/1xD; the energy-per-unit area of a boundary of
length D is then:
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Fig. 3.63 A low-angle grain boundary: a two grains are shown with a common cube axis and
their angular difference is h; b the two grains are joined to form a bi-crystal. An array of edge
dislocations is formed at the joint of the two grains with spacing D between them; and c relative,
low-angle, grain-boundary energy
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(e)

Eb ¼ ETE � 1ð Þ= 1� Dð Þ ð3:83Þ

(f) substituting from Eqs. (3.25), (3.39) and (3.41) (using the proper subscripts):

Eb ¼
Gb2

ð1� mÞ4p
ln

r

r0

� �
1
D
þ CGb2

D
ð3:84Þ

(g) taking r = D (since, outside this range, the stress fields cancel each other out)
and expressing D in terms of h, from Eq. (3.81), one obtains:

Eb ¼
Gb2

ð1� mÞ4p
ln

D

r0

� �
1
D
þ CGb2

D
¼ Gb2

ð1� mÞ4p
ln

b

hr0

� �
h
b
þ CGb2h

b
ð3:85Þ

(h) arbitrarily taking r0 * b, Eq. (3.85) may be rewritten as:

Eb ¼
Gb2

ð1� mÞ4p
ln

1
h

� �
h
b
þ ChGb2

b
ð3:86Þ

Eb ¼
Gbh

ð1� mÞ4p
½ln 1

h

� �
þ Cð1� vÞ4p� ð3:87Þ

(i) Equation (3.87) expresses the form of the low-angle grain boundary (just as
well as does Eq. (3.82), commonly found in the literature) and so:

E0 ¼
Gb

ð1� mÞ4p
and A ¼ C4pð1� mÞ and ln

1
h
¼ � ln h ð3:88Þ

Note the shortcomings of this derivation: (a) it is valid only for real, small
angles, as assumed to be the case when using Eq. (3.81); (b) the core energy is not
known. The approximation in Eq. (3.39), at best, only provides an estimation; and
(c) it is inherent in the derivation that A and E0 be independent of h.

Small-angle grain boundaries are illustrated in Fig. 3.22 by means of the etch-
pits technique: Relation (3.82) is rewritten as (3.89);

Eb ¼ E0hðA� lnhÞ ð3:89Þ

3.3.17 Experimental Observations of Dislocations
in Ceramics

After the above conceptual discussion of dislocation and some of its features, the
following presents relevant experimental observations regarding dislocation types
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and characteristics. Since the field of ceramics is huge and includes various
structures, a limited number of representative examples are presented below of:

(a) edge dislocations;
(b) screw dislocations;
(c) partial dislocations;
(d) climb;
(e) cross-slip;
(f) Lomer-Cottrell locks;
(g) dislocation pile-ups;
(h) low-angle grain boundaries; and
(i) SFs.

3.3.17.1 Edge Dislocations

As indicated in Chap. 2, MgO single crystals deform plastically at ambient tem-
perature. The dislocation substructures in single crystals of MgO deformed by
four-point bending at temperatures from -196 to 1300 �C have been observed by
TEM. Although the majority of pairs originated where screw dislocations inter-
sected grown-in dislocations, elongated edge-dislocation pairs were also found at
all the deformation temperatures. In Fig. 3.64, pairs of edge dislocations are shown
in an MgO specimen deformed at -196 �C. The MgO sample was deformed by
four-point bending. In this case, there was an equal shear stress on four of the six
possible {110} slip systems. Two of the active systems were on planes intersecting
the {l00} tension surface at 45o and two intersecting it at 90o. Hereafter, these
planes will be referred to as the 45o and 90o planes, respectively. Deformation of
as-polished specimens, despite the equal shear stress on the slip planes occurred
predominantly on 45o planes, was concentrated under the center knife-edges. The
stress–deflection curve for such specimens invariably had a high yield stress fol-
lowed by a sharp drop and jerky flow, as indicated in Fig. 3.65a. The high yield
stress followed by a sharp drop in stress appears to be a result of the higher stress
necessary to nucleate dislocations in MgO than that required to move them.

Section 3.3.16 indicated that: low-angle grain boundaries consist of an array of
dislocations; each dislocation shares the same sign and Burgers vector; and the
dislocations of the array line up, one above the other, to reduce the system energy,
forming a dislocation wall. Each individual dislocation may be resolved up to a
misorientation of *10o, above which analysis of the grain boundary in terms of an
array of dislocations is not possible. The distance between the dislocations, D, was
given as:

2 sin
h
2
� h ¼ b

D
ð3:81Þ
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A pure tilt boundary is composed of an array of edge dislocations, while a twist
boundary is defined by an array of screw dislocations. In Fig. 3.66, a high-reso-
lution electron microscopy [henceforth: HREM] image of a 5o small- angle tilt
boundary around [110] axis is shown for zirconia. Periodic contrasts may be seen
along the boundary coming from the array of edge dislocations. This boundary
consists of discrete-edge dislocations separated by nearly perfect crystals. The
distance between these dislocations is *4.3 nm. A Burgers circuit around these
dislocations is visible and the vector was determined to be b ¼ a=2½1�10�.

3.3.17.2 Screw Dislocations

Cubic zirconia single crystals stabilized with 11 mol% yttria were deformed in air
at 1400 �C and at *1200 �C at different strain rates along ½1�12� and [100] com-
pression directions. The microstructure of the deformed specimens was investi-
gated by high-voltage TEM, including contrast extinction analysis for determining
the Burgers vectors, as well as stereo pairs and wide-angle tilting experiments to

Fig. 3.65 Effect of
temperature and surface
condition on the stress
deflection curve for crystals
deformed in four-point
bending [23]. With kind
permission of John Wiley and
Sons

Fig. 3.64 Dislocation pairs
in a specimen deformed at
-196 �C. Dense dislocation
substructure composed
largely of close edge. Active
slip plane is at 450 to plane of
foil [23]. With kind
permission of John Wiley and
Sons
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find the active slip planes. In deformations along ½1�12�, the primary and secondary
slip planes are of {100} type. At strains above about 1 %, cubic zirconia deforms
by multiple slip. Figure 3.67 shows the dislocation structure of a sample deformed
at 1400 �C along ½1�12� using different g vectors.

The primary dislocations of the a=2½1�10� Burgers vector are in contrast only in
Fig. 3.67a. These dislocations appear smoothly curved on their inclined (001) slip
plane. Stereo pairs prove that dislocations are not always precisely arranged on
their slip planes, indicating the action of cross-slip or climb. The only pinning
agents acting on primary dislocations seem to be the other two sets of dislocations,
which can clearly be discerned in Fig. 3.67b–d. The Burgers vectors of these
secondary dislocations are a=2½01�1� (extinguished in Fig. 3.67c) and 1/2[101]
(extinguished in Fig. 3.67d). These secondary dislocations are mainly of screw
type, so that they appear as almost straight lines.

3.3.17.3 Partial Dislocations

Wu and Wang [55] analyzed the dissociation of perfect dislocations into partials in
BaTiO3 by TEM. Figure 3.68 illustrates the results for this hexagonally-structured
ceramic, in which the basal plane is commonly involved in the deformation.

Fig. 3.66 HREM image of
2h = 5.0� symmetric tilt
small angle boundary.
Periodical dislocations can be
seen along the boundary.
Inset is the Burgers circuit
around a dislocation, and the
Burgers vector is a=2½1�10�
[50]. With kind permission of
Professor Shibata
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It was observed that perfect dislocations in the basal plane, embedded in an
a-type extended planar SF hexagonal (h-) BaTiO3 with a Burgers vector of
bB ¼ 1=3h�12�10i, were dissociated into prism plane half-partials with Burgers
vectors bP ¼ 1=3h01�10i.

It was found that the dissociation of a series of basal dislocations occurred by
glide in the fault plane (0002). However, the migration of the pair partials, trailing
behind in the fault plane, was impeded by the leading pair. Under the stress applied
during hot pressing, these partials were gradually piled up with successively
decreasing separation between each pair. That consequently led to partial sepa-
rations ranging from 195 to 56 nm. That dislocations are pair partials is evidenced
by the SF fringes in bounded ribbons and by invisibility criteria, when the dis-
location pairs were both visible under g ¼ �12�10 (Fig. 3.68b) and, complementa-
rily, one of the two became invisible under g ¼ 11�20 (pi visible and qi invisible,
where i = 2–9, in Fig. 3.69c) and �2110 (pi invisible and qi visible, where i = 2–9,
in Fig. 3.68a) from ZA = [0001]. Only pair partials, p8 and q8, are curved

Fig. 3.67 Dislocation structure of a sample deformed along ½1�12� at 1400 �C up to a plastic
strain of 3 % and cooled under full load. a g ¼ ½0�22� near the ½�111� pole; primary and secondary
dislocations visible. b g = [220] near the ½�111� pole; primary dislocations extinguished,
secondary ones visible. c g = [111] near the ½�211� pole; primary and secondary dislocations with
b ¼ 1=2½01�1� extinguished, secondary ones with b = 1/2[101] visible. d g ¼ ½11�1 near the ½�121�
pole; primary and secondary dislocations with b = 1/2[101] extinguished, secondary ones with
b ¼ 1=2½01�1� visible [22]. With kind permission of John Wiley and Sons
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(Fig. 3.69); other pairs, e.g., p2, p3, and p4, remain mutually in parallel and each
partial (pi) is parallel to its corresponding one in the pair (qi), i.e., p2//q2, and
p3//q3. Dislocations p8 and q8 are the only pair partials terminated at the same side
of fault F, others straddling the fault remain parallel to each other, e.g. (p2, q2).

Perfect basal dislocations, dissociated into prism plane half-partials by glide in
fault plane F, have been analyzed for their fault vectors, dislocation Burgers
vectors and for true line directions. All half-partials traveling behind the leading
pair were piled up due to the hindrance of motion caused by one partial of the
leading pair that was moving into another fault plane by a mixed mechanism of
glide in (0002) and climb down in 10�10ð Þ by 1=2½000�1�. Whether the rate-deter-
mining mechanism is climb-controlled dislocation-glide during the hot pressing of
h-BaTiO3 requires further systematic, kinetic studies.

3.3.17.4 Dislocation Climb

Previous Sect. 3.3.6 indicated that dislocation motion may be conservative (glide)
and nonconservative (climb). For glide, the Burgers vector and dislocation must be
in the same plane. Unlike edge dislocations (as indicated above), screw

Fig. 3.68 a Bright-field (BF) image of the area consisting of both tetragonal and hexagonal
grains, b faults F, F’, and F’’ (weak-beam dark-field (WBDF)), and c framed area of fault F
containing a series of dislocations lying in the fault plane (transmission electron microscopy)
[55]. With kind permission of John Wiley and Sons
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Fig. 3.69 Representative weak-beam dark-field (WBDF) images where dislocations Burgers
vectors (b) and fault vector (RF) of fault F were determined (transmission electron microscopy)
[55]. With kind permission of John Wiley and Sons
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dislocations have Burgers vectors parallel to the dislocation and may continue
their deformation in any plane having a common zone axis with the plane in which
the screw dislocation is located. An edge dislocation can leave its slip plane only
by the climb process, by motion perpendicular to its glide plane. Dislocations can
slip in planes containing both the dislocation itself and its Burgers vector. In screw
dislocations, the dislocation and the Burgers vector are parallel, so the dislocation
may slip into any plane having the same form. In edge dislocations, the dislocation
and the Burgers vector are perpendicular, so there is only one plane in which the
dislocation can slip. There is an alternative mechanism of dislocation motion,
fundamentally different from slip, which allows an edge dislocation to move out of
its slip plane, known as ‘dislocation climb‘. Dislocation climb allows an edge
dislocation to move perpendicular to its slip plane. The driving force for dislo-
cation climb is the temperature-dependent movement of vacancies. Vacancies in
crystals must diffuse to the vicinity of the half-plane, defining the dislocation, and
change places with atoms from the half-plane. This exchange shifts the half-plane
or part of it one atomic spacing and is known as ‘positive climb’. Contrary to this
case, ‘negative climb’ means addition of atoms (interstial or interstitialcy) to a
half-plane, causing the dislocation to grow.

To strengthen two points stated earlier. First of all, during positive climb, crystals
shrink in a direction perpendicular to the extra half-plane defining the dislocation,
because atoms are being removed from the crystal. Consequently, applying a
compressive stress in a direction perpendicular to the half-plane promotes positive
climb. Contrariwise, when a tensile stress is applied in a direction perpendicular to a
half-plane, negative climb (growth of the half-plane) is promoted. This is contrary to
glide, in which shear stress induces slip in its plane. Secondly, climb is temperature-
dependent, promoted thermally, since vacancies and their motion increase with
temperature. Slip is dependent only to a small degree on temperature.

Further below, time-dependent deformation (creep) initiated by climb will be
extensively discussed. In this section, an example of dislocation climb is illus-
trated. Figure 3.70 shows dislocation climb in an Al2O3-YAG specimen. Here,
climb was assisted by thermal activation. Such a dislocation network, resulting
from the reaction of dislocations from the basal and pyramidal slip systems,
involves dislocation climb. It is a diffusion-controlled deformation mode charac-
terizing creep deformation and, in this particular case, the activation energy
determined is Q = 670 kJ/mol.

As usual, one of the accepted steady-state creep rates is given as:

_e ¼ Arn expð�Q=RTÞ ð3:89Þ

which allows for the evaluation of the activation energy for the process. A is a
material constant and n is the stress exponent obtained from:

3.3 Introduction to Dislocations 255



www.manaraa.com

n ¼ o ln _e
o ln r

� �
T ;A

Q ¼ �R
o ln _e
o1=T

� �
r;A

ð3:90Þ

Mitchell states that dislocation dissociation is rare in oxides. The only two cases
in which it has been clearly observed (A1203 and MgAI204,) involve dissociation
by climb, rather than glide, in situations where the point defects are probably
helping the dissociation process. Therefore, it is of interest to study such cases as
additional examples in which climb is involved, as one of the mechanisms in the
recovery process. Figure 3.71 illustrates dislocation dissociation by climb in MgO-
3.5 Al2O3 spinel.

Large quantities of secondary slip must have occurred, as well as dislocation
climb. Dislocation nodes of the type 1=2h110i þ 1=2h�101i þ 1=2h0�1�1i are

Fig. 3.71 Dissociated
dislocation node in
nonstoichiometric MgO-3.5
A1203 spinel. Node of three
1/2 h110i dislocations has
dissociated by climb to
produce two partial nodes
each consisting of three
1/2 h110i dislocations [38].
With kind permission of John
Wiley and Sons

Fig. 3.70 TEM
examinations of compression
tested specimens. Dislocation
reaction involving climb in
the Al2O3 phase of the Al2O3-
YAG eutectic composite is
shown [44]. With kind
permission of Dr. Appriou,
Research Director of
Aerospace Lab Journal
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observed. Nodes are frequently extended by climb dissociation, as seen in the
above figure. Nonstoichiometric spinel with excess A1203 deforms at lower tem-
peratures and lower stresses, with {110} being the preferred glide plane. The
dissociation of dislocations by climb is even more apparent in Fig. 3.72, probably
because the SF energy decreases with increasing deviation from stoichiometry. It
has been suggested that the greater plasticity of nonstoichiometric spinel is due to
the diffusion of excess cation vacancies to the moving dislocations. Clearly, the
high temperatures required for deformation in spinel are such that dislocation
climb is competitive with dislocation glide. Vacancies are essential for climb, thus
increasing plasticity (a recovery process).

An additional illustration of climb in Ti-doped sapphire appears in Fig. 3.73.
The shortest lattice vector is 1=3h11�20i and glide is easiest on the basal plane,
followed by prismatic and pyramidal slip. The initial dislocation structure consists
of edge dipoles, linking glide dislocations and loops. The dipoles form when edge
dislocations with opposite signs are trapped on parallel basal planes. As the strain
increases, the densities of the glide dislocations and loops also increase, whereas
the density of the dipoles stays constant or decreases slightly. As in MgO, loops
are formed by self-climb from the edge dipoles by a pinch-off mechanism. The
loop-formation mechanism is more complex than in MgO, since dislocations in
narrow dipoles preferentially undergo climb dissociation and form faulted dipoles
and loops.

The role of diffusion must also be considered, since most oxides require high
temperatures for plastic deformation and since measured activation energies for
yielding invariably give values close to those for oxygen self-diffusion. This
coincidence is not so easily discussed in oxides, in which Burgers vectors are
frequently large and where evidence for dislocation climb in the later stages of
deformation is evident.

Fig. 3.72 Dislocations in MgAI204 spinel deformed at 1800 �C, a 2 % strain, showing mostly
edge dislocations and dipoles produced by glide, and b 3 % strain, showing uniform
3-dimensional network of dislocations produced by glide and climb [38]. With kind permission
of John Wiley and Sons
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Recovery mechanisms quickly become important at higher strains and tem-
peratures, as seen in Fig. 3.74, particularly in prismatic Al2O3 and MgAl2O4,
where the initial high work-hardening region is highly transient. Recovery is
undoubtedly due to climb, leading to the annihilation and softening of the obstacle
network. This figure shows some selected stress–strain curves for: MgO crystals
deformed at RT; Al2O3 deformed by basal slip at 1400 �C; A12O3 deformed by
prismatic slip at 1700 �C; and MgAl2O4, deformed at 1825 �C. For sapphires,
yield points are observed, followed by work hardening. Recovery effects set in at
higher strains, such that the flow stress reaches a plateau. For spinel, the flow stress
actually decreases. Stress–strain curves at other temperature indicate that, for each
oxide, there is less work hardening and more recovery with increasing tempera-
ture. MgO approximates the three-stage hardening behavior observed in FCC
metals, except that stage I is not very clear, presumably because of the inevitable
simultaneous operation of orthogonal (110) ½1�10� and ð1�10Þ [110] glide systems. A
similar recovery mechanism probably holds for sapphires deformed by prismatic
slip, in which the plateau stress is reached when the rate of annihilation of

Fig. 3.73 Dislocation
substructure in Ti4+ -doped
sapphire deformed 2.5 % on
basal plane at 1520 �C.
Strings of loops resulting
from breakup of dipoles by
self-climb are apparent. Basal
foil [38]. With kind
permission of John Wiley and
Sons

Fig. 3.74 Selected curves of
shear stress versus shear
strain for stoichiometric
spinel, sapphire deformed on
prismatic and basal planes
and MgO at the temperatures
indicated [38]. With kind
permission of John Wiley and
Sons
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dislocations in the network, due to climb, is balanced by the rate of formation of
the network, due to the decomposition of the prismatic dislocations.

These illustrations are an indication of the contribution of transmission electron
microscopy [henceforth: TEM] to the understanding of plastic deformation in
some oxide ceramics, including softening at the measured temperatures, most
probably caused by climb. Clearly, since most of the common ceramics are ductile
at high temperatures, Mitchell’s [38] above measurements explain the plasticity of
oxide ceramics and the recovery by climb, as observed by the softening seen as
indicated in Fig. 3.74.

3.3.17.5 Cross-Slip

The observation of processes, such as climb or cross-slip, seems to be quite dif-
ficult, since the generation of dislocation motion occurs at high velocities and often
one observes only a ‘post mortem’ figure, as it were, after the termination of the
process. These days, fast video frames may be obtained in situ, which is useful for
capturing images of this process from beginning to end. Taking into account the
instantaneous dislocation generation and the high velocity of dislocation motion
during in situ experiments, the changes occurring during the motion of mobile
dislocations seem to provide a good interpretation of the observed phenomena, as
illustrated by Fig. 3.75. Deformation experiments were carried out in a Defor-
mation-DIA [henceforth: D-DIA] high-pressure apparatus on oriented Mg2SiO4

olivine single crystals at pressures ranging from 2.1 to 7.5 GPa in the temperature
range 1373–1677 K and in dry conditions.

TEM investigation of the experimental run products reveals that dislocation
creep, assisted by dislocation climb and cross-slip, was responsible for the sam-
ple’s deformation. At P \ 3 GPa, moderate differential stress (r & few hundreds
MPa or less) and, in dry conditions, olivine [100](010) and [100](001) slip systems
(space group Pbnm), also called ‘a-slip’, dominate the less active [001](010) and
[001](100) systems, (referred to as the ‘c-slip’). This results in the alignment of the
crystal fast-velocity [100] axis with the principal shear direction in deforming
aggregates. Yet, recent high-temperature deformation experiments carried out at
11 GPa, as well as a theoretical study based on first-principle calculations, suggest
that olivine c-slip may be dominant at high pressures.

Olivine single crystals were specifically studied in order to test the likelihood of
an olivine a-slip/c-slip transition at high pressures. To this end, steady-state
deformation experiments were done on pure forsterite single crystals using a
newly-developed D-DIA apparatus coupled with X-ray synchrotron radiation,
which provided an in situ determination of the applied stress (r) and the sample
strain rate ð_eÞ.

TEM investigation revealed that a-slip was largely dominant in the a-samples
and c slip in the c-samples, as shown by the high dislocation densities observed in
the samples shown in Fig. 3.75. The a-samples exhibit a dislocation loops in
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gliding configuration, i.e., fairly confined in (010) glide plane, with long edge
segments. These segments show numerous scallops, revealing (in Fig. 3.75a) that
the glide of the a dislocations was assisted by climb. Evidence of dislocation cross-
slip is also visible in the a-samples. The c-sample exhibits large c dislocation
loops, mostly confined in their (010) glide planes (Fig. 3.75b), with edge and
screw segments of comparable lengths at 1673 K. The c dislocation edge segments
exhibit some scallops, suggesting climb-assisted gliding, although to a much lesser
extend than in the case of the a dislocations. The c-samples also exhibit much
indirect evidence of dislocation cross-slip in the form of small sessile loops
(outside the glide plane) of c dislocations. Such sessile loops can form at high

Fig. 3.75 Weak beam dark-field TEM micrographs of deformed specimens quenched from
1377 K (run FOR18) or 1673 K (run FOR20). Diffraction vectors g are indicated (long arrows):
a the a-sample (FOR20) exhibits climb assisted gliding of [100] dislocations with long edge
segments, attesting that a-slip was responsible for specimen deformation at high temperature;
b the c-sample (FOR20) exhibits [001] dislocations showing the activation of c-slip in this
sample, with numerous evidences of dislocation cross-slip (short arrows); c [001] dislocations in
the FOR18 c-sample exhibit numerous direct evidence of cross-slip under the form of open loops
(short arrows); d details of [001] screw dislocations lines in the FOR18 c-sample exhibiting wavy
features with pseudo-period of *20 nm and amplitudes \7 nm. These features, which are
smoother with a larger period *300 nm at higher temperature (in FOR20 c-sample), may
indicate extended or split cores relaxed in several cross-slip planes [47]. With kind permission of
J. Alexander Speer, Executive Director, MSA
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temperatures from equilibrated dislocation dipoles that evolve into dislocation
loops by diffusion. However, given the relatively high stress applied to the spec-
imens, it is unlikely that such dipoles were stable during the runs. As such, the
observed sessile loops must have formed due to the cross-slip of c dislocation
screw segments. There is also directly observable evidence of c dislocation cross-
slip throughout the c-samples in the form of open dislocation loops (e.g., top of
Fig. 3.75b and c), confirming that dislocation cross-slip is a very active process
during deformation. c screw dislocations also exhibit wavy lines at high magni-
fication (Fig. 3.75d), possibly resulting from an extended or split-core structure.
Split-screw dislocations are confined to the plane in which they are split and their
core must constrict over a certain length in order to change plane (or cross-slip).
This process results in observable wavy slip lines. Following observations, it was
concluded that c and a dislocation glides were, respectively, responsible for the
deformations of the c- and a-samples. This mechanism, commonly observed in
olivine deformed at high temperatures, was assisted by dislocation climb, as well
as by dislocation cross-slip.

Another such example of cross-slip in oxide ceramics may be observed during
the generation of dislocations in plastic deformation, as illustrated in Fig. 3.76.

A mechanism of the double-cross slip mechanism is suggested for the gener-
ation of dislocations during deformation which increases the density in large
amounts in addition to the known Frank-Read mechanism.

Double cross-slip is another mechanism suggested as being responsible for the
generation of dislocations during deformation; like the known Frank-Read
mechanism, it too greatly increases the dislocation density. Figure 3.76 was
obtained by the high-voltage electron microscopy (henceforth: HVEM) of plastic
deformation during in situ straining experiments. These experiments were carried
out either in a quantitative double-tilting straining stage at RT or a high-temper-
ature straining stage for temperatures up to 1150 �C. The actions of the different
processes of the double cross-slip mechanism observed in ZrO2–10 mol% Y2O3 at
1150 �C indicated above have been demonstrated in detail by in situ experiments
on MgO single crystals by Appel et al. [21]. Cross-slip seems to be easy and
appears frequently. A schematic model of double cross-slip is shown in Fig. 3.77.

Fig. 3.76 Dislocation
structure during in situ
deformation of ZrO2–
10 mol% Y2O3 at 1150 �C
[37]. With kind permission of
Elsevier and Professor
Messerschmidt
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Multiplication events appear instantaneously. Nevertheless, the intermediate a-like
configurations of stage (c) in Fig. 3.77 are observed frequently, as marked by the
arrows in Fig. 3.76.

In these in situ experiments, with their relatively low foil thickness, a segment
may cross-slip while being terminated by the foil surface at one end, so that only a
single jog is created. In Fig. 3.76, many dislocation loops are also visible; these
may open at a later stage. As described above, the double cross-slip mechanism
leads to the sidewise spreading of slip. Since double cross-slip events of smaller
height may lead to multiplication at higher stresses, the slip bands become nar-
rower in strong materials and at low temperatures. Figure 3.76 is a typical example
of the double cross-slip mechanism. Table 3.4 provides information about dislo-
cation generation in other materials studied by Messerschmidt et al. This summary
contains the relevant slip and cross-slip planes.

As discussed in Sect. 3.3.14.5, dislocations become immobilized when they
encounter Lomer-Cottrell locks. Figure 3.61 schematically illustrates the forma-
tion of a Lomer-Cottrell lock.

As previously discussed, two perfect dislocations along a slip plane, such as the
{111} slip planes in an FCC lattice, may split to form two Shockley partial
dislocations. One becomes a leading dislocation and the other a trailing disloca-
tion. When the two leading Shockley partials combine, they form a separate dis-
location with a Burgers vector that is not in the slip plane–a Lomer-Cottrell
dislocation, which is sessile and immobile in the slip plane. This then serves as a
barrier against other dislocations that are located in the wake of these partials in
their slip plane. The trailing dislocations may pile up behind the Lomer-Cottrell
dislocation, thus forming a dislocation configuration known simply as a ‘pile-up’.
Further pushing of additional dislocations into a pile-up requires increased force.

Experimental observations of a polysilicon Lomer-Cottrell lock is shown in
Fig. 3.78.

Fig. 3.77 Double cross-slip
mechanism for dislocation
generation [37]. With kind
permission of Elsevier and
Professor Messerschmidt
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Although Si is not necessarily a ceramic, it fulfills one requirement of the
ceramic definition, namely it is covalently bonded. More illuminating illustrations
of Lomer-Cottrell locks may be seen in Pt and Fe–Mn–Al–C steel. To observe
Lomer-Cottrell locks in Pt, see Fig. 3.79 [54]. Using a newly-developed nanoscale
deformation device, atomic scale and time-resolved dislocation dynamics were
captured in situ by TEM during the deformation of a Pt ultrathin film with truly
nanometer grains (diameter d\*10 nm). In larger grains (d * 10 nm), full

Table 3.4 Burgers vectors, slip planes as well as type of dislocations generation in different
materials [37] (with kind permission of Elsevier and Professor Messerschmidt)

Material
load axis

Burgers
vector

Slip planes cross slip planes Frank-
read
sources

Double-
cross
slip
mechanism

NaCl 1 0 0h i 1=2 1 1 0h i {1 1 0} {1 0 0} [10]a

MgO 1 0 0h i 1=2 1 1 0h i {1 1 0} {1 2 2} {2 1 1} [7]
ZrO2 1 1 2h i 1=2 1 1 0h i {1 0 0} {1 1 0} {1 1 1} [8]
Si, Ge 1=2 1 1 0h i {1 1 1} {1 1 1} [11]
Al-Zn-Mg 1=2 1 1 0h i {1 1 1} {1 1 1} [12]
Al-1Ag 1=2 1 1 0h i {1 1 1} {1 1 1} [13]
Al-8Li 1=2 1 1 0h i {1 1 1} {1 1 1} [14]
Duplex steel

austenite
1=2 1 1 0h i {1 1 1} [9]

Duplex steel
ferrite

1=2 1 1 1h i {1 1 0} {1 1 2}
{1 2 3}

{1 1 0} {1 1 2}
{1 2 3}

[9]

Ti-6Al a=3 1 1 �2 0h i 0 0 0 1f g 1 �1 0 0f g 0 0 0 1f g 1 �1 0 0f g [15] [15]
c-Ti-52Al 1=2 1 1 0h i {1 1 1} {1 1 1} [16]
NiAl 1 1 0h i 1 0 0h i {1 0 0} {1 1 0}

{2 1 0}
{1 0 0} {1 1 0}

{2 1 0}
[17]

MoSi2 2 0 1h i 1=2 1 1 1h i {1 1 0} [18]
a Cross slip studied by metal surface decoration

Fig. 3.78 Microstructure of the 2 lm thick polysilicon films: a cross-sectional TEM image,
b Lomer-Cottrell lock, and c microtwins [16]. With kind permission of Professor Ritchie
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dislocations dominate and their evolution sometimes leads to the formation,
destruction and reformation of Lomer locks, as seen in Fig. 3.79. The reason for
performing experiments on the \*10 nm grain size is that, in such small grain-
sized polycrystalline materials, there may be little chance of dislocation interaction
(they run across the small grains) and post-mortem observation after the applied
stress is removed. In larger grains, after large strains (e.g., by cold rolling) Lomer-
Cottrell locks are observed. However, in smaller grain dislocation, such activities
were rarely observed experimentally, although molecular-dynamic simulations do
predict dislocation activities, interactions and the formation and destruction of
Lomer and Lomer-Cottrell locks. Here, experimental evidence is only presented
for Lomer-Cottrell lock dislocation activities in larger grains. Following the
loading of the specimens, movement and the interaction of dislocations were
indicated. In Fig. 3.79a and b, HRTEM images were taken 180 s apart; (c) and (d)
are the enlarged HRTEM images corresponding to the framed regions in (a) and
(b), respectively. Two trapped dislocations are seen in (c) and local Burgers cir-
cuits were drawn to identify the Burgers vector. An inverse fast Fourier-filtered
[henceforth: IFFT; inverse fast Fourier transform] image is given in (e). Extra half-
planes are seen for both the ð�111Þ and the ð1�11Þ planes. This configuration rep-
resents a Lomer dislocation [henceforth: LD] exhibiting the Burgers vector of a a/2
[011] full dislocation.

This LD was formed by the interaction of two nondissociated full dislocations
with Burgers vectors a=2½�101� and a/2[110], respectively, moving under applied
stress on two intersecting slip planes, ð1�11Þ and ð�111Þ. The dislocation reaction
may be written as:

a=2½�101� þ a=2½110� ! ½011�:

Atomistic and dislocation dynamic simulations have previously shown that
Lomer and Lomer-Cottrell locks have practically the same strength; these stable
junctions are dislocation obstacles and, therefore, sources of strain hardening. The
LD junction above is expected to be sessile, since it can glide in neither of the slip
planes of the reactant dislocations. In (d) and (f), the LD destruction process is
observed on the atomic scale. The reformation of Lomer lock in the same region,
in the same grain, with continued straining is depicted in (g). Figure 3.80 is a
schematic view, illustrating the formation and destruction process of a Lomer lock
under applied stress. This figure may be understood in light of the Thompson
tetrahedron shown in (a). The case of two interacting a/2[110] {111} dislocations
in (b) are considered. Dislocations in the planes ACD (b = CD) and ABC
(b = BG) interact under applied stress to form BD. For Lomer lock formation, one
may write:

BCþ CD! BD:

With increasing stress, the length of the Lomer segment decreases and then the
junction breaks under high stress. In (d) of Fig. 3.80, the unzipping of the LD is
depicted schematically. In situ experiments indicate that dislocations are highly
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Fig. 3.79 In situ TEM observations of dislocation activities in a 10 9 13 nm-sized grain, grain A
in (a). Two Lomer dislocations are found in (c); see details in the inverse fast Fourier-filtered
(IFFT) shown in (e). The corresponding frames taken 180 s later are displayed in (b), (d), and (f),
depicting the unzipping of the LD. g At a later stage of deformation, LD reforms in this grain, as
seen in the IFFT image in (h) [54]. With kind permission of Professor Xiaodong Han. (LD means
Lomer dislocation)
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active, even in nanometer grains. Full dislocations and Lomer locks are frequently
observed for larger grains (*10 nm), whereas partial dislocations generating SFs
are prevalent in smaller grains. In smaller grains (d \ 10 nm), observations of the
generation, motion, interaction and storage of full and partial dislocations,
including the dynamic process of Lomer lock formation, destruction and refor-
mation, explain the role of dislocation mechanisms in the plastic deformation of
nanometer-grained ultrathin films.

The kinetics of deformation structure evolution and its contribution to strain
hardening in austenitic steel, with a composition of Fe-30.5Mn-2.1Al-1.2C (wt%),
was investigated by means of TEM and electron-channeling contrast imaging
combined with electron backscatter diffraction [27]. This alloy exhibits a superior
combination of strength and ductility (an ultimate tensile strength of 1.6 GPa and
elongation to failure of 55 %), due to its multiple-stage strain hardening. Among
the many dislocation configurations and twinnings responsible for its excellent
mechanical properties, Lomer-Cottrell locks are also illustrated (Fig. 3.81). Here,
various dislocation configurations may be seen, such as nodes (a), hexagonal
dislocation networks (b) and Lomer-Cottrell locks (c). The configuration of the
Lomer-Cottrell locks is formed by the interaction of dissociated dislocations,
provided that the leading h112i partials attract one another. The product is
a h110i sessile dislocation on a {001} plane. Figure (c) reveals Lomer-Cottrell
dislocations appearing as straight dislocations along the ½1�10� crystallographic
direction and forming Lomer–Cottrell locks labeled as LC1 and LC2. These locks
act as strong barriers to dislocations with slip directions [101] and ½10�1�. Lomer–
Cottrell locks are known to be among the most important barriers to dislocation
glide in the stage II hardening of FCC metals.

Fig. 3.80 a Thompson
tetrahedron showing the
Burgers vectors of the
interacting dislocations. b,
c Schematic view of the
Lomer lock formation: the
Lomer lock is formed by the
interaction of two
nondissociated full
dislocations. d The Lomer
dislocation is unlocked under
stress [54]. With kind
permission of Professor
Xiaodong Han
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3.3.17.6 Dislocation Pile-Ups

In Sect. 3.3.15, the dislocation of pile-ups was discussed and a schematic illus-
tration presented. Figure 3.82 shows another informative, schematic view of a
pile-up. Dislocation pile-ups at grain boundaries act as a barriers preventing cross-
over into the next grain. This grain is favorably oriented for slip, but deformation
requires dislocation mobility in many grains. For slip to occur in a neighboring
grain, the stress field of a pile-up dislocation must either (a) induce sufficient stress
into the second grain at the grain boundary or (b) initiate a new source in the
neighboring grain. In the first case, the boundaries emit dislocations for further
deformation by slip; in the second case, the source to be activated requires high
stress.

Experimental pile ups in a ceramic can be seen in Fig. 3.83 in an Al2O3-
GdAlO3 binary eutectic which piles up in the GdAlO3 phase. The deformation was
by compressive creep test in air in the stress range of 50–200 MPa and temperature
range 1450–1600 �C.

Fig. 3.81 Extended planar
dislocation configurations in
a sample deformed to 0.05
true strain/450 MPa:
a dislocation nodes (N),
b hexagonal dislocation
networks. The stacking faults
associated to the partial
dislocations are visible.
Diffraction vectors are
indicated by an arrow.
c Lomer–Cottrell locks (LC1
and LC2). Lomer–Cottrell
dislocations appear as straight
dislocations lying along the
½1�10� direction [27]. With
kind permission of Elsevier
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In another example, amorphization by dislocation accumulation in shear bands
in a microcrystalline c-Y2Si2O7 was investigated by TEM in the vicinity of the
resulting microstructural indent obtained by indentation deformation at RT. Fig-
ures 3.84 and 3.85 are illustrations of pile-ups in c-Y2Si2O7.

The deformation microstructure, as viewed under weak-beam TEM imaging
mode, is dominated by individual dislocations. In Fig. 3.84a, the isolated dislo-
cations that expand in their slip plane exhibit favored crystallographic orientations,
suggesting a strong stabilizing interaction with the lattice (the so-called ‘Peierls
valleys’). Such dislocations are often dissociated into two partials with different
Burgers vectors about 8 nm apart in projection (white arrow pairs in Fig. 3.84a and
c). In this area, it is seen that isolated dislocations may coexist with planar arrays
of glissile dislocations, as in Fig. 3.84b and c (the letter H indicates a pile-up
spearhead). The fact that dislocations are dissociated encourages planar slip and is
consistent with the formation of such arrays and their piling up at obstacles. In
Fig. 3.85, a second volume is submitted to stresses larger than those applied to the
outer zone (Fig. 3.84). Each slip band comprises dislocations with Burgers vectors
all identical in direction and sign (see inset in a). They are grouped in bands under
a density far larger than that commonly observed in the peripheral zone (of
Fig. 3.84a). For further information on amorphization by dislocation accumulation
in shear bands, the work of Lin et al. [31] should be consulted.

3.3.17.7 Low-Angle Boundary

In Sect. 3.3.17.1 (Fig. 3.66), a HREM micrograph of zirconia illustrated a tilt
boundary consisting of an array of edge dislocations. Basically, a low-angle grain
boundary may be (a) a tilt boundary, (b) a twist boundary, or (c) a mixed boundary,
as described in Sect. 3.3.16. Some visual examples follow.

S

T T T TT

S
•

Fig. 3.82 A schematic view
of a dislocation pile up at a
grain boundary
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(a) Tilt Boundary
Figure 3.86 is a schematic illustration of a tilt boundary, where 2h is the tilt angle
between the n direction (i.e., n ¼ ½1�100� or [1120]) R values and grain-boundary
planes for the respective boundaries. Note that in coincident site lattice [henceforth:
CSL] theory, the degree offit, R, between the structures of the two grains is described
by the reciprocal of the ratio of coincident sites to the total number of sites. A
boundary with high R may be expected to have higher energy than one with low R.

Fig. 3.84 Isolated dislocations populating the outer region of the indented sample, viewed under
weak-beam TEM imaging mode. For enhanced visibility, the negative prints of the micrographs
are displayed. a The isolated dislocations that expand in their easy slip plane. b A series of
dislocations arranged to form pile-ups. c The dislocations show large linear densities of
constrictions. The letter H indicates the pile-up spearhead. The images have the same scale bar
[31]. With kind permission of Elsevier

Fig. 3.83 TEM examinations of compression tested specimens. Dislocation pileup in the GAP
(GdAlO3) phase of the Al2O3-GAP eutectic composite is shown [44]. With kind permission of Dr.
Appriou, Research Director of Aerospace Lab Journal
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Low-angle boundaries, where the distortion is entirely accommodated by dis-
locations, are R1. Another example is the coherent twin boundaries (R3). Devia-
tions from the ideal CSL orientation may be accommodated either by local atomic
relaxation or by the inclusion of dislocations into the boundary. An actual HRTEM
image for three types of R7 symmetrical tilt grain boundaries obtained in the study
is illustrated in Fig. 3.87. Cross-sectional specimens for HRTEM observation were
prepared using mechanical grinding and dimpling to a thickness of 10 lm, argon-
ion-beam milling to electron transparency at *4 kV, and carbon thin-film coating.
Grain boundaries were observed in a cross-sectional view, i.e., R7f11�20g,
R7f1�102g, for the boundary and [0001] for the R7f2�310g and R7f4�510g

Fig. 3.85 Slip bands in the intermediate region of the indented volume. a Slip band planarity and
evidence of profuse pile-ups. The dislocations exhibiting paired lines in the boxed area are not
dipoles but dissociated dislocations since the distance between partials is constant whether the
dipole is imaged with the g or -g reflecting plane. b Intersecting slip bands. c The slight
misalignment and differences in pile-up projected widths indicate that the slip bands are parallel
to at least two crystallographically distinct planes [31]. With kind permission of Elsevier
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Fig. 3.86 Schematic illustration of [0001] symmetrical tilt grain boundary, indicating the tilt
angle is 2h [43]. With kind permission of John Wiley and Sons

Fig. 3.87 HRTEM images for a R 7f1�102g, b R 7f2�310g, and c R 7f4�510g symmetrical tilt
grain boundaries [43]. With kind permission of John Wiley and Sons
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boundaries. In this study, the HRTEM images for three types of R7 symmetrical
tilt-grain boundaries showed no observable amorphous layers or secondary phases
at these boundaries. They were systematically taken at defocus values from 0
to *500 Å at steps of *50 Å. These HRTEM images match well with the images
calculated for defocus and thickness values of Df * 350 Å, t = 50 Å (Fig. 3.87a,
b) Df * -130 Å, t = 90 Å (Fig. 3.87b) and Df = -110 Å, t = 90 Å (Fig. 3.87c).

Another experimental technique for showing grain boundaries is by using
thermalgrooving technique, which is basically used for calculating grain-boundary
energies. In Fig. 3.88, an illustration of a pure tilt-grain boundary is shown,
obtained by this technique.

(b) Twist Boundary
Figures 3.89 and 3.90 show twist boundaries in SiAlON and in sapphire ceramics,
respectively. In Fig. 3.89, both tilt and twist boundaries are indicated. Rows of
parallel and more complex dislocations are observed. These dislocation structures
are periodic. The Burgers vector determined for the dislocations are of type
b = a/3 h110i. The experimental results show that these twist boundaries are
stable without an amorphous grain-boundary phase. It appears, according to the
experimental results, that boundaries with low R misorientation possess relatively
low energies and, therefore, are formed favorably during a sintering process.

In Fig. 3.90, a TEM micrograph of a 0.3� [0001] twist boundary, inclined
relative to the incident beam and revealed in projection, is shown. This image was
recorded in BF mode under strong two-beam diffraction conditions, revealing a
regular network of screw dislocations with a large Burgers vector b ¼ ½10�10�
spaced about 160 nm apart, amid a dense array of secondary grain-boundary
dislocations with a smaller strain field and lower contrast.

Fig. 3.88 Zeiss
interferogram of a thermal
groove. Configuration of a
pure tilt boundary in
aluminum oxide [49]. With
kind permission of John
Wiley and Sons
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3.3.17.8 Stacking Faults (SFs)

SFs in ceramics were shown in Sect. 3.3.17.3, Fig. 3.68, when discussing partial
dislocations. However, the SF images below are presented for more clarity. In
Fig. 3.91, the microstructures of bulk Zr2Al3C4 and Zr3Al3C5 ceramics are shown
illustrating SF in these materials.

For the sake of those unfamiliar with the term ‘Z contrast’, this refers to a
technique used in scanning-transmission electron microscopy [henceforth: STEM],
which provides an incoherent image of crystals at atomic resolution. There are no

Fig. 3.89 Low angle grain boundaries: Weak beam DF images showing dislocation structure in
SIAlON; a in a tilt boundary b in a twist boundary [48]. With kind permission of Professor Rühle

Fig. 3.90 Bright-field TEM
image of a 0.3� basal twist
boundary, with the primary
dislocations arrowed, and
secondary grain-boundary
dislocations showing lighter
contrast [34]. With kind
permission of Nature
Materials and Dr. Glaeser
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phases in an incoherent image, so there is no phase problem for structural deter-
mination. The location of atom- column positions in an image is greatly simplified.
SFs in Zr3Al3C5 were found to result from the insertion of an additional Zr-C
layer. The interest in these ternary aluminum carbides is due to their attractive
properties, such as: easy machinability, damage tolerance, excellent high-tem-
perature oxidation resistance and good electrical and thermal conductivities. Such
ceramics have hexagonal symmetry and crystallize in 6/mmm and P63/mmc

Fig. 3.91 a Low-magnification bright-field image of stacking faults of Zr3Al3C5. b Medium-
magnification Z-contrast image showing the periodicity of the stacking faults. c Raw high-
magnification Z-contrast STEM image of a stacking fault resulting from the insertion of an
additional ZrC layer. d FFT filtered image of c. The arrows in b indicate the stacking faults [30].
With kind permission of Elsevier
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symmetry for Zr2Al3C4 and Zr3Al3C5, respectively. Details on the preparation of
these ceramics are presented in the work of Lin et al. [31]. Figure 3.90a shows a
low-magnification, BF image of SFs in Zr3Al3C5. Bright and dark fringes are
visible. In order to clarify the microstructure of the SFs, Z-contrast STEM images
were obtained. As displayed in Fig. 3.91b, the periodicity of the stacking sequence
was not identical. The atomic-scale microstructure of these SFs is further illus-
trated in Fig. 3.91c and d. The high-resolution Z-contrast image indicates that the
SF resulted from the insertion of an additional Zr–C layer.

In an additional example of SF, Fig. 3.92 illustrates their existence in Ti3SiC2.
Undeformed and deformed samples of Ti3SiC2, fabricated by the reactive hot
pressing of Ti, SiC, and graphite, were characterized by TEM. Figure 3.92 pre-
sents micrographs of undeformed ceramic specimens. The basal plane dislocations
are mobile and multiply as a result of deformation at RT. Direct evidence of
dislocation mobility and multiplication in Ti3SiC2, as a result of deformation, may
be seen in Fig. 3.93.

The dislocation density is significantly higher after deformation than before, as
may be seen by comparing Figs. 3.93 and 3.92a. A further difference observed is
the very limited number of dislocation arrays in the undeformed samples, shown in
Fig. 3.92a. In these undeformed samples, the only dislocation arrays observed are
adjacent to grain boundaries or cracks; the interiors of the grains are, for the most
part, dislocation free. As a result of deformation, the number of arrays is greatly
increased. Moreover, in the undeformed samples, the arrays only extend part way

Fig. 3.92 Typical dislocations in Ti3SiC2 produced by reactive hot pressing: single dislocations
(A); arrays of parallel straight dislocations within a grain (B); dislocations bounding stacking
faults (C); dislocations at grain boundaries (D) [25]. With kind permission of Wiley and Sons
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into the grain interior, typically 2–3 lm. After deformation, however, these arrays
extend across the whole field of view and, presumably, extend across the whole
grain. Note that basal-plane dislocations move and multiply at RT. This is in line
with the fact that Ti3SiC2 plastically deforms at RT along the basal planes. Fur-
thermore, the absence of slip systems, other than basal, explains the brittleness of
randomly oriented polycrystalline Ti3SiC2 samples.

Numerous planar defects are also observed, which may be divided into two
types, depending on their extent. Defects of the first type extend clear across the
grains. Typically, one or two such defects are observed per grain. In Fig. 3.94a and
b, such defects, labeled SF, propagate across the grain, G2. The selected area
diffraction patterns for regions on both sides of the defect are identical, confirming
that G2 constitutes a single grain containing this planar defect. Furthermore, the
contrast associated with a defect, as well as its absence, is easily observed by
tilting the specimens and imaging the defects with various reflections. As shown in
Fig. 3.94a and b, the defect is invisible when imaged with g ¼ �12�10, but is visible
with g = 0114. In the latter case, alternating bright and dark fringes are observed,
which are of symmetrical contrast in BF and asymmetrical contrast in dark field
(not shown). Thus, the defect must be SF characterized by a displacement vector
parallel to [0001]. Defects of the second kind are similar to the first, except that
they do not propagate across the whole grain (Fig. 3.94c and d).

3.3.18 Section Summary

This section has discussed point defects, dislocations and experimental observa-
tions of the various dislocation configurations observed in ceramics. These
imperfections are the basic features of each and every material, including

Fig. 3.93 Typical TEM
micrograph after deformation
at room temperature. Number
and spatial extent of
dislocation arrays is greatly
increased compared to the
undeformed samples [25].
With kind permission of John
Wiley and Sons
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ceramics, responsible for their various properties. The general brittleness of
ceramics at RT, their ductility at high temperature, the ductility exhibited by some
ceramics at RT and superplasticity are directly related to the presence of dislo-
cations, their mobility and the influence of their width on the character of a
material under stress (load). When the width of a dislocation is such that no room
is provided for their accommodation and motion, because the bond character of the
specific material (e.g., ceramics) prevents it—as occurs in ionic and covalently-
bound materials–inevitably low ductility or brittleness result.

It has also been briefly stated that some of the planar defects, such as low-angle
grain boundaries and SFs may be interpreted as being related to specific dislo-
cation configurations.

Fig. 3.94 a Single stacking fault, SF is propagating across grain G2. Grains G1 and G3 are two
adjacent grains separated from G2 by boundaries GB1 and GB2. Bright field, BF, with g ¼ �12�10.
b BF with g = 0114. c Typical example of second type of stacking faults, in which one side is
bounded by partial dislocations and the other (not shown) a grain boundary. d Same area as c, but
imaged such that only the bounding are dislocations are visible [25]. With kind permission of
John Wiley and Sons
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This section began with point defects, which have either direct or indirect
influence on the mechanical properties of materials, discussing point-defect
hardening, climb, etc., but a later chapter will show that creep is greatly associated
with the mobility of point defects. No discussion was included here on the
important aspect of the physical properties of point defects, which is beyond the
scope of this book.
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Chapter 4
Deformation in Ceramics

Abstract Deformation can be elastic or plastic. Understanding elastic deforma-
tion is very important in ceramics to eliminate instantaneous brittle fracture at
some applied stress levels. The fracture stress is usually the same or very close to
the elastic limit. Stresses have to be exercised with understanding of the limits of
the specific ceramics and the level that it can endure before fracture. No dimen-
sional changes in test pieces occur in elastic deformation. Plastic deformation of
ductile ceramics at room temperature, and of low temperature brittle ceramics at
elevated temperatures, produce slip marks due to the advance of dislocations. All
the characteristic phenomena of plastic deformation are observed either at ambient
temperature (of room temperature ductile materials) or at the elevated temperature
(of brittle ceramics at low temperature) such as yielding, existence of resolved and
critical shear stress and slip. Among the yield phenomena, serrated stress–strain
curves and Lüders bands can be noted as existing features. Twinning deformation,
-mechanical or annealing twins-, are also observed to operate under proper con-
ditions. Among the many factors influencing the mechanical properties, special
consideration should be given to the effect of grain size. Preferred orientation in
polycrystalline ceramics are seldom observed in its natural state but it may be
induced during processing or fabrication. It might be of interest sometimes to get
anisotropy for specific purposes of interest to enhance some directional property.

4.1 Introduction

As previously stated, ceramics are characterized either by the ionic or covalent
bonding of their constituents and, consequently, with some exceptions, they
exhibit brittle behavior. Also note that the field of ceramics covers a broad range of
structures, from completely crystalline to amorphous (mostly glassy structures).
Therefore, the main deformation at ambient temperatures is elastic (tending to
brittleness); only at elevated temperatures may one speak about plastic deforma-
tion, since most ceramics show ductility. Clearly, the temperature level is a

J. Pelleg, Mechanical Properties of Ceramics, Solid Mechanics
and Its Applications 213, DOI: 10.1007/978-3-319-04492-7_4,
� Springer International Publishing Switzerland 2014
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significant parameter that indicates when a particular ceramic will become ductile
and exhibit plastic deformation upon the application of stress.

Many factors influence the mechanical behavior of ceramics; among them are
impurities and dispersed second phases. In the case of polycrystalline ceramics, the
characters of grain boundaries and their vicinities are very significant. Add to the
above the inevitable presence of pores, which weaken the overall mechanical
strength of ceramics. Deformation, especially plastic deformation, involves dis-
location glide, dislocation climb and other related phenomena, while, in time-
dependent deformation, grain-boundary sliding (creep) is a major contributor to
the process of deformation. Twinning is another factor to consider when consid-
ering deformation. Most of these subjects will be considered here; however, later
on, a full chapter is devoted to time-dependent deformation.

4.2 Elastic Deformation

This kind of deformation is very important in ceramics, because there is an interest
in eliminating instantaneous brittle fracture at some commonly applied stress
levels. Also of interest are dimensional stability and the level of elastic strain not to
be exceeded. Elastic deformation is recoverable and, in ceramics, it is mostly
instantaneous and time-independent when tested under tension, although the
presence of micro-cracks may show some time-dependence when the stress level
applied induces crack growth (which is clearly time-dependent). Note that such
time-dependence is not related to the anelasticity observed in metals, but mainly to
that in polymers. Tension testing to observe stress–strain behavior is quite
uncommon in ceramics because: (a) it is difficult to machine specimens to the
desired shape and dimensions; (b) the gripping of a brittle material, such as
ceramics, may induce premature fractures in test specimens; and (c) perfect
alignment is necessary in tension tests to eliminate any side effects, such as
bending, if a reliable stress–strain relation is required. Therefore, flexural strength
is the frequently recommended test involving the transverse bending of the spec-
imens, using a three- or four-point loading technique. Chapter 1 discussed these
test methods and a schematic curve for flexural strength was shown in Fig. 1.47.
Further experimental results for flexural and tension tests in SiC were compared in
Sect. 1.9, Figs. 1.50 and 1.51, respectively.

A method for classifying refractory ceramics by their tendencies to brittleness
was suggested by Gogotsi et al. [4], according to index v. The equation for v is:

v ¼ r2
lim

2E
R elim rdE

ð4:1Þ

where rlim is the strength, E the elastic modulus and elim is the strain of the
material. As it follows from its definition, ‘brittleness’ is determined by 0 \ v\ 1.
The parameter, v, is defined by the ratio of the specific elastic energy, uc, to the

282 4 Deformation in Ceramics

http://dx.doi.org/10.1007/978-3-319-04492-7_1
http://dx.doi.org/10.1007/978-3-319-04492-7_1
http://dx.doi.org/10.1007/978-3-319-04492-7_1#Fig47
http://dx.doi.org/10.1007/978-3-319-04492-7_1
http://dx.doi.org/10.1007/978-3-319-04492-7_1
http://dx.doi.org/10.1007/978-3-319-04492-7_1#Fig50
http://dx.doi.org/10.1007/978-3-319-04492-7_1#Fig51


www.manaraa.com

whole specific energy, u, expended to attain the limiting state. This equation is
based on the r-e relation in zirconia and the assumption that the elastic moduli are
equal under loading and unloading (Fig. 4.1).

Refractory ceramic materials are classified as brittle for v = 1 and relatively
brittle for v\ 1. Additional r-e relations for nitride- and oxide-based ceramics are
shown in Figs. 4.2 and 4.3. In Fig. 4.2, the relations of two values of v are shown,
one of them for v = 1.

Brittle materials, characterized by v = 1 follow Hooke’s Law until fracture
(see, for example, Fig. 4.3 with v = 1). Relatively brittle materials, with v\ 1,
are not necessarily linear, as seen in Fig. 4.3 for v. Most brittle materials observed
are homogeneous single-phased and FG oxide ceramics or glassy ceramics and
porcelains. Such materials are deformed without structural changes to failure. The
beginning of failure coincides with the propagation and growth of cracks and their
development from micro-cracks. In relatively brittle materials (v\ 1), some
amount of energy is dissipated under loading conditions due to non-elastic effects
at certain stress levels.

4.3 Plastic Deformation

Bulk plasticity is only partially realized because of the inherent defect distributions
in large volume ceramic structures. However, plasticity in some ceramics, such as
MgO, has also been observed at ambient temperatures. Thus, in this section,
Plastic deformation will be considered at both low and elevated temperatures.

Fig. 4.1 Deformation
diagram of zirconium oxide.
eave

lim is half sum of limit values
e+ and e- [4]. With kind
permission of Elsevier
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4.3.1 Deformation at Low Temperatures

Low-temperature ductility is rarely observed in ceramics, which are inherently
brittle, but some bulk ceramics show plasticity at ambient temperatures. One
example of low-temperature plasticity in MgO is considered here. First, consider a
single crystal, where i orientation-dependent properties are of interest. Orientation
is one of the factors that influence mechanical properties. It was observed (by etch-
pit technique) that the flow in MgO occurs on the {110} h110i slip system.
However, it was also found [28] that the {110} h110i slip system contributes to
deformation above *600 �C. Details on Plastic deformation in MgO single
crystals were presented in Sect. 2.2, Figs. 2.33 and 2.38. Consequently, some
information on deformation in polycrystalline ceramics may be of interest.

As mentioned above, some ceramics may be made plastic even at room tem-
perature. As such, producing them in nano-size form may induce low-temperature
plasticity. Figure 4.4 is an illustration of in situ TEM observation of the Plastic
deformation features of a SiC nanowire [henceforth: NW]. The in situ SiC NW
elastic, elastic–plastic and Plastic Deformations were conducted using an ultra-
HRTEM by bending SiC NWs via the mechanical force produced by the TEM
specimen-supporting grid under the irradiation of an electron beam. Figure 4.4

Fig. 4.2 Load-strain
dependence for a nitride
ceramic specimen
1—loading; 2—unloading:
3—repeated loading [4]. With
kind permission of Elsevier
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Fig. 4.3 Deformation diagram of yttrium oxide-based materials 1–3—indexes of materials [4].
With kind permission of Elsevier

Fig. 4.4 In situ TEM observation of the plastic deformation features of a SiC NW under large
angle bending. The plastic deformation was triggered from the second image. The time interval
between image 1 and 2 was about 30 min, and the entire procedure lasted about 3 h. Reprinted
with permission from Han et al. [5]. With kind permission of the American Chemical Society
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shows a series of images being deformed by the force created by the TEM grid
under the irradiation/heating of the electron beam. Plastic deformation is observed
at the bending region. Many specimens tested showed large elastic strain (up to
2 %) and four of them revealed plastic deformation with large strain. Figure 4.5 is
a more detailed representation of the observed bend deformation in Fig. 4.4. A
deformation-induced amorphous zone was observed in these tests. Parts a and c of
Fig. 4.5 present examples of the initial elastic deformation in SiC NW, while parts
b and d display the final plastically-deformed images of the single bent SiC NW,
respectively.

Another example of plastic behavior in ceramics appears in Fig. 4.6. Here, the
material is carbide, more specifically Ti3SiC2 polycrystalline ceramic. A typical
stress–strain curve for samples tested in the z direction is shown in Fig. 4.6. These
samples yielded around 200� 10 MPa and deformed plastically thereafter, until
the test was interrupted. Note that it is possible to deform these samples by
compression to strains that exceed 50 pct. As may be seen, when compressed along
the x direction, a maximum yield stress is observed, which is followed by a region
of strain softening. Two nominally identical samples were tested: one sample
yielded at 230 MPa and the second at 290 MPa. In this and other 312- and
211-phase carbides, it was observed in the case of large-grained, oriented poly-
crystalline samples loaded under compression at RT, plastic deformation might be
caused (a) by slip, when the basal planes are oriented to allow for slip deformation
or (b) when slip planes are parallel to the applied load making glide impossible.

Fig. 4.5 SiC NW
morphologies of the elastic
bend (a, c) and the final
plastic bend of (b) and (d).
The location indicated by the
white arrow in (c) is the
triggering point of plastic
deformation. e is an enlarged
TEM bright field image. The
black arrows in (e) show the
top and bottom deformation-
induced amorphous zones.
Reprinted with permission
from Han et al. [5]. With kind
permission of the American
Chemical Society
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In (a), the minimum critical resolved shear stress [henceforth: CRSS] is 36 MPa.
In (b), deformation occurs by a combination of delamination and kink-band for-
mation in individual grains and also by shear-band formation. The multiple modes
of deformation allow for plastic behavior in any arbitrary orientation of the
compressive load. Notice that the 312- and 211-phases are layered hexagonal
carbides and nitrides, having the general formula: Mn+1AXn, (MAX), where n = 1
to 3, M is an early transition metal, A is an A-group element (mostly IIIA and IVA,
or groups 13 and 14) and X is either carbon and/or nitrogen.

Some aspects of the dislocation configurations in Ti3SiC2 polycrystalline
ceramics are indicated in Fig. 4.7.

The arrangement of these dislocations is parallel and they are positioned in
different basal planes, one under another, so that the entire arrangement is normal
to the basal planes and constitutes a low-angle boundary (a). Contrast analysis
(b and c) reveals that the wall is composed of edge and mixed dislocations. For
information on the various dislocation configurations observed during RT defor-
mation, refer to the work of Barsoum et al. [14].

4.3.2 Plastic Deformation at Elevated Temperatures

Deformation at elevated temperatures is the commonly observed case in ceramics.
Once again using the example of polycrystalline ceramic MgO, the following
stress–strain curves are illustrated (Fig. 4.8). One of the possible differences in these
stress–strain curves reflects the difference in grain-size; the different grain size
before deformation is shown in Fig. 4.9. The composition and porosity were also
different in the otherwise nominally pure and dense specimens, as seen in Table 4.1.

Fig. 4.6 Effect of Ti3SiC2

grain orientation on room-
temperature engineering
stress–strain curves
compressed in the z directions
and the x direction, i.e.,
parallel to the basal planes.
The curves are shifted by
0.025 strain for clarity’s sake
[14]. With kind permission of
Springer and Professor
Barsoum
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The slope of the stress–strain curves can be determined by the

dr
de
¼ dr

dt

de
dt

� �ffi1

: ð4:2Þ

Fig. 4.7 a Dislocation wall; dislocations are parallel and positioned in different basal planes one
under another. b Same area as white square in (a), but at higher magnification (imaged in g
h33�60i). c Weak beam image of the same area as in (b), but tilted and imaged in g of h3�300i.
Dislocations that become invisible in (c) are perfect edge dislocation; those that remain visible
are mixed dislocations [14]. With kind permission of Springer and Professor Barsoum
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This equation is related to the strain rate at small strains and the symbols have
the usual meaning, namely stress (r), strain (e) and time (t). The stress–strain
curves of the polycrystalline MgO are indicated as a function of temperature.
Above 1200 �C, deformation occurred by grain-boundary shearing accompanied,
in some cases, by slip, as seen in Fig. 4.10.

Below 800 �C, specimens fractured primarily due to the grain boundary parting
with little permanent strain. Figure 4.11 is an illustration of type 2 MgO deformed
at 400 �C. Between 800 and 1200 �C, one type was deformed plastically by slip;
the other four types were brittle. The observed behavior is related to the presence
of mobile dislocations, resistance to dislocation motion and to the strength of the
grain boundaries. The polycrystalline MgO curves at 1000 �C (Fig. 4.8c) are
similar in shape, indicating brittleness (types 1, 3, 4 and 5; see Table 4.1), except
for the type-2 specimen, whose deformation is characterized by slip. This obser-
vation is supported by metallographic examination. At 1400 �C, grain-boundary
shearing or separation was evident in all the types and there were greater variations
in the shapes of the stress–strain curves and yield stresses (types 1 and 4, while
type 5 showed very little strain).

Fig. 4.8 Stress–strain curves for MgO specimens loaded at 20 psi/sec. a Type 1 (S.G.). b Type 2
MgO; c and d various types of MgO at 1000 and 1400 �C, respectively [16]. With kind
permission of John Wiley and Sons
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As mentioned above, these different stress–strain curves are probably the results
of differences in grain size, porosity and other imperfections. However, to obtain
good ceramic, such as MgO, which is known to exhibit appreciable ductility at high
temperatures and at RT, it is necessary to reduce the propensity for defect formation
in order to eliminate inter-granular and grain fracture, the kind shown in Figs. 4.12
and 4.13. Slip resulting from dislocation motion, as shown in Fig. 4.14, is a general
feature of properly prepared MgO and appreciable ductility can be achieved.
For example, total axial strains up to 35 % at pressures up to 8 GPa were reported
by Uchida et al. [47], indicating that MgO samples yielded at low total strains
(\1 %) and the yield strength (*5 GPa) was insensitive to pressure. Beyond the

Fig. 4.9 Surface of undeformed specimen polished and etched [16]. With kind permission of
John Wiley and Sons
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Table 4.1 Spectroscopic analysis of various types of polycrystalline MgO* [18] (with kind
permission of John Wiley and Sons)

Constituents Types of polycrystalline MgO

1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

Mg Principal constituent of all 5 types
Fe 0.025 0.03 0.1
Ba 0.004
Si 0.01 0.015 0.03 0.4 1.0
Mn 0.003 0.003 0.006
Al \0.005 \0.005 \0.005 \0.005 \0.005
Ca 0.003 0.02 0.25 0.2 0.25
Cu 0.0008 0.0008 0.0008 0.0005
Ti 0.006 0.003
Li 0.0075�
Ni 0.002 0.005 0.003
Cr 0.004 0.006 0.001 \0.001
B 0.15

0.0288 0.0408 0.3248 0.648 1.5155

Fig. 4.10 Grain boundary
shearing in type 1 (S.G.)
MgO strained 3 % at 1400 �C
[16]. With kind permission of
John Wiley and Sons

Fig. 4.11 Intergranular
fracture in type 2 MgO
deformed at 400 �C [16].
With kind permission of John
Wiley and Sons
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Fig. 4.12 Intergranular
fracture in type 1 (L.G.) MgO
deformed at 1300 �C [16].
With kind permission of John
Wiley and Sons

Fig. 4.13 Type 5 MgO
deformed at 1400 �C
showing fracture of boundary
phase [16]. With kind
permission of John Wiley and
Sons

Fig. 4.14 Wavy slip in type
2 MgO strained several
percent at 1300 �C [16]. With
kind permission of John
Wiley and Sons
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yield point, MgO showed strong strain-hardening behavior, characterized by an
initial rapid increase in flow stress and followed by a linear stage with a constant
hardening parameter.

Considerable work was done on MgO, both single crystals and polycrystalline
materials alike, toward an understanding of deformation behavior in ceramics.
Furthermore, when polycrystalline MgO is ductile, its strain hardening is com-
parable to that of h111i oriented single crystals [16].

In summary, ductility at high-temperature deformation is exhibited by most of
ceramics, but is best studied in MgO, which, unlike most ceramics, is not brittle at
ambient temperatures.

4.4 The Critical Resolved Shear Stress (CRSS) in Ceramics

‘Resolved shear stress’ is a concept related to plastic deformation and associated
with shear stress. Similarly, it is reasonable to talk about ceramics exhibiting
ductility as a consequence of acting shear stress. To do so, one must consider stress
and strain tensors. The stress tensor in Sects. 1.22 and 1.23 (Eqs. 1.13–1.13b) is
rewritten here as:

rij ¼
rx sxy sxz

syx ry syz

szx szy rz

ð1:13bÞ

and the strain tensor from Sect. 1.28 (Eqs. 1.59–1.60) is reproduced as:

eij ¼
exx cxy cxz

cyx eyy cyz

czx czy ezz

ð1:60Þ

The off diagonals refer to shear stresses and shear strains, while the diagonals
represent normal stresses and strains. When stress exceeds a critical value,
materials irreversibly change their dimensions by the process of plastic defor-
mation after the load has been removed from the tested specimen. The stress
applied may be tensile or compressive, as indicated by the tensorial expressions.
Critical stress is necessary for plastic deformation to occur. Shear stress, acting in a
specific plane, is responsible for plastic deformation. Plastic deformation is usually
associated with a slip mechanism, but that is not the sole mechanism which may be
involved. Twinning may occur simultaneously, if no time element, temperature
factor or cyclic stress is involved. However, before considering slip and the sys-
tems in which it occurs, it is worth exploring the details regarding the applied
stress which initiates slip deformation.

Slip is aided by dislocation movement. Dislocations (discussed in Chap. 3) may
have a dual effect on the strength of materials. In the presence of a few disloca-
tions, materials deform at a low-yield stress, s0, whereas, when the concentration
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of dislocations increases, materials become strong again. In the absence of dis-
location (which may be considered a reference point), the resistance to any change
in the dimensions of a material is extremely large (close to the theoretical
strength). Whiskers tested under tension approach the theoretical strength of
materials. Frenkel [20] calculated a value for the yield stress, s0:

s0�G=6 ð4:3Þ

In crystals, slip starts on specific planes and in definite crystallographic
directions at some critical value, known as the ‘critical resolved shear stress’
(CRSS, discussed below). In the following, the minimum stress required for
deformation by initiating slip is derived with the aid of Fig. 4.15.

Figure 4.15b is a bar cut from a cubic single crystal, as shown in (a). A tensile
load, P, is applied to the bar (as illustrated), resulting in the stress:

r ¼ P

A
ð1:4aÞ

Slip occurs on the slip plane indicated by the dashed area and may be expressed as:

slip area ¼ A

cos /
ð4:4Þ

P

λ

τττττ

slip plane

normal to the slip plane

slip direction

PP

P

φ A

(a) (b)

Fig. 4.15 a A cube showing the bar cut out of it; b the load applied to the bar and the resolved
shear stress [7]
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Figure 4.15b shows that / is the angle between the normal to the slip planes
and the tensile axis.

The resolved force in the slip direction ¼ P cos k ð4:5Þ

In terms of stress, the resolved shear stress in the slip plane in the slip direction
obtained from Eqs. (1.4a) and (4.4) is:

s ¼ r cos / cos k ð4:6Þ

One immediately observes, from Eq. (4.6), that the resolved shear stress is zero,
either when / = 90� or when k = 90�. In the first case, the tensile axis is normal
to the slip plane, whereas, in the second case, the tensile axis is parallel to the slip
plane. Deformation by slip is not expected when the tensile axis is parallel to the
slip direction, because the shear stress is zero. The component of stress, normal to
the slip plane, does not influence slip. However, in ceramics, the effect of normal
stress on the critical shear stress is not necessarily negligible; but, in the following
this is not considered. Maximum shear stress is when / = k = 45� (Fig. 4.16).

Equation (4.6) gives the ‘resolved shear stress’. The product in the equation is
known as the ‘Schmid factor’ and determines whether the orientation is favorable
for slip. The conditions for slip are given by Schmid’s Law and the value of
Eq. (4.6), often represented in the literature by sr, indicating the onset of plastic
deformation and called ‘critical resolved shear stress’. CRSS is a structure-sen-
sitive property, since it is very dependent on impurities and the way the crystal was
grown and handled.

On application of a tensile load, the yield stress, r0 varies widely in ceramics,
but considering Eq. (4.6) in terms of yield, the yield stress value is minimal when
/ = k = 45�, giving a value of 0.5 for the product of the cosines (Schmid’s factor).
In this case, the maximum value attained for s is 0.5r0. Beyond 0.5, r0 increases
again.

σ

σ σ

σ

σ

σ σ

λ
slip plane

τ

τ

τ

τ

= 90o

τ=0

slip plane

= 45o

sl
ip

 p
la

ne

φ= 90o

τ=0.5
τ=0

λ
φ= 45o

(a) (b) (c)Fig. 4.16 The shear stress
for some angles of Eq. (4.6):
a k = 90�, when the tensile
axis is parallel to the slip
plane, s = 0; b k = 45�, /
= 45�, s = 0.5r, maximum
shear stress; and c / = 90�,
when the tensile axis is
normal to the slip plane,
s = 0 [7]
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The early work of Schmid and Boas [9], who studied HCP structures such as
Zn, showed that, despite the wide variation in r0 with orientation, the CRSS is a
constant of the material:

r0 ¼
s0

cos u cos k
ð4:6aÞ

A schematic illustration of the change in r0, according to Eq. (4.6a) is shown in
Fig. 4.17.

Schmid’s Law has been experimentally proven for a large number of single
crystals, but tests to substantiate this rule are usually more conveniently done on
HCP crystals, due to the low number of slip systems; in FCC and BCC, where
more slip systems are possible, the active slip plane is usually the one at which
CRSS is first reached.

In summary, CRSS is the necessary component of shear stress, resolved in the
direction of slip, which initiates slip in the crystal. It is a constant for a given
crystal.

Complications may arise in polycrystalline materials, where each grain may be
considered as a single crystal having a different orientation than that of its
neighbor. Taylor assumed that the strain on the grains (crystallites) and defor-
mation occur with the same value of CRSS on all the available slip systems.
According to Schmid’s calculations for the yielding behavior of polycrystalline
metals, the different initial CRSS values, due to the geometry of the slip systems,
have no effect on the macroscopic yield surface of a randomly oriented poly-
crystalline material.

Among various influential factors, the CRSS generally varies with temperature,
as shown in Fig. 4.18 for TiC0.97. The CRSS for slip, rr, on the {111} h1�10i slip
system in TiC0.97 decreases with temperature, T, in the range 800–1280 �C, as
shown in Fig. 4.18. The CRSS obeys a relationship shown in (4.7) as:

rT ¼ r0 exp
B

T
ð4:7Þ

Equation (4.7), expressed in logarithmic form, is shown in Fig. 4.19, indicating
the linear relation of rr with 1/T.

σ

φ λ

0

0.50
cos cos

Fig. 4.17 The schematic
variation of yield stress with
orientation, schematic
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Titanium carbide has had the rock salt structure assigned to it, e.g. LiF, NaCl,
MgO, etc. with slip system assumed to be of {110}. However, the primary slip
system turns out to be the one indicated above, namely {l11}, rather than {110},
which is the characteristic slip system in FCC structures [27].

Note that no yield-stress drop has been observed in these carbide ceramics (see
Fig. 4.20). The curves are parabolic along the entire extension.

In Chap. 2 Sect. 2.2a, the CRSS was shown for Al2O3 at 4.2 9 l0-7s-1 above
Tc, indicating basal and prismatic slip. The Schmidt factors are 0.3916 for (0001)
slip for specimens with A and B orientation and 0.4330 for h1�100i slip for
specimens with C orientation. A and B show basal slip and C has prismatic slip.

In addition, a relatively large number of shear deformation data for ceramics
and metals is listed in Table 4.2, indicating the common slip systems. The results

Fig. 4.18 The critical
resolved shear stress rr as a
function of temperature T in
TiC0.97 [27]. With kind
permission of American
Institute of Physics

Fig. 4.19 The critical
resolved shear stress as a
function of temperature in
TiC0.97 [27]. With kind
permission of American
Institute of Physics
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of tests on 22 materials are presented in Table 4.2 as ideal shear strain. Equa-
tion (4.8) was used to renormalize Frenkel’s model, as indicated by the heavy dark
line in Fig. 4.21. In this relation, G is the shear modulus, s is the shear strain,
where their indexes, r and u, refer to relaxed and unrelaxed parameters, respec-
tively. Here, shear stress is indicated for relaxed and unrelaxed parameters by rm,
rather than by the usual symbol, s:

rm ¼
2Gsm

p
sin

ps

2sm
; 0\s\sm; ð4:8Þ

The authors [6] suggest the term ‘shearability’, sm, for the maximum shear
strain that a homogeneous crystal can withstand. It is defined by
sm � arg max rðsÞ, where r(s), is the resolved shear stress and s is the engineering
shear strain in a specified slip system. The relaxed shear stress, rm

r in Table 4.2 is
normalized by Gr. In this table, experimental and calculated values of the relaxed
shear vales of Gr are given. For details on these calculations, refer to the work of
Ogata et al. [6].

It is, therefore, important to bear in mind the CRSS of plastic deformation in
ceramics, because several ceramics show not only high-temperature plasticity, but
also low-temperature plasticity.

Fig. 4.20 Typical stress–
strain curves for TiC0.97

compressed in the cube-
orientation at temperatures
above 900 �C [27]. With kind
permission of American
Institute of Physics
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4.5 Slip in Ceramics

In metals, slip and the common slip systems are usually discussed in terms of the
various structures of single crystals: BCC, FCC and HCP. There is no basic
difference between the slip systems in ceramics (or other crystalline materials) and
metals, since all the aforementioned structures appear in both materials. Thus,
NaCl, MgO, CaO, KBr, etc. have an FCC structure with a primary {110} h1�10i
slip system. b-Si3N4 is HCP with a h11�20i (0001) slip system. a-Si3N4 with (0001)
h11�10i and (0001) h11�20iand b-SiC cubic (zincblende) with a {111} h110i slip
system. However, unlike pure metallic systems (see Fig. 4.22a), ceramic FCC

Fig. 4.21 (Color) Relaxed shear stress–strain curves of 22 materials, rescaled such that all have
unit slope initially and reach maximum at 1. The renormalized Frenkel model Eq. (4.8) is shown
(in heavy black line) for comparison [6]. With kind permission of Dr. Yip

A
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(111)

-
111

[011]
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z
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Fig. 4.22 a An FCC structure showing two of the four {111} planes and the slip directions of the
(111) plane shaded in red color; b an NaCl structure, also an FCC structure [7]
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structures have two components: a cation and an anion. This is illustrated, for
example, in Fig. 4.22b for an MgO ceramic, which has an FCC salt rock structure
(NaCl). A (111) plane, heavily outlined in (b), passes through all the sodium atoms
(smaller ions), but not through the Cl atoms (larger red ions). The dashed line
connects the chlorine atoms. One can see that the unit cell of NaCl contains 8 ions
located as follows:

4 Naþ at 0 0 0; 1=2 1=2 0; 1=2 0 1=2 and 0 1=2 1=2

4 Clffi at 1=2 1=2 1=2; 0 0 1=2; 0 1=2 0; and 1=2 0 0:

An illustration of slip lines in MgO (having a rocksalt structure is shown in
Fig. 4.23. The specimens cleaved along the {100} planes were tested at RT under
compression along h100i with an Instron machine using a deformation speed of
0.06 mm/min. The deformation results appear in Fig. 4.24.

In samples annealed after mechanical polishing, the deformation curve has four
stages in the plasticity region, showing four-stage work hardening rates (a). After
other processing procedures, two stages of work hardening were observed (b).

Molybdenum disilicide (MoSi2), an intermetallic compound, a silicide of
molybdenum, is a refractory ceramic primarily used in heating elements. It has

Fig. 4.23 slip lines on
orthogonal planes of
a unpolished and
b chemically polished
deformed specimens [12].
With kind permission of John
Wiley and Sons
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Fig. 4.24 Stress–strain
curves for a annealed at
1000 �C after mechanical
polishing b MgO crystals as-
cleaved [12]. With kind
permission of John Wiley and
Sons

Fig. 4.25 slip lines observed
on Nb-bearing MoSi2 single
crystals with the [0 15 1]
orientation at selected
temperatures [29]. With kind
permission of Elsevier
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moderate density, a melting point of 2030 �C and is electrically conductive. Its
applications include: the glass industry, ceramic sintering, heat treatment furnaces
and semiconductor diffusion furnaces. Slip lines in hexagonal MoSi2 ceramics
containing Nb are illustrated in Fig. 4.25. The respective plastic deformation is
shown in Fig. 4.26. Note that, in Fig. 4.25, the slip lines at various temperatures
refer to MoSi2 single crystals containing 0.03 Nb at the composition indicated in
Fig. 4.26c. The deformation curves indicate the effects of additions to the MoSi2
specimens, thus making them basically ternary ceramics. The respective disloca-
tion structures are shown in Fig. 4.27. Further slip lines in MoSi2 containing Re
may be seen in Fig. 4.28. The respective deformation curves are indicated in
Fig. 4.29. The addition of another constituent to MoSi2 is intended to improve the
poor mechanical properties to enable the various aforementioned applications. In
Table 4.2, the CRSS values for the listed slip systems are indicated.

Note that the Re and W additions to the MoSi2 form the C11b tetragonal,
whereas the other alloying elements form the C40 hexagonal structures. Thus,
Figs. 4.28, 4.29 and 4.30 refer to this tetragonal structure. Five slip systems are
reported to operate in MoSi2 [37] slip on {110} h111i is operative from 500 �C.
1/2 h111i dislocations of this slip system are reported to dissociate into two
identical 1/4 h111i partials separated by a stacking fault [30] Table 4.3.

Fig. 4.26 Stress–strain curves of a binary, b Cr-, c Nb- and d Al-bearing ternary MoSi2 single
crystals with the [0 15 1] orientation at selected temperatures [29]. With kind permission of
Elsevier
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Fig. 4.27 Dislocation structures in a binary, b V-, c Cr-, d Nb- and e Al-bearing MoSi2
single crystals with the [0 15 1] orientation deformed to 2–3 % plastic strain. Deformation
temperatures are 500 �C for (e), 600 �C for (a–c) and 700 �C for (d). All thin foils were cut
parallel to (110) slip planes [29]. With kind permission of Elsevier

Fig. 4.28 Slip lines observed
on Re-bearing MoSi2 single
crystals with the [0 15 1]
orientation at a and b 500 and
c and d 1200 �C [29]. With
kind permission of Elsevier
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There are controversies regarding the slip systems in MoSi2. Mitchel et al. [38]
did not find 1/2 (331) dislocations in deformed single crystals and they stated that
the presence of such dislocations are either unstable or they occur under special
conditions of orientation, temperature and stress state.

4.6 Slip in Polycrystalline Ceramics

In polycrystalline materials, slip planes and directions vary from one crystal
(grain) to another; thus, CRSS varies from one crystal to another. The crystal with
the largest CRSS yields first. If a grain is oriented unfavorably with respect to the
applied-stress direction, its deformation is impeded and vice versa for favorably-
oriented grains (Table 4.3).

Grain boundaries are obstacles to slip, since the slip direction of a favorably-
oriented crystal may change when it crosses a grain boundary. As a result, the
strength of polycrystalline materials is higher than that of single-crystal materials. A
polycrystalline ceramic can deform plastically (mainly at elevated temperatures,

Fig. 4.29 Stress–strain
curves of Re-bearing ternary
MoSi2 single crystals with the
[0 15 1] orientation at
selected temperatures [29].
With kind permission of
Elsevier

Fig. 4.30 Dislocation
structures in a Re-bearing
MoSi2 single crystal with the
[0 15 1] orientation deformed
to 2–3 % plastic strain at
1300 �C. The thin foil was
cut parallel to (110) slip
planes [29]. With kind
permission of Elsevier

306 4 Deformation in Ceramics



www.manaraa.com

T
ab

le
4.

3
T

he
C

R
S

S
va

lu
es

fo
r

sl
ip

on
{1

10
}
h1

11
ia

t
50

0
an

d
15

00
�C

an
d

en
er

gi
es

of
st

ac
ki

ng
fa

ul
ts

on
{1

10
}

fo
r

bi
na

ry
an

d
te

rn
ar

y
M

oS
i 2

an
d

th
e

at
om

ic
ra

di
us

,
sh

ea
r

m
od

ul
us

an
d

m
el

ti
ng

te
m

pe
ra

tu
re

s
fo

r
th

e
co

rr
es

po
nd

in
g

al
lo

yi
ng

el
em

en
ts

[2
9]

(w
it

h
ki

nd
pe

rm
is

si
on

of
E

ls
ev

ie
r)

C
ll

b
,

di
si

li
ci

de
M

oS
i 2

(M
o,

R
e)

S
i 2

(M
o,

W
)

S
i 2

(M
o,

V
)

S
i 2

(M
o,

N
b)

S
i 2

(M
o,

C
r)

S
i 2

M
o

(S
i,

A
l)

2

C
R

S
S

fo
r

{1
10

}
h1

11
i

sl
ip

at
50

0
�C

(M
P

a)
23

2
40

5
24

8
15

0
95

99
75

C
R

S
S

fo
r

{1
10

}
h1

11
i

sl
ip

at
15

00
�C

(M
P

a)
18

74
25

10
45

27
16

E
ne

rg
y

fo
r

st
ac

ki
ng

fa
ul

t
on

{1
10

}
(m

J/
m

2
)

36
5

38
2

35
7

32
1

31
5

29
7

23
1

A
ll

oy
in

g
el

em
en

t
M

o
R

e
W

V
N

b
C

r
A

l
A

to
m

ic
ra

di
us

(n
m

)
0.

13
9

0.
13

7
0.

13
9

0.
13

4
0.

14
6

0.
12

7
0.

14
3

S
he

ar
m

od
ul

us
(G

P
a)

12
2.

9
17

8.
6

16
0.

2
47

.1
37

.7
11

5.
4

26
.2

M
el

ti
ng

te
m

pe
ra

tu
re

(�
C

)
26

17
31

80
34

10
18

90
24

68
18

57
66

0

4.6 Slip in Polycrystalline Ceramics 307



www.manaraa.com

except for a few) by dislocation glide, only if each grain conforms to its neighbors in
order to maintain the shape changes without disintegration along the grain bound-
aries. Generally, when straining a polycrystalline ceramic (or any material) five
independent strain components of a strain tensor are required. Consequently, 5
independent slip systems, each composed of a slip plane and a slip direction, are
necessary for a polycrystalline body to undergo a general strain (von Mises). Fig-
ure 4.31 is a schematic illustration of a polycrystalline material as it might be seen
under a microscope, before and after deformation, showing slip-line formation in
some of its differently oriented grains (crystallites). This figure is hypothetical, since
it erroneously assumes that the grains do not change in shape or size. Such a structure
(Fig. 4.31) might possibly occur only when macroscopic deformation is very small.

Figure 4.32 provides an illustration of dislocations in a single grain of a poly-
crystalline Al2O3. To eliminate crack formation in the deformation of Al2O3,
hydrostatic pressure was applied to inhibit the nucleation and growth of cracks
during deformation. Deformation at 1150 �C under a hydrostatic confining pressure
of 200,000 psi resulted in a total strain of�5 %, which was achieved under an axial
stress (above the hydrostatic stress) of 280,000 psi. The length of these dislocations
suggests that they are probably on the ð10�11Þ plane leading to the slip system
assignment ð10�11Þ 1/3½�12�10�. Snow and Heuer [45] indicated that pyramidal slip
systems must be activated for the homogeneous deformation of a randomly-ori-
ented Al2O3 poly-crystal by slip alone. The electron microscopy of polycrystalline
Al2O3, deformed at 1150 �C under hydrostatic confining pressure, indicated that
several pyramidal systems had been activated. Confinement is used because of the
high stresses required to activate pyramidal slip at atmospheric pressure which
however induces fracture. By means of the application of hydrostatic pressure,
fracture is expected to be eliminated. Note that single crystal measurements proved
that CRSS is higher on pyramidal planes than on basal planes.

Slip lines in polycrystalline MgO can be seen in Fig. 4.33. The slip observation was
on polished specimens following the deformation on specimens shown as stress–strain
curves in Fig. 4.34. A pressure-dependent BDT is observed. At higher pressures, large
strains may be achieved without fracture, since the stress required for fracturing
increases. The level of the stress–strain curves increases in both the brittle and ductile
ranges. Furthermore, the type of jacket influences stress–strain curves. The curves in
Fig. 4.34 (and also those in Fig. 4.33) relate to coarse-grained [henceforth: CG] MgO.

before deformation after deformation

Fig. 4.31 A schematic
illustration of a material
before and after deformation.
Note the non-realistic
assumption that no change in
grain shape or size has
occurred
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Impervious jackets were used in order to seal the specimens, to prevent penetration by
the medium used to apply the pressure. The effects of pressure may be seen, in
particular, in Fig. 4.34a, where the 0 and 1 kbar curves are also shown.

The temperature dependence of the stress–strain curves at pressures 2 and
5 kbars appear in Fig. 4.35. With increasing temperature, the level of the stress in
the stress–strain curve decreases, which is significantly more pronounced in (b),
i.e., at the higher confining pressure. The microstructure of the high-temperature
specimens is illustrated in Fig. 4.36. Figure 4.34 clearly illustrates the slip lines in
the microstructure. Polycrystalline MgO appears to deform in a ductile manner
when it is strained under confining pressures greater than 2 kbars at RT. This is
shown in Fig. 4.34a. Ceramics having the NaCl structure usually show brittle
behavior at RT, when only the {110} h110i slip system is operative, probably due
to the lack of the five independent slip systems required by the von Mises concept.
Unlike at RT, at high temperatures an additional slip system is observed to be
operative, that of {100} h110i and, thus, the von Mises requirement for ductile
behavior is met. Polycrystalline MgO, however, can be deformed even at RT under
confining pressures greater than 2 kbars [40].

Fig. 4.32 Electron micrographs of dislocations in single grain of Al2O3 polycrystal deformed at
1150 �C while under hydrostatic confining pressure and then annealed. a Bright-field micrograph;
b, c, and d precision dark-field micrographs with operating reflections of g = ð�1018Þ, ð0�114Þ and
ð�1104Þ, respectively (100 kV) [45]. With kind permission of John Wiley and Sons
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Fig. 4.33 Slip traces in grains of polycrystalline MgO specimen shortened 3.5 % at 8 kbars
pressure. Compression axis horizontal. a Uniformly distributed slip in group of grains (x150),
b nonuniform slip in grain (x150), c kinked grain (x150), and d extension fracturing associated
with kinking (x200). All specimens unetched [40]. With kind permission of John Wiley and Son

Fig. 4.34 Effect of confining pressure on stress–strain behavior of coarse-grained MgO in
a thick rubber jackets and b latex jackets (Numbers on curves represent confining pressure in
kbars and arrows indicate fracture; other tests discontinued where curves end) [40]. With kind
permission of John Wiley and Sons
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Fig. 4.35 Stress–strain curves of coarse-grained polycrystalline MgO deformed at high
temperatures at a 2 kbars and b 5 kbars confining pressure [40]. With kind permission of John
Wiley and Sons

Fig. 4.36 Slip traces on specimens deformed at high temperatures under 5 kbars confining
pressure. a Kinking in specimen shortened 11 % at 400 �C (9125), b wavy noncrystallographic
deformation bands in specimen shortened 6 % at 400 �C (955), and c diffuse deformation bands
and fine slip in specimen shortened 10 % at 750 �C (9 125) [40]. With kind permission of John
Wiley and Sons
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To summarize of this section, plastic deformation in ceramics (and other
materials) is determined by some compromise between the deformations within
the individual grains, which clearly occur by dislocation movement in response to
externally applied stress. The movement of crystal dislocations allows grains to
deform in certain directions, as dictated by the restrictions of the grain orienta-
tions. The grains change shape in order to maintain wholeness, to remain adjoined
during the deformation process. Thus, the change in shape is associated with
crystallographic-lattice change (or sometimes rotation) of the crystallographic
orientation of the grains with respect to each other.

4.7 Twinning in Ceramics

4.7.1 Deformation (Mechanical) Twins

Another way of inducing plastic deformation in materials is via twinning. Thus,
plastic deformation may take place not only due to slip, but also by twinning or a
combination of both. Whereas, in slip, atoms move a whole number of atomic
spacings, in accordance with the Burgers vector of the specific structure, in
deformation by twinning, atoms move a fractional atomic spacing, which leads to
a rearrangement of the lattice structure itself. There is a difference between the
characters of the lines—thin-slip lines are usually observed (visually or under a
microscope) on the specimen surfaces of polished test specimens. ‘‘Twins’’ are
generally represented as wide bands or broad lines. Slip lines can usually be
removed by appropriate etching techniques; ‘twins’ maintain their microscopic
appearance even after relatively deep etching. However, the major difference is
related to structural changes in the lattice induced by twinning, i.e., the stacking
sequence changes. These changes are associated with the actual motion of the
atoms. There is no change in lattice orientation during slip. Figure 4.37 sche-
matically illustrates plastic deformation both by slip and by a combination of slip
and twinning. This illustration is hypothetical, since, for the sake of convenience,
no changes in the shape or size of the grains has been indicated after deformation.
To be more specific, Fig. 4.38 shows images of twinning in barium titanate,
BaTiO3 [henceforth: BT], a ferroelectric ceramic obtained by atomic force
microscopy [henceforth: AFM]. BT is a semiconductor ceramic and the main
constituent of positive temperature coefficient [henceforth: PTC] thermistors.

In particular, Fig. 4.38c shows that the twin patterns on the Y-BT surface are
highly ordered. The topographical contrast results from the difference in the
etching rate of twins with distinct polar directions and, hence, the interfaces
separating the stripes are twin walls.

In FCC metals, there may be a CRSS law for twinning analogous to Schmid’s
Law, according to Szczerba et al. [46]. Some criteria must be satisfied simulta-
neously for twinning to occur, namely (a) the ratio of the resolved shear stress,
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sRSS, to the critical stress of a twin system must be greater than that of any slip
system, namely sRSS/sC [ CRSS for slip; (b) the sRSS should be greater than the
threshold (namely greater than some minimum) stress necessary for twinning to
occur; and (c) the sRSS must satisfy the character of a twin shear. It is not currently
known if such a concept exists also for ceramics.

In deformation by twinning, the atoms of each slip plane in some part of the
lattice move different distances, causing half of the crystal lattice to become a
mirror image of the other half. This mirroring is seen schematically in Fig. 4.39.
The energy of a twin boundary is very low, compared to grain-boundary energy,
about in the range of low-angle grain boundaries. A high-resolution illustration
indicating the mirror image of a twinned structure appears in Fig. 4.40. Beautiful
twinning in BT ceramics are also illustrated in Figs. 4.41 and 4.42. This material
undergoes a ferroelectric structural phase transition as a result of energy mini-
mization associated with stress relief. Its homogeneous elastic energy is reduced at
the expense of twin-wall energy. The twin density depends on the grain size, g.
When homogeneous stress is applied, the total elastic energy of each grain

(a) (b) (c)

Fig. 4.37 Schematic hypothetical illustration (no change in shape is shown): a before
deformation; b after deformation by slip only; c after deformation by slip and twinning. Note
the twin bands in some crystallites [7]

Fig. 4.38 Atomic force microscopy images of Y-BT: a 10 9 10 lm; b 5 9 5 lm; c 2 9 2 lm.
(Y-BT stands for yttrium containing Ba titanate to a level of (0.3 at % yttrium) [22]. With kind
permission of Elsevier

4.7 Twinning in Ceramics 313



www.manaraa.com

increases and becomes proportional, / g3. The twin wall, however, increases
proportionally to / g2.

Graphically, curves pertaining to these two relations intersect and, below their
intersection, stress reduction by twinning cannot reduce the total energy of the
system. Therefore, there is a grain size below which twinning does not occur. For
details on energy minimization, Arlt’s [1] review may be consulted.

In a polycrystalline ceramics, such as BT, when structural phase transition
occurs, a crystallite (grain) experiences slight deformation. This deformation is

Twinned orientation

Twin plane

Before twinning

Twin plane

Before twinning

τ

τ

(a) (b)

Fig. 4.39 Schematic illustration of a twinned region in the material: a before application of
shear, s, and; b after twinning deformation. Note that the twinned region is a mirror image of that
crystal’s part before twinning

Fig. 4.40 a High-resolution image of the ð1�11Þ twin boundary and b the schematic illustration
showing the face-sharing Ti2O9 octahedra (TEM) [51]. With kind permission of John Wiley and
Sons
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obstructed by surrounding grains. A crystallite is clamped by its neighboring
grains and in order to maintain its gross shape high internal stresses or mechanical
twinning is required. The illustration in Fig. 4.41a is a representation of twinning
when the grain is clamped in three dimensions in the body of the ceramics. The
surface grains of a ceramic body do not experience 3D clamping as a crystallite

Fig. 4.41 Representative BT domain patterns of a grain: a when the pattern is formed inside the
ceramic body with three dimensional clamping, b the same grain when the pattern is formed
under free surface conditions [1]. With kind permission of Professor Arlt
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(grain) inside the body. A grain on the surface is clamped only two-dimensionally
and will twin differently. In Fig. 4.41b, surface twinning is seen. Two-dimensional
grain adjustments can occur in thin films in which 3D clamping is not required, in
cubic-tetragonal transition and in tetragonal-orthorhombic transition of the high-Tc

superconducting ceramics. Figures 4.43 and 4.44 shows SEM photographs and
light micrographs of FG and CG BT and the high-Tc YBa2Cu3O7-d supercon-
ductor. Banded twin structure is shown in Fig. 4.44 in the lead-zirconate-titanate
[henceforth: PZT] ceramics, which have a cubic-tetragonal structural phase tran-
sition at about 400 �C. The observed domain width, d, and the width of the bands,
gc, are about 3–10 times smaller than those in BT. The grain size is *10 lm.
Twinning in BT, YbaCuO and PZT are seen in Figs. 4.42, 4.43 and 4.44.

Following the above observation on twinning in BT, it may be of interest to
visualize the nature and characteristics of twinning in a single crystalline of this
ceramic.

4.7.2 Annealing (Growth) Twins

The existence of ‘annealing twins’ (also known as ‘growth twins’) is another
feature of twinning in materials. Examples of this kind of twin formation in
BaTiO3 ceramics and in alumina are presented here. Basically, annealing twins are
the result of annealing following plastic deformation. Micro-structurally, anneal-
ing twins are generally broader and have straighter sides than mechanical twins. Of
the many theories attempting to explain the mechanism of annealing-twin for-
mation, one should consider the work of Gleiter, which is based on TEM and FIM
observations. In the case of a crystal with an FCC lattice, electron microscopic
observations suggest that the steps are formed by the {111}-planes of the grains.
During grain growth, atoms may deposit at the steps of the growing grain;
therefore, these steps sweep across the grain surface just like the steps on the
surface of a crystal grown in vapor. At the points where the grain boundary is
parallel to the {111} planes of the growing grain, new planes must be generated.

These TEM observations suggest that the new {111} planes of the growing
grain may be generated by two mechanisms: growth spirals and two-dimensional
nucleation on close-packed planes of the growing grain. Since a twin has the same
lattice structure as the matrix (only in a mirror orientation) and the formation of
twins and new grains occurs in a specimen at the same time and under the same
conditions (temperature, pressure, etc.), it is assumed that the lattice planes of a
twin and of a grain are formed by the same mechanisms. If this assumption is
correct, then the mechanisms generating the new lattice planes of a growing grain
are also responsible for the generation of twins. Details on such mechanisms may
be found in Gleiter’s work.

In Fig. 4.45, SEM microstructures of air- and Ar-sintered samples in tetragonal
BT, show growth (annealing) twins. Two single twins can be identified by the
distinctive contrast across the twin boundary, as indicated in Fig. 4.45a. The twin
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lamellae, ‘double twins’, indicated in Fig. 4.45b, in contrast to those observed in
Fig. 4.45a, were more frequently found in Ar-sintered samples. The twins are
lying on the f1�11g mirror planes and both the single and double twins are growth
twins. Those twins lying on the f1�11g mirror planes, which are not symmetry
elements of the (basic) crystal lattice, but rather of the superlattice, are, therefore,
‘superlattice twins’. The f1�11gtwins, particularly the double twins, were found

Fig. 4.42 a Scanning electron micrograph of fine-grained BT. b Light micrograph of coarse-
grained BT [1]. With kind permission of Professor Arlt
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Fig. 4.43 a Scanning electron micrograph of fine grained YBaCuO. b Scanning electron
micrograph of medium grained YBaCuO. c Polarized light micrograph of coarse-grained
YBaCuO [1]. With kind permission of Professor Arlt

Fig. 4.44 Scanning electron
micrograph of PbZrxTi1-xO3

(PZT) [1]. With kind
permission of Professor Arlt
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more frequently in samples sintered in an Ar atmosphere with lower oxygen partial
pressure than those annealed in air.

In Fig. 4.46, BF and central dark field [henceforth: CDF] images are showing
twin boundaries. The symmetric fringe patterns in the CDF and the asymmetric
ones in the BF indicate that the {111} twin boundaries exhibit (a-d)-fringes. For
details on specimen preparation and the procedure for growth twin observation in
BT-type samples, consult the original work of Yu-Chuan Wu et al. [51]

4.7.3 Serrated Stress–Strain Curves

Serrated stress–strain curves, similar to those occurring in metals, have also been
observed in ceramics. Such stress–strain curves are shown in schematic Fig. 4.47
and experimentally observed serrated curves in alumina are illustrated in
Figs. 4.48 and 4.49, formed during deformation at two temperatures and at the

Fig. 4.45 Single- and double-twins in a air- and b Ar-sintered samples (SEM-SEI) [51]. With
kind permission of John Wiley and Sons

Fig. 4.46 Twin boundaries exhibiting the a-d fringe patterns in a BF and b CDF (TEM) [51].
With kind permission of John Wiley and Sons
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same strain rate. The load drops in the stress–strain curve are correlated with
individual twins formed during the deformation. As is commonly known from
twinning in metals, both parameters, those of temperature and strain rate, affect
twin formation. Temperature is required in ceramics in addition to strain rate,
because they usually deform plastically only at elevated temperatures.

In metals, a yield drop in the tension test of 1020 steel is known to exist.
Twinning is very common in iron (deformed by impact or at low temperatures);
iron twins are very narrow and are known as ‘Neumann bands’. A similar yield
drop in tension occurs and a Serrated curve is observed in specimens when
twinning deformation occurs as indicated in Figs. 4.48 and 4.49. In FCC materials,
such as Cu alloys during low-temperature deformation, serrated *4.2 K curves
occur. Serrated curves are characterized by a sudden fall in stress, followed by a
rise in stress and then another fall, repeatedly during mechanical twinning,
explaining their observation during tensile stress tests. However, sharp yield drops

σ

ε

Fig. 4.47 A schematic
illustration of the yield drop
and serration in the load
elongation curve

Fig. 4.48 Correlation of
stress-displacement curve and
twin events in a cylindrical
specimen; compression was
parallel to cylinder axis,
8.7 9 10- 6 s-1 axial strain
rate, 1173 K. The occurrence
of twins on only one system
was unusual [10]. With kind
permission of John Wiley and
Sons
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were absent. Thus, a sharp yield drop is not necessarily a feature of twinning in
ceramics. In Figs. 4.48 and 4.49, the stress level of the peaks is about the same.
This test represents single-crystal alumina specimens loaded under uniaxial
compression along the c axis at 623 to 1373 K.

The serration curves in ceramics are analogous with those observed in HCP and
BCC metals during low-temperature deformation. Serration is formed by the
movement of partial dislocations; this motion converts part of a crystal to a twin
orientation. It is believed that dislocations are involved in twinning, but the
mechanism is not yet clear.

Twinning is associated with the coordinated deformation of a large number of
atoms, possibly leading to serrations in the deformation curves (giving a jagged
appearance). Loud clicks are heard during the formation of twins, commonly
known as ‘tin cry’ in metals, but, thus far, such sounds have not been recorded
during twinning in ceramics to the author’s best knowledge. This occurs because
twin formation can be extremely rapid. The serration of a stress–strain curve is a
sign of twin formation. Many investigators have reported twin formation and their
associated serrated stress–strain curves during twinning in alumina [49] in
Li0.02(K0.45Na0.55) ceramics [15] in BT ceramics [51] etc. For further details on
twinning, see the literature on the crystallography of deformation.

In this section, the formation of deformation and annealing twins were dis-
cussed with the resulting stress–strain relation characterized by serrated curves.
As indicated here, there is no basic difference in twin formation between ceramics
and metals.

Fig. 4.49 Twinning at
1273 K and axial strain rate
of 8.7 9 10-6 s-1. Peak
numbers indicate individual
twins [10]. With kind
permission of John Wiley and
Sons
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4.8 Yield Phenomena in Ceramics

4.8.1 Introduction

In metals, several topics are often considered when discussing ‘yield phenomena’:

(a) sharp yield;
(b) strain aging;
(c) the Portevin–Le Chatelier effect [henceforth: PLC].

Very little or no work on this subject has been reported in the field of ceramics.
Therefore, only minor consideration will be given in this section to the above topics.

4.8.2 Sharp Yield

The most commonly known sharp yield was first observed in low carbon-content
BCC iron, also known commercially as ‘mild steel’. In this case, sharp yield is
followed by a sudden drop to a lower value, before further deformation takes
place. In Fig. 4.50, such a yield drop in low-carbon steel may be seen from points
B to C. Deformation in the C–D region occurs without an increase in the stress
level beyond a specific value, an effect known as the ‘lower yield point’. The
highest stress in the elastic region is known as the ‘upper yield point’. The C–D
region is not smooth, but jagged (serrated). This kind of yield-point drop may be
detected by what is known as a ‘hard tensile machine’, which is characterized by
very little elastic distortion. In Fig. 4.50, other stress–strain curves are also shown
for comparison. Although most common ceramics are brittle, sometimes, with
minimal deviation from the linear portion (second graph), ductile ceramics at some
elevated temperature may be represented by the first graph. Now, focusing on yield
phenomena, the last illustration (according to Johnson and Gilman) reveals that
sharp yield points also occur in LiF crystals.

Johnson and Gilman reported that, in order to obtain a sharp yield drop, the two
necessary criteria are: (a) an increase in the number of moving dislocations and (b)
a direct relation between the stress and the velocity of the dislocations. By
knowing the strain rate, given as:

_e ¼ nvb ð4:9Þ

and the velocity of dislocation motion:

v ¼ ksm ð4:10Þ

they were able to calculate stress-elongation curves for LiF, showing sharp yield
drops. By varying the exponent, m, in Eq. (4.10) and the density of the mobile
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dislocation, q, of Eq. (4.11), the magnitude of the yield drop could be changed. In
the early stages of deformation, the density of mobile dislocations is given as:

q ¼ q0 þ Cea ð4:11Þ

The exponent, m, is in the range 1–100. For a certain value of q, increasing m
decreases the yield drop. The value of m for LiF is *16.5 and for a-Fe, *35.
Equation (4.10) is an empirical relation with k being a constant. In Eq. (4.9), n is
the number of moving dislocations/cm2. Calculations were performed for e\ 0.1
in the early stages of the deformation. A dislocation-density evaluation was done
either using the etch-pits technique or by electron microscopy in the range of
e \ 0.1. Equation (4.11) gives q0 as the initial dislocation density, the constant
C = 108/cm2 and the constant a is *1 ± 0.5.

Sharp yield and yield drop have been observed in other ceramics, but they were
usually not associated with the concept of unpinning impurities from a Cottrell
atmosphere, as had been observed in various metals, especially in steel. A popular
reason suggested for the yield drop occurring in ceramics was the dislocation
multiplication mechanism followed by stress relaxation. An example of the yield
drop of the stress–strain curve, as observed in sapphire, is presented in Fig. 4.51.
This figure presents typical stress–strain curves for as-received Verneuil- and
Czochralski-grown crystals (Fig. 4.51a), demonstrating the marked differences
between these types of sapphire. In Fig. 4.51b, the specimen surface finish was
improved by grinding both types of crystal to a ‘satin finish’. Regrinding raised the
upper yield point in the Verneuil crystals and introduced an upper yield point and
yield drop in Czochralski materials. The numbers under each curve in Fig. 4.51
refer to the usual yield-drop factor given as:

f ¼ ðru ffi rlÞ=rl ð4:12Þ

where ru and rl are the upper and lower yield stresses, respectively. Regrinding
was essential to provide an improved as-machined surface finish in order to reduce
the surface density of surface dislocations, which is the source of mobile dislo-
cations likely to result from the machining. The rod axis of these specimens was
parallel to the preferred growth direction for sapphire; the angle between the rod
axis and the (0001) direction was *60� and the angle between the rod axis and the
nearest\11�20 [ direction was *30�. Thus, the Schmid factor for basal slip was
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Fig. 4.50 Yielding in ductile
materials, brittle materials,
BCC iron and LiF. The C–D
zone is the ‘yield elongation’
region
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*0.42�. Figure 4.51 indicates that the yielding in sapphire undergoing basal slip is
a consequence of dislocation multiplication and is not due to the unpinning of a
Cottrell-type atmosphere, where dislocation pinning results from impurities. The
study of two types of sapphires, with different initial dislocation densities, was
meant to point out the difference in their surface dislocation densities and the
consequent differences in their yield phenomena.

The modification of surface finish and its effect on yield are not unique to
sapphires. It is well known that abrasion will eliminate the yield drop in metals and
this effect has been observed in ionic crystals, e.g. LiF, NaCl, AgCl, and MgO.
Removing the damaged surface by careful regrinding, reduced the mobile-dislo-
cation-source density to a level low enough that a yield drop appeared in the
Czochralski crystals and was enhanced in the Verneuil materials. Various factors
influence the appearance and magnitude of yield drop, among them the strain rate
and temperature. The effect of temperature on the upper and lower yield points
(i.e., the magnitude of the yield drop) is illustrated for sapphire in Fig. 4.52.

Thus, all processes which impede dislocation movement are prone to induce
yield point pinning and drop (softening).

4.8.3 Strain Aging

Yield drop is also a feature associated with the observation of strain aging. It has
been recorded in two types of ceramic sapphires, known as Verneuil and Czo-
chralski sapphires, that strain aging may be observed during plastic deformation.
Figure 4.53 shows well-defined strain aging phenomena.

After initial yielding, the yield drop does not appear for short aging times, but
becomes more pronounced as the aging time increases. The lower yield stress
increases with increasing strain, indicating work hardening. A smooth transition in
the plastic regions is seen without upper yield reoccurrence after a short time has
elapsed, as seen in the first two graphs of Fig. 4.53. Thus, a time element is

Fig. 4.51 Stress–strain
curves showing initial
yielding behavior of Verneuil
and Czochralski sapphire.
a As-received specimens and
b specimens reground to satin
finish. Test temperature and
crosshead speed appear in
inset in this and subsequent
figures [19]. With kind
permission of John Wiley and
Sons
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associated with the reappearance of the upper yield point. The upper yield point
that reappears after some aging time is at a higher level than the one that had been
observed at an earlier stage. The strain aging observed in sapphire is the result of a
different mechanism than the impurity pinning (by O or N) known to occur in
steel. In sapphire, it is assumed that a dislocation-multiplication mechanism is
associated with strain aging and with the dislocation density, and thus depends on
the availability of dislocation sources. The higher aging temperature allows for the
rearrangement of dislocation networks at a faster rate. This is possible, since
dislocation rearrangement can occur with ease in sapphire at these temperatures
and that stable networks can form during strain aging. Such networks would

Fig. 4.53 strain aging of a Verneuil and b Czochralski sapphire crystals [19]. With kind
permission of John Wiley and Sons

Fig. 4.52 Effect of thermal treatments on initial yielding of a Czochralski and b Verneuil
sapphire crystals [19]. With kind permission of John Wiley and Sons
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decrease the density of mobile dislocations and introduce a yield point. When
there are no sufficient dislocations available, then higher stress is required for slip
initiation, namely, the yield point will be higher (upper yield point). Removing a
damaged surface by careful regrinding reduces the mobile-dislocation-source
density to a level low enough that a yield drop appears. Thus, the introduction of a
yield drop is attributed to the relief of surface damage (reduction of mobile dis-
location sources).

A yield drop may be caused by mechanisms other than the dislocation multi-
plication of unpinning. In a system of dislocations, which may be or are pinned in
position, instability is produced in the stress–strain curve. This instability takes the
form of a negative slope, as observed in the yield drop.

The appearance of classic strain aging, as found in metals, has been reported in
MnO single crystals. Observations of MnO made by Goretta, et al. showed serrated
curves and yield drops in MnO single crystals, which were attributed to solute
interactions with dislocations. For sufficient aging time, ta, serration was observed
after reloading the specimen which increased with ta. These experimental obser-
vations are consistent with the PLC model for serrations, but with solute atmo-
spheres causing softening, rather than hardening, as is the case in metals. The
saturation of Dsa by ta may be due to solute trapping by immobile dislocations in
cell walls (Dsa in this work refers to the difference between upper and lower yield
points or to the magnitude of the yield drop).

Quite recently Gallardo-Lopez, et al. [21] observed strain aging in Y2O3–ZrO2

[henceforth: YSCZ] single crystals as illustrated in Fig. 4.54. These experiments
were carried out by uniaxial compression tests between 1310 and 1450 �C. The
experimental results and their comparison with standard models show that these
instabilities are caused by the PLC effect. The experiments were carried out in a
stable flow domain at 1310 �C. The samples were plastically strained and statically
aged for time intervals of 20–45 m in the unloaded state. Upon reloading at the
same temperature, a yield point occurred with an approximate amplitude of
20 MPa. This static aging effect suggests the possible pinning of the dislocation
lines in the unloaded state by solute atomic diffusion. Note that, also in metals,
annealing at some temperatures increases the diffusivity of solutes, which arrive
within a shorter time to pin dislocations, essentially causing the upper yield point.
Furthermore, it is important to remember that plastic deformation in ceramics
usually occurs at some high temperature (depending on the type of ceramic). In
metal specimens, left for a short time without reloading, no upper yield is
observed, because the diffusion of solutes to re-pin dislocations cannot take place
at a sufficient rate, as it does at certain elevated temperatures.

4.8.4 Portevin–Le Chatelier (PLC) Effect

A schematic illustration shows the temperature-dependent PLC effect as observed
in metals (Fig. 4.55), which is closely related to yield-point phenomena. Such
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behavior, although observed initially in a Fe, is exhibited by several materials as
they undergo plastic deformation, e.g., Al–Cu alloys (see, for example, Liang
et al.), substitutional Al-2.5 % Mg alloy [13] etc. For the PLC effect to occur,
solute atoms must segregate at the dislocation core. This requires sufficient
mobility by diffusion of the segregated atoms. The local site of the dislocation core
is energetically favorable, since it has space available to accommodate the solute
atom which locks the dislocation, hindering its motion. A larger force (stress) is
necessary to move the dislocation, as the cloud of solute atoms is dragged with it.
At some stage, the dislocation eventually breaks away from the atmosphere of
solute atoms, resulting in reduced drag stress for dislocation movement. Higher
temperatures efficiently release the solute from the dislocation core in the process
known as ‘unpinning’. In Fig. 4.56, for the 24 mol% YCSZ specimen, note the last
set of curves indicating the disappearance of serration with increased temperature.
Thus, at sufficiently high temperatures and at a specific strain rate, these serrations
gradually disappear, due to the relatively higher diffusion of the solute atoms,
preventing the recapture of their atmosphere by the dislocations. In YCSZ having a
large yttria concentration, the mechanism that governs the yield and flow stresses
in easy glide conditions is the interaction of dislocations with yttrium defects, i.e.,
complex defects formed by the association of two yttrium atoms and one oxygen
vacancy.

TEM observations of thin foils parallel to the primary (001) slip plane of the
deformed samples show typical dislocation substructures for YCSZ in easy glide.
The microstructure consists mostly of straight-edge dislocations and a few dislo-
cation loops, as may be seen in Fig. 4.57. By means of the line-intercept technique,
the average dislocation density was estimated to about 1013 m-2.

Fig. 4.54 Static ageing of a 24 mol% YCSZ sample at temperatures below the instability range.
Conditions: strain-rate _e = 3 9 10-5 s-1, T = 1310 �C, ageing times 20 and 45 min. Upon
reloading after ageing, the specimen exhibits yield points of amplitude 20 MPa [21]. With kind
permission of Elsevier
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Following the approach of Gallardo-Lopez et al., one can evaluate several
properties for the PLC. Assume the waiting time for pinning the dislocations, tw, is:

tw � s ð4:13Þ

Further assume that the flight time to the next obstacle is negligible. Let the
concentration of the yttrium defects be c, each defect occupies c/a2 atomic sites in
the slip plane, where the lattice spacing is a. The average distance between the
obstacles is:

K ¼ a=
ffiffiffi
c
p

ð4:14Þ

Let the mean dislocation density be �v, expressed as:

�v ¼ K=tw ¼
a

tw
ffiffiffi
c
p ð4:15Þ

This is the ratio of the mean free path with the waiting time [21].

Fig. 4.56 Serrated stress
versus strain curves in a
24 mol% Y2O3–ZrO2

specimen, compressed at an
imposed strain-rate of
_e = 1.6910-5 s-1 between
1310 and 1450 �C. All the
tests are performed in easy
glide conditions [21]. With
kind permission of Elsevier
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Fig. 4.55 The Portevin–Le
Chatelier (PLC) effect. The
influence of temperature on
the appearance of a stress–
strain curve under tension [7]
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Assume the mobile dislocation density is qm and the Burgers vector is b. The
plastic strain, according to Orowan’s Law, may be given by:

_e ¼ qmb�v ¼ qmba

tw
ffiffiffi
c
p ð4:16Þ

Taking the following values for YCSZ:

b = 0.36 nm
a = 0.5 nm
c = 0.15 is the concentration of defects in the samples.
qm = 1013 m-2 is the number of mobile dislocations under single-slip condi-
tions. _e ¼ 1:6� 10ffi5 is the imposed strain rate.

Equation (4.16) yields time tw = 0.5 s for the waiting. Being about 1 s, this
value is about the same as is typically obtained for PLC in metallic alloys.

For the calculation of the diffusion time, s, of yttrium atoms, the Friedel
approach (his relation 16.3) may be followed (as in Gallardo-Lopez et al. [21]),
given as:

s ¼ kBTb2

nðnþ 2ÞDWM

c1

ac0

� �nþ2
n

ð4:16aÞ

Here, n is an integer which depends on the nature of the solute-dislocation
interaction mechanism. For the size effects, n = 1 was used. The diffusion coef-
ficient, D, for yttrium atoms in YCSZ may be expressed, as is usually done, in
Eq. (4.17):

Fig. 4.57 TEM micrograph
of the dislocation
microstructure in the primary
plane of a sample deformed at
1350 �C and with
_e = 1.6 9 10-5 up to the
yield point, and showing
instabilities. The dislocation
density is estimated to about
1013 m-2 [21]. With kind
permission of Elsevier
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D ¼ D0 exp ffi Q

kBT

� �
ð4:17Þ

in which the parameters have their usual meanings, namely D0 is the pre-expo-
nential factor, Q the activation energy for diffusion and kB is the Boltzmann
constant. By using relevant values of the parameters from Kilo et al. [31] in
Eq. (4.17), the bulk diffusion of yttrium atoms is D0 = 4.82 9 10-6 ms-2,
Q = 4.86 eV at T 1640 K (typical for PLC), and, as such, kTB � 0.144 eV. The
value of D, thus obtained, is D = 1.11 9 10-20 m2 s-1. WM is the interaction
energy of yttrium solutes with the dislocation core, which is estimated by Friedel
as WM 	 1 eV. c0 is the atomic concentration of diffusing solutes and is given as
c0 � 0.14. c1 is the maximum concentration of solutes on the pinned dislocation
lines; since its value is smaller than the saturation value, cs = 1, c1 � 0:5 was
taken, as suggested by Friedel. From all the above data, it was found that s � 0.7 s
is comparable to the obtained value of the waiting time, tw � 0.5 s.

Although approximate values were used for calculating the waiting time, the
value obtained sufficiently confirms that solute atoms of yttrium are responsible for
the observations of the PLC effect. Despite the information obtained above for the
case of YCSZ, the possibility has not been excluded of observing PLC by dislo-
cation–dislocation interaction leading to pinning, thus producing PLC (or strain
aging).

4.9 Deformation in Polycrystalline Ceramics

4.9.1 Introduction

On several occasions throughout this book, no distinction was made whether single
or polycrystalline ceramics were used to exemplify certain topics. Single and
polycrystalline ceramics were interchangeably used to emphasize the subjects
under consideration. Now, this section will focus on several cases of deformation
in polycrystalline ceramics not yet discussed in depth. First among the topics to be
considered below is that of preferred orientation, a well-known aspect influencing
not only the physical properties of ceramics, but also their mechanical behavior.

4.9.2 Preferred Orientation (Texture)

By introducing preferred orientation in polycrystalline ceramics, the advantage of
the resulting anisotropies may be used for specific purposes of interest. ‘Anisot-
ropy’ is a directionally-dependent property of a material, physical or mechanical,
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in contrast with ‘isotropy’, i.e., having identical properties in all directions. It is
essential to control the orientations of the individual grains of a polycrystalline
ceramic in order to basically control its grain-boundary network. Seldom can a
textured ceramic be observed in its natural state. Generally, texturing is introduced
during processing or fabrication. There are several ways of texturing ceramics,
regardless of whether or not improved properties are realized. One of the most
popular means for introducing texture is by controlling the microstructures by
means of a templated grain growth [henceforth: TGG] technique. This method is
discussed below.

4.9.3 Texture by Templating

The TGG process has been used to texture a range of ceramic materials, to provide
directional properties and novel microstructures. Some of the requirements of this
process are:

(i) Templates serve as nucleation sites for epitaxial growth of the matrix phase
and must, therefore, be crystallographically isostructural (though not nec-
essarily chemically identical) with the matrix;

(ii) These templates must also have a high aspect ratio (ratio of height to width)
to increase their orientability during forming;

(iii) Also, the templates must be sufficiently larger than the matrix to assure
growth, but small enough to have a high ratio of surface area to volume.

Many routes for obtaining template particles are known: using molten salt
synthesis, hydrothermal synthesis, sol–gel processing, as well as hybrid, multistep
methods. The TGG method has been widely used for the development and tex-
turing of piezoelectric ceramics [44]. One of the reasons for this widespread use is
the cost consideration, since TGG enables the relatively inexpensive fabrication of
textured ceramics with single crystal-like properties. However, our present dis-
cussion pivots around the mechanical properties.

Lead magnesium niobate-lead titanate [henceforth: PMN-PT], 0.675Pb
(Mg1/3Nb2/3)O3-0.325PbTiO3 (PMN-32.5PT) ceramics were textured (grain-
oriented) in the h001i crystallographic direction by the TGG process. The textured
PMN-32.5PT ceramics were produced by orienting {001}-SrTiO3 platelets
(*10 lm in diameter and *2-lm thickness) in a submicron PMN-32.5PT matrix.
The TGG of h001i-oriented PMN-32.5PT grains of the strontium titanate
[henceforth: ST] platelets resulted in textured ceramics with *70 % Lotgering
factor and [98 % theoretical density. Note that the ‘Lotgering factor’, f, is
defined as the fraction of the area textured, i.e., the degree of orientation.

Figure 4.58 is an illustration of tabular {001}-ST particles (5–15-mm width)
with an aspect ratio [5, which were mixed in the slurry with a magnetic stir bar.
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The tabular ST particles were synthesized by a two-step molten salt process using
KCl as a flux. The ST platelets served as templates. Figure 4.59 shows by XRD the
random and textured PMN-32.5PT (3 wt% excess PbO, 3 vol% ST) ceramics
sintered at 1150 �C for 10 h. The two major peaks in the templated PMN-32.5PT
ceramic were (100) and (200), which indicates the high degree of texturing. In the
textured XRD, a reflection of the (100) remained, indicating that the texturing did
not entirely reach completion. The piezoelectric behavior of the ST and BT6 (i.e.,

Fig. 4.58 Molten salt
synthesized, tabular SrTiO3
used as templates [33]. With
kind permission of John
Wiley and Sons

Fig. 4.59 X-ray diffraction
patterns of random and
textured PMN-32.5PT
ceramics [33]. With kind
permission of John Wiley and
Sons

332 4 Deformation in Ceramics



www.manaraa.com

6 % BaTiO3) textured samples and that of a randomly-oriented sample are com-
pared in Fig. 4.60. Textured PMN-32.5PT with 5 vol% ST and no excess PbO
showed a maximum strain level of *0.3 % in an electric field of 40 kV/cm, which
is approximately twice the strain response of a random ceramic in the same field.
Since this material is used for piezoelectric purposes, Fig. 4.60 shows the strain as
a function of the electric field. Due to the fine size of the template particles, it was
possible to obtain textured ceramics without the use of excess PbO and without
extensive matrix grain growth.

Other techniques for inducing preferred orientations in ceramics are: under
strong magnetic field alignment [50]; by means of a high electric field; by the use
of a seed layer to control texture [36] etc.

4.9.4 Spark Plasma Sintering (SPS)

In Fig. 4.61, the Young’s modulus and hardness are shown for textured alumina
obtained by spark plasma sintering [henceforth: SPS] of undoped commercial

Fig. 4.60 Strain of textured,
untextured, and single-crystal
PMN-32.5 PT as a function of
excess PbO and SrTiO3
templates [33]. With kind
permission of John Wiley and
Sons

Fig. 4.61 Hardness and
Young’s modulus
measurement for sample
sintered at 1400 and 1700 �C
MPa for indentation parallel
and perpendicular to the
direction of uniaxial pressure
(Note: per and para stand for
indentation perpendicular and
parallel to the direction of
uniaxial pressure,
respectively) [43]. With kind
permission of American
Institute of Physics
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grade a-Al2O3. Of the various parameters measured, these two are shown in
Fig. 4.61. The sintering temperatures were 1400 and 1700 �C. The high elastic
modulus and hardness justify the advanced use of textured ceramics due to their
improved properties.

4.10 Grain Size

Almost all the physical and mechanical properties are strongly microstructure-
dependent. The strength of ceramic materials depends, among other parameters, on
grain size. The best known concept relating grain size to some strength property is
the HP relation, originally applied to metals and alloys, but which holds true
within the limits of the theory for ceramics as well. Initially, this relation provided
the yield stress, ro, and the grain size, d relation according

ro ¼ ri þ kdffi1=2 ð4:18Þ

Here, ri represents the resistance of a material to dislocation movement and k is
a constant with various interpretations, such as the unpinning of dislocations, the
degree of dislocation pile-ups behind some barrier or the measure of the relative
grain-boundary strength. k may also be taken to be the grain-boundary resistance
to dislocation slip across boundaries. The value of k may be determined from
deformation experiments on varying grain sizes. The relation of yield stress to
grain size (actually to d-1/2) is linear. k is the HP slope (see Fig. 4.62) and ri is
determined from the intercept of the line with the ro axis.

Details of this process may be envisaged as follows. On application of a tensile
stress, the resolved shear stress acts on some sources in favorably-oriented grains
(note that the boundaries themselves are sources of dislocation) and, on reaching
the yield stress, dislocations pile-up behind the boundaries, acting as obstacles. At
a sufficiently large stress, other sources in unfavorably-oriented grains start to
operate, emitting additional dislocations. Then, general yielding of the entire
specimen will commence. Grain boundaries, in general, are considered as barriers
limiting the free path of dislocations and, thereby, increasing strain hardening.
Thus, the HP model basically indicates the stress required to activate dislocation
sources in neighboring grains. At ambient temperatures (when no creep has set in
yet), yield strength rises as the grain size decreases. Two main reasons should be
noted for this increase in yield stress as a result of smaller grain size: (a) the
number of boundaries increases when the grains are smaller, resulting in a smaller
number of pile-ups in each small grain (boundaries hinder dislocation movement)
and (b) the grain boundaries are also much more disordered than the grain itself,
further preventing dislocations from moving from one grain to another on con-
tinuous slip planes. Impeding dislocation movement hinders the onset of plasticity,
due to the increased yield strength of the material. The higher the yield strength,

334 4 Deformation in Ceramics



www.manaraa.com

the higher the applied stress needed to move a dislocation, in accordance with the
inverse relation in the HP Eq. (4.18). Equation (4.18) is often expressed as:

ry ¼ r0 þ
kyffiffiffi

d
p ð4:18aÞ

The HP relation may be further discussed as follows. A stress concentration
exists at or close to the obstacle (a grain boundary in our case). The key factor in
the motion of dislocations is the first or leading dislocation in the vicinity of the
obstacle. Assume that the leading dislocation has moved a distance, dx; all the
trailing dislocations will move the same distance. The work done per unit length of
dislocation (in Chap. 3) is:

work ¼ nsbdx ð3:79Þ

where n is the number of dislocations and s is the applied stress. The leading
dislocation, si, works against the local stress (internal stress) of the obstacle. Thus,
the work of the leading dislocation is:

work ¼ sibdx ð3:79aÞ

At equilibrium, these equations should be equal and, thus, from Eqs. (3.79) and
(3.79a), one obtains:

ns ¼ sib ð3:79bÞ

The internal stress at the head of the pile-up, composed of n dislocations, is n
times greater than the applied stress. The back stress of the pile-up, sb, acts on the
source to create new dislocations. As long as:

sb ffi sa ¼ s ð3:79cÞ

where sa is the stress required to operate a source, it will function to produce
dislocations. Eshelby et al. [18] have calculated the number and distribution of
dislocations that can pile-up in a slip plane of length L with acting shear stress s as:

n ¼ pLsk

Gb
ð3:80Þ

i

d -1/2d -1/2

oσ

σ

Fig. 4.62 A schematic plot
according to Eq. (4.18),
showing the HP relation, with
intercept ri and slope k
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k = 1 for screw and (1-m) for edge dislocations.
In Eq. (4.18), stress consists of two terms: the first is independent of grain size

and the second is grain-size dependent. The first term at a certain strain, e, is
associated with flow stress in the interior of a grain, while kffiffi

d
p represents the

contribution to the strength, as a consequence of grain-boundary resistance to
dislocation movement into another grain (Hansen). The contribution of the grain
interior, r0(e), is related to the density of the dislocations accumulated at the grain
boundaries. This is detailed in Sect. 3.3.15 on dislocation pile-ups and indicated
especially in Eqs. (3.79), (3.79c) and (3.80) above. By applying them in terms of
grain boundaries acting as obstacles to dislocation motion and by rewriting
Eq. (3.79b), the relation between se and sp is obtained:

nse ¼ sp ð4:19Þ

se represents an effective stress and sp is the stress assumed to exist at the head of
the pile-up acting at the boundary. sp is n times larger than the effective stress and
n is the number of dislocations in the pile-up. The number of dislocations given as
Eq. (3.80), in terms of the effective stress (note that s is given in terms of se), is
given by:

n ¼ pLsek

Gb
ð3:80aÞ

A pile-up of n dislocations along a distance, L, may be considered to be a giant
dislocation with Burgers vector nb in a pile-up of n dislocations (i.e., it is the
length of the pile-up). L cannot be larger than the grain size and its value is usually
taken to be d/2. The effective stress (rewriting Eq. (3.79c)) in terms of the applied
stress, sa, and all the contributions resisting dislocation motion, such as back stress
and friction stress, si, may be expressed as:

se ¼ ðsa ffi siÞ ð4:19aÞ

At the critical shear stress of the applied stress, yielding occurs (=sy) and
dislocations are nucleated at the head of the pile-up for slip into a neighboring
grain (across the grain boundary). At this stage, Eq. (4.19) may be written as:

nse ¼ sp ¼ sc ð4:19bÞ

Substituting Eqs. (3.80a) and (4.19a) into Eq. (4.19b) results in:

sc ¼
kpds2

e

2Gb
ð4:20Þ

Expressing se from Eq. (4.20), one obtains:

se ¼
2Gbsc

pkd

� �1=2

¼ 2Gbsc

kp

� �1=2

dffi1=2 ð4:21Þ
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From Eq. (4.19a), when sa = sy, and based on Eq. (4.21), one gets:

se ¼ sy ffi si ¼
2Gbsc

kp

� �1=2

dffi1:2 ð4:22Þ

or:

sa ¼ sy ¼
2Gbsc

kp

� �1=2

dffi1:2 þ si ð4:23Þ

This equation is similar to the HP relation Eq. (4.18a) and, in order to make it
equivalent in terms of the yield stress, ry, under tension, sy is multiplied by the
Taylor factor, M, to obtain Eq. (4.18a) as:

ry ¼ r0 þ
kyffiffiffi

d
p ð4:18aÞ

ky is:

ky ¼ M
2Gbsc

kp

� �1=2

ð4:24Þ

M is *3.1 in FCC metals. For more such calculations, consult the work of
Rollett et al.

The HP model is widely used to the present day and, with the appropriate
modification of Eq. (4.18a), its applicability to various materials (particularly
metals) has been amply demonstrated. This flow-stress model of deformed metals
is applicable as long as the strength contributed by the boundaries is introduced as
a variable parameter and not as a constant (as in Eq. (4.18a) of the H–P relation).
Hansen has taken this into account. The HP flow-stress model is equivalent to
Eq. (4.18a) and is given as:

rðeÞ ¼ r0 eð Þ þ kðeÞffiffiffi
d
p ð4:25Þ

Nonetheless, experimental observations on several polycrystalline materials
indicate that r0 and k are not always constants under all conditions and are strain-
dependent.

Some examples of the grain-size effect in ceramics are illustrated below:
Ti3SiC2 was chosen as one exemplar, since this ternary compound exhibits a
unique combination of properties. It is a layered material that is as machinable as
graphite. At the same time, CG (100–300 lm) samples of Ti3SiC2 have been
observed to be damage-tolerant, not susceptible to thermal shock and oxidation
resistant. The specimens are fully dense, bulk, single-phase polycrystalline sam-
ples of Ti3SiC2. This material exhibits brittle failure characteristics at RT, but is
plastic at 1,300 �C with yield points of 300 and 100 MPa under compression and
flexure, respectively.
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Furthermore, a temperature/grain size effect is also shown for some mechanical
properties. Recall that most ceramics are brittle at RT and become plastic only at
elevated temperatures. Figure 4.63a shows the stress–strain relation for FG and
CG specimens at RT and at two elevated temperatures, whereas, in Fig. 4.63b, the
load–displacement curves are shown at the same temperatures.

The curves of Fig. 4.63a were obtained by compression, whereas, in Fig. 4.63b,
the load displacement relation was obtained from flexure tests. As may be seen
during compression, failure is brittle, as expected with compressive strengths of
1050 and 720 MPa for the FG and CG ceramics, respectively. The compressive
strengths decrease with increasing temperatures above 1200 �C. At and below
1200 �C, the failure is brittle, with strains to failure of \2 %. At 1300 �C, how-
ever, both materials exhibit large plastic deformation levels ([20 %) with yield
points of 500 and 320 MPa for the FG and CG materials, respectively. The 4-point
bend test, i.e., the flexure strength (r), was calculated using the following relation:

r ¼ 3Pðl1 ffi l2Þ
2BW2

ð4:26Þ

P is the load at fracture, l1 and l2 are the outer and the inner spans, respectively.
A SiC fixture with an outer span of 20 mm and an inner span of 10 mm was used
for the bend test (flexure). B is the specimen width (2 mm) and W the specimen
thickness (1.5 mm). The compressive and flexural strengths of the FG and CG
specimens (from Fig. 4.63), as a function of temperature, are shown in Fig. 4.64.

At all the temperatures, the FG material is stronger than the CG material and the
compressive strength is higher than the flexural strength. A large decrease in
strength at *1200 �C is observed for both FG and CG microstructures, under
compression and flexure. Experiments on microhardness by Vickers indenter were
also performed on Ti3SiC2 ceramics specimens. The results of these tests are

Fig. 4.63 Typical engineering stress–strain curves as a function of temperature and grain size in
a compression and b four-point flexure. Unless otherwise noted, the curves are for the FG
microstructure. In both cases, below 1200 �C, the failure is brittle, whereas above 1200 �C the
failure is plastic, with significant plasticity [17]. With kind permission of John Wiley and Sons

338 4 Deformation in Ceramics



www.manaraa.com

presented in Fig. 4.65. Figure 4.65a summarizes the microhardness measurements
for the FG and CG microstructures. At higher loads (100 N), the hardness is 4 GPa
and is independent of the grain size. The critical indentation load (at which
hardness becomes independent of the indentation load) is influenced by grain size
and is typically larger for a larger-grain-sized material. The measured values of the
retained flexure strength, after the Vickers indentations, are summarized as a log–
log plot in for both microstructures. The hatched area on the left represents the
strength of the samples plot in Fig. 4.65b as a result of natural flaws. In contrast
with the FG material, for which the retained strength decreases immediately with

Fig. 4.65 a Effect of grain size on Vickers hardness as a function of applied load. For both
microstructures, the asymptotic hardness value is 4 GPa. b Four-point flexural strength versus
indentation load. Inclined dashed line has a slope of -1/3, which is the expected behavior for a
perfectly brittle material. Hatched area on the left represents the strength of the samples as a
result of natural flaws [17]. With kind permission of John Wiley and Sons

Fig. 4.64 Effect of grain size and temperature on a compressive strength and b flexural strength
of Ti3SiC2. The data indicate the behavior of FG and CG specimens [17]. With kind permission
of John Wiley and Sons
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increasing indentation load, the CG material exhibits a plateau at low loads.
Figure 4.65a summarizes the microhardness measurements for the FG and CG
microstructures.

It may be seen from these curves that the FG specimens show better strength
properties than the CG ones in Ti3SiC2 specimens. No consideration has been
given to other properties, such as thermal shock resistance, porosity or flaws which
accompany almost every ceramic and clearly affect their mechanical behavior.

In another example, the influence of grain size is indicated in the technically
important Si3N4 polycrystalline ceramics. These ceramics are in situ reinforced
[henceforth: ISR] ceramics, accompanied by ‘crack bridging’ by b-Si3N4 grains,
i.e., when the silicon nitride has a pronounced acicular microstructure. The
strength-flaw size relations are related to the behavior of a bridging zone behind
the crack tip. Sintered ISR Si3N4 ceramics possess a strong R-curve property due
to crack bridging.

Figure 4.66 shows the effect of grain size on strength. In this figure, average
strength, rc

a, is plotted against average grain size, da, on a log–log scale. The slope
of the linear-regression line equals 0.56, which indicates that ISR Si3N4, basically
follows Orowan-type behavior, i.e., strength / (grain size)-0.5. The microstruc-
tures used in evaluating the strength properties of ISR Si3N4 are shown in Fig. 4.67
as a SEM micrograph of FG da = 0.64 lm (a), medium-grained da = 0.84 lm (b)
and CG da = 1.27 lm (c) samples.

Crack grain interaction in ISR Si3N4 is illustrated in Fig. 4.68. In Fig. 4.68a, an
intact bridging grain, *30 lm from the tip of an indentation crack, is shown. This
grain is elastically stretched. In Fig. 4.68b a fractured grain of Si3N4 is located
behind the crack tip. A small bridging grain has been partially pulled out and
fractured. It is possible that, after some sliding, the grain became locked up with
the matrix and, eventually, the crack opening exceeded the elastic limit of the grain
and the grain fractured. In some cases, the strong pullout resistance causes the
surrounding matrix to fracture, as seen in Fig. 4.68b. Figure 4.68c shows a long

Fig. 4.66 Average strength
decreases with grain size
[34]. With kind permission of
John Wiley and Sons
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acicular grain, nearly perpendicular to the main crack, that has been fractured and
pulled out, a behavior analogous to that of a long fiber. To the left of that long
grain, there is an elastic bridging grain with a corresponding crack opening smaller
than the one closer to the crack tip. The stress level in ceramics is critically
dependent on the flaws (cracks), which must be taken into account when the
strength properties are considered. Figure 4.69 is an illustration of the strength-
flaw size relation. The best fitting curves for the three types of grain sizes were
calculated on the basis of Eq. (4.27), given as:

rc ¼
ffiffiffi
p
p

2
K0

c0 þ Dbð Þ1=2
þ p


c0 þ Dbð Þ2ffic2
0

h i1=2

c0 þ Dbð Þ ð4:27Þ

In relation (4.27), c0 refers to the penny-shaped flaw size at the moment
of crack initiation. K0 is an intensity factor chosen as K0 = 2 MPa.m0.5.
The bridging-zone length, Db, prior to critical fracture, has a bridging stress, p*,
assumed to be constant. For the derivation of Eq. (4.27), the reader should consult
the work of Chien-Wei Li et al. [34]. The estimated p* for the FG, medium and

Fig. 4.67 SEM micrographs of polished and etched surfaces for: a fine-grained, b medium-
grained, and c coarse-grained ISR Si3N4 [34]. With kind permission of John Wiley and Sons
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CG samples are 628, 556, and 408 MPa, and the corresponding Db are 20, 73, and
48 lm, respectively. The results of p* and Db for all the samples are plotted
against da, the average grain width in Fig. 4.70.

Fig. 4.68 SEM micrographs showing examples of a elastic bridging, and b, c pullout. The
arrows indicate crack propagation directions [34]. With kind permission of John Wiley and Sons

Fig. 4.69 The solid curves
are the best fits from
Eq. (4.27). Strength-flaw size
relations in the three
examples of Fig. 4.67 [34].
With kind permission of John
Wiley and Sons
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In summary, the average strength of a material decreases with its grain size
following the Orowan-type relation, while the average initial flaw size generally
increases with grain size. The effect of grain size on the property of strength is
demonstrated by a -50 % difference in strength between FG and CG materials
having a given initial flaw size. Furthermore, it has been assumed that in a sample
the critical bridging stress, p*, is constant and that the critical crack size is the sum
of an initial flaw size and a critical bridging-zone size, Db.

Ceramics are used in various technical applications where either specific
functional or structural properties are required. Transparent ceramics have gained
importance in technical window applications, one of them is a spinel based on
MgAl2O4. Therefore it was felt to add an additional ceramics of this kind and
illustrate the grain size effect on the strength properties. Figure 4.71 illustrates the
microstructure of these ceramics. Figure 4.72 shows the changes in the Vickers
hardness as a function of applied load for FG and CG spinel, which is less pro-
nounced for the FG. However, the level of hardness with each applied load is
higher for the FG ceramics.

Fig. 4.70 a Critical bridging stress decreases with grain width; b Variation of bridging zone
length with average grain width [34]. With kind permission of John Wiley and Sons

Fig. 4.71 The thermally etched structure of a fine- and b coarse-grained spinel (light
microscopy) [11]. With kind permission of Elsevier
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Hardness versus load may be expressed on a logarithmic scale, as shown in
Fig. 4.73, obtaining straight lines for both FG and CG spinels. The line repre-
senting the CG material changes with load, whereas that of the FG spinel is almost
constant.

Hardness-load curves are usually based on the relation of:

HV ¼ kPc ð4:28Þ

and

lnHV ¼ lnk þ clnP ð4:29Þ

HV (Vickers hardness), P (load) and k are parameters that can be determined
from the intercept and slope of the straight lines.

In Fig. 4.74, the microstructure indicates the origin of fracture in FG spinel by
bending test. It shows microcracks, before and after the bending, as the origin of

Fig. 4.73 Indentation size
effect for fine- and coarse-
grained spinel [11]. With kind
permission of Elsevier

Fig. 4.72 Vickers hardness
as a function of the
indentation load [11]. With
kind permission of Elsevier

344 4 Deformation in Ceramics



www.manaraa.com

failure. Compare this microstucture with the origination of a CG fracture, which
occurs at weak grain boundaries causing failure (Fig. 4.75). A plot of fracture
strength versus the mechanically loaded area is illustrated for both FG and CG in
Fig. 4.76. The subcritical crack growth [henceforth: SCG] parameters, n, and
fracture stresses determined from the strength parameter time [henceforth: SPT]

Fig. 4.75 Weak grain
boundaries as fracture origins
of coarse-grained spinel [11]
With kind permission of
Elsevier

Fig. 4.74 A typical surface defect as fracture origin in a fine-grained spinel specimen. In
a surface agglomerate and associated microcrack before and b after bending test. c Fracture
surface confirming the extent of the coarse-grained zone [11]. With kind permission of Elsevier
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plot for a lifetime of 1000 h are compared in Fig. 4.77. One can see that both SCG
and strength decrease with increasing grain size. The graphic presentation clearly
verifies that the strength and SCG parameter decrease with increasing grain size.
The grain-size effect appears to be stronger for strength (Fig. 4.77). The SCG was
assessed using the strength–loading rate dependence with additional tests at
3.6 9 10-2, 3.6 9 10-1 and 3.6 MPa/s (around 10 specimens each). The charac-
teristic strength was correlated with the stress rate, _r, for a particular stress rate by
means of:

log rf ¼
1

nþ 1
ogbþ log D ð4:30Þ

where n and D (in MPa/s) are SCG parameters. The derived SCG parameters for
the FG transparent MgAl2O4 are n * 51 and D * 140 MPa. For the CG spinel
n * 23 and D * 71 MPa are obtained.

To conclude the above information on spinel, an SCG assessment and strength–
probability-time prediction for long-term reliability assessment were based on the
loading-rate effect of fracture-strength measurements. The parameter characterizing
the slow crack-growth sensitivity suggests that FG materials are less affected.
The maximum stress for a lifetime of 40 years (failure probability of 1 %) was

Fig. 4.76 Area effect on
fracture strength for fine- and
coarse-grained spinels. The
experimental strength values
are marked by red color [11].
With kind permission of
Elsevier

Fig. 4.77 Grain size
dependency of SCG
parameter and characteristic
strength for 1000 h lifetime.
Filled and unfilled circles are
literature values and present
work, respectively [11]. With
kind permission of Elsevier
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56 MPa for the FG material and 25 MPa for the CG material. Overall, it appears
that strength and the slow crack-growth parameter decrease with increasing grain
size.

4.11 Closing Remarks

No consideration has been given to two important observations of phenomena
known to occur in alloys: (a) that of Lüders bands, which are strongly associated
with strain aging, and (b) deformation in reverse directions, known as the
‘Bauschinger effect’. Surprisingly, it seems that as yet no reports have been
recorded in the literature on ductile ceramics. One cannot help but wonder if these
phenomena do not occur in ductile ceramics or have merely been overlooked due
to a lack of interest. One may also wonder whether experiments performed on
existing ceramics with well-prepared surfaces (polished and possibly etched) after
strain aging might enable the observation of the formation of Lüders bands.
Similarly, it is of interest to know if well-designed experiments performed on
specimens loaded in two directions, namely, loaded, unloaded and reloaded in the
opposite direction immediately after the unloading, might provide observations of
Bauschinger-like phenomena. For students with an inquisitive nature, these might
be valuable topics for exploration.

Appendix

In Sect. 4.11 the question has been raised whether Lüders bands exist in ceramics.
A report specifically refers to the observation of Lüders bands in a two-phase
ceramics. The material is high temperature precipitation hardening Y2O3-partially

Fig. 4.78 Engineering
stress–strain curves for
several Y2O3-stabilized ZrO2

single crystals; composition
corresponding to each crystal
is indicated [2]. With kind
permission of John Wiley and
Sons
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stabilized-ZrO2 single crystals. Figure 4.78 shows engineering stress–strain curves
of Y2O3-stabilized ZrO2 single crystals. Of the three curves the 4.5 mol% crystal
shows a well-developed upper yield point and yield drop, and then serrated flow
occurs similar to the one observed in steels. The observed phenomenon is asso-
ciated with Lüders bands formation as seen in Fig. 4.79.

The specimens were tested by compression on parallel faces to the orientation
{110} and {111} with loading axis parallel to h112i. The Schmid factor evaluated
is 0.47 for the slip system {001} h110i which is the easy slip system for the cubic
zirconia (c-ZrO2). The deformation experiments in air at 1400 �C were performed
with the crosshead rate of 5 lm/min which provided a strain rate of

Fig. 4.79 a Optical
micrograph of Lüders band in
deformed specimen ((110)
face); arrows show polishing
scratch sheared by first
Lüders band. b Scanning
electron micrograph of
Lüders band on (111) face
[2]. With kind permission of
John Wiley and Sons
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_e ¼ 1:3x10ffi5=s. The Lüders bands seen in Fig. 4.79 are parallel to the {001} slip
planes. The large yield drop corresponds to the first Lüders band formation while
the formation of additional Lüders band is associated with the serration of the
stress–strain curve. Many specimens tested gave the same stress–strain curves with
Lüders bands formation.
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Chapter 5
The Strength and Strengthening
of Ceramics

Abstract There are several mechanisms by which materials may be strengthened
as listed: (i) Strain (or work) hardening in ductile ceramics, (ii) Solid-solution
strengthening by pinning dislocations either by interstitial or substitutional atoms,
(iii) Second-phase hardening, (iv) Transformation hardening, (v) Strengthening by
grain boundaries. Strain hardening is a feature of ductile ceramics, but at high
temperatures where brittle materials show plasticity, strain hardening does not
necessarily occur. In brittle materials that show plasticity at elevated temperature,
strain hardening depends on composition and conditions of the test. It is possible
that, due to the recovery process, strain hardening will not be observed. Super-
plastic materials are characterized by high ductility and no strain hardening occurs.
In particular in superplastic materials such as MgO, strain hardening is absent
while in b-Si3N4 under compression it is not observed. However, it has often been
observed that little or no hardening at all occurs. Either interstitial or substitutional
atoms can pin dislocations and thus strengthen the material. Second phase particles
not in solution can hinder dislocations in their motion with a consequent increase
in strength in the ceramics. Ceramics such as those based on zirconia are likely to
undergo phase transformation, in particular the yttria stabilized zirconia, which is
associated with strengthening of the material. Clearly, grain boundaries are
obstacles to dislocation motion and thus harden the ceramic.

5.1 Introduction

The strengthening of ceramics is of great importance for engineering applications,
especially at elevated temperatures. Various production processes exist; most are
based on powder technology and various sintering techniques (after the prepara-
tion of a green structure), but fusion or molten processes are also possible, albeit
rarely used. Whatever the production technique may be, the aim is to attain a high-
density product with minimal flaws (pores, microcracks, etc.).

J. Pelleg, Mechanical Properties of Ceramics, Solid Mechanics
and Its Applications 213, DOI: 10.1007/978-3-319-04492-7_5,
� Springer International Publishing Switzerland 2014
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Construction parts are designed not only to endure anticipated and intentionally
applied forces (those they are meant to withstand during service), but also any
sudden, short-duration forces that may cause catastrophic failure, if not taken into
account. In order to avoid the probability of such failures, liberal safety factors are
generally adopted by designers. Their approach is to strengthen materials beyond
the magnitude which is sufficient for the prevention of failure, even if a steady
force were to be exerted during the entire period of their use. This extra strength
value constitutes the safety factor required for ensuring the safe use of a con-
struction part, even in the event that a sudden force of larger magnitude appears
during service. There are several mechanisms by which materials may be
strengthened, listed below:

(i) Strain (or work) hardening in ductile ceramics;
(ii) Solid-solution strengthening by pinning dislocations:

a. interstitial atoms,
b. substitution atoms;

(iii) Second-phase hardening;
(iv) Transformation hardening;
(v) Grain boundaries and grain size.

These subjects are discussed in this chapter. However, to understand the con-
cept of hardening (strengthening), one must realize that all the aspects of
strengthening involve dislocation generation, dislocation movement and the
interactions of dislocations with each other or with any of the above-listed entities
that might hinder their free motion.

Intentionally in the present discussion, no differentiation is made between
single-crystal and polycrystalline ceramics and they are used interchangeably,
depending on the topics under consideration.

5.2 Strain Hardening

This section will consider the hardening effects in (a) common ceramics, which are
usually brittle up to some elevated temperature; (b) ceramics which show ductility
and; (c) superplastic ceramics. But before doing so, it is important to review the
general concept of strain hardening (work hardening) in materials. Briefly, dis-
locations interact with each other and consequently the motion of dislocations is
restricted (i.e., the motion of a mobile dislocation may be hindered when it
encounters another dislocation). Interacting dislocations may hinder each others’
motion either strongly or weakly, depending on their positions, types and other
geometric features. Since dislocations are responsible for plastic deformation, they
describe strain (work) hardening as the strengthening of the material by plastic
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deformation at low temperatures, where recovery processes do not occur. On a
stress–strain plot, a gradual increase in resistance to deformation with plastic strain
is observed, requiring higher loads for continued deformation. In terms of shear
stress, it is common to relate its variation (increase for further deformation) to
dislocation density as:

s ¼ s0 þ aGbq1=2 ð5:1Þ

The figures (Fig. 5.1) show schematically one type of strengthening, namely,
work hardening (shown step-by-step); recall that work hardening involves an
increase in yield stress (and, hence, of the entire stress–strain curve). Loading a
specimen up to the red point (first) and then unloading it, shows a higher yield
stress on reloading. The material has been hardened and now its yield stress is r01.

As a consequence of hardening, the strength of the specimen increases due to its
decreasing ductility. Similarly, if the specimen’s loading had been stopped at the
second (or third) red point, and it was unloaded and then reloaded, the yield stress
would be r02, with a consequent strength increase and decrease in ductility, etc.

ε

σ

σ0

σ01

σ02
σ03

σ01

ε

σ02

ε

σ03

ε

01
02
03

Fig. 5.1 The top schematic figure shows the strain hardening on plotting a tensile stress–strain
curve. The bottom curves show that the yield stresses for specimens, reloaded after each
unloading, are: r01, r02 and r03. Thus, by repeating this procedure, the strength continues to
increase, while ductility decreases, until the specimen becomes brittle: r01 \ r02 \r03
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5.2.1 Brittle Ceramics

In general, ceramics may contain dislocations, but normally at RT they are brittle to
an extent at which no plastic deformation can take place. Thus, ceramics basically
cannot strain-harden; consequently, no strengthening is possible at low tempera-
tures. Strain hardening at RT requires the deformation of a material beyond its yield
point, but ceramics do not show yield points, being brittle. Under tension, ceramics
show only elastic behavior. Ceramic materials, characterized by ionic or covalent
bonding, have a limited number of slip systems. (A covalent bond is directional and
electrons are shared. Hence, bonds will not reform easily and brittle fracture will
occur.) Such materials tend to fracture before any (or very slight) plastic defor-
mation takes place and catastrophic failure may set in if the elastic limit is sur-
passed. A crack so formed is unstable and propagates rapidly, without any further
increase in applied stress. Ceramic materials inherently have cracks, flaws, pores
and inclusions. These act as stress raisers that may initiate failure and propagate
quickly (because there is no energy-absorbing mechanism, as there is in metals).

5.2.2 Ductile Ceramics

A few ceramics are ductile at RT, but the majority, under common conditions, is
ductile only at some elevated temperatures. As such, temperature is a critical factor
in making ceramics ductile. When discussing strengthening, in general, and work
hardening, in particular, this factor will not be specifically considered unless there
are extenuating circumstances.

An accepted way to express strain hardening in materials is by:

r ¼ Ken ð5:2Þ

where n is the strain-hardening exponent, the value of which is characteristic of the
material being deformed. Low values of n mean low work hardening. As previ-
ously indicated, ceramics contain dislocations and can be work-hardened to a
degree, depending on their temperature-dependent ability to deform.

During the process of making ceramics stronger by means of plastic defor-
mation, dislocations become mobile under the influence of stress and also addi-
tional dislocations are generated. The more dislocations that are generated and
present (as a result of plastic deformation), the greater the likelihood of encoun-
tering other dislocations and interacting with them; this makes their motion more
difficult and may result in pinning and tangling. Retarding the mobility of dislo-
cations by pinning and tangling requires additional stress for the continued motion
of the dislocations. This is reflected on the stress strain curve, expressing the
resistance of ceramics to further deformation (see Fig. 5.1). When ceramics are
ductile at RT, the relatively low temperature does not allow rearrangement by
atomic diffusion to take place. The term ‘recovery’ represents a structural
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rearrangement which commences at some temperature. The strain hardening
observed in a stress–strain plot represents the balance between strengthening due
to dislocation pinning and recovery. Thus, temperature plays a key role in the
strain-hardening process. In such cases, when no strain hardening has been
observed (or only to a small degree) a recovery process (involving the re-crys-
tallization of deformed grains) dominates and eliminates the strengthening effect.
Thus, often at high temperatures in ductile ceramics, no strain hardening is
observed. (Recall that in metals during hot working the dislocations may rearrange
and typically little strengthening is achieved). The final stage, i.e., the continued
straining of a specimen, will eventually embrittle the material, because increasing
the strength also reduces the ductility and leads ultimately to failure.

In ceramics, the extent of plasticity caused by dislocation, when tension tests
are performed, is limited and very often accompanied by microcracking. Many of
the tests are consequently performed by low-load indentation, such as microin-
dentation, where the indenter may be focused on a grain. Nevertheless, other
testing methods are also used. In the figure below, the stress–strain curves rep-
resent compressions at a constant strain rate at several temperatures starting with
RT and up to 1423 K (Fig. 5.2).

In particular, note the lower temperature curves in the 1218–1323 K range. The
strain hardening in this polycrystalline MgO specimen decreases with increasing
temperature. The effect of temperature on strain hardening is clear. If the tem-
perature is sufficiently high, the stress–strain plot becomes flat, developing a
plateau with zero hardening. The strength of the ceramic drops and its ductility
increases, almost as in superplastic ceramics, to be discussed later.

The first signs of macroplasticity are already observed at 1173 K and, with
increasing temperature, the plastic strain becomes more extensive. Also, the
complete brittle behavior at RT under the stress–strain curve is indicated in
Fig. 5.2. The 0.2 % offset yield stress is much lower than that for slip in the
f001gh1�10i systems and, therefore, it is believed that dislocation slip occurs in the
f110gh1�10i system and some grain boundary processes also contribute to plas-
ticity at higher temperatures. The behavior in this very-fine-grained MgO is dif-
ferent than in the coarse-grained, in which, at about 7 % strain, grain-boundary
cracking is already well developed, as indicated by microstructural examinations.
However, it will be more illuminating to consider MgO single crystals, where no
grain and boundary contributions exist. Figure 5.3 shows stress–strain curves of
MgO single crystals. The stress axis is in a h100i direction.

All the specimens were loaded under compression at a constant stress rate of 20
psi per second in the temperature range of 1000–l600 �C. Loading the specimens
at his orientation results in a maximum resolved shear stress on four of the six
possible slip systems belonging to the f110g\1�10 [ family. The resolved shear
stress vanishes in the other two slip systems, as well as in the
f001g\1�10 [ family. The four slip systems consist of two pairs of orthogonal
slip systems which intersect at 60o. Figure 5.4 shows the results of compression
tests performed with the stress axis in the h111i direction.
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Fig. 5.2 Stress–strain curves
in compression at constant
strain rate
of *6.7 9 10-6 s-l as a
function of temperature (K).
At room temperature, arrow
indicates fracture of specimen
[4]. With kind permission of
John Wiley and sons and
Professor Escaig

Fig. 5.3 Stress–strain curves
for MgO single crystals
compressed with
a h100i stress axis at various
temperatures. All specimens
were loaded at 20 psi per
second. The specimens
deformed at 1300, 1510, and
1600 �C were cleaved from
the same crystal block [5].
With kind permission of John
Wiley and Sons
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In this orientation, equal shear stresses were operating on three of the six slip
systems of the f001g\1�10 [ family. The strain hardening obtained in this case is
considerably greater than that observed in curves obtained when the stress axis is
in a h100i direction. This is due to the long-range repulsive stress interactions
existing between the intersecting dislocations resulting from the Burgers vectors of
the three active slip systems oriented at 60� one to another. Note that the yield
stresses for the h111i oriented specimens were considerably greater than those for
the h100i orientations and continuously decreased up to 1600 �C.

Not only T has an effect on the strain hardening (strain hardening decreases
with T), but also the stress rate influences strain hardening, as exemplified for
MgO in Fig. 5.5. The effect of stress rate on plastic flow and, thus, on strain
hardening is also opposite to that of the temperature. Increasing the stress rate
increases the strain hardening of the ceramic MgO. These tests were performed at
the same T, at 1321 �C.

It was indicated in the above curves that strain hardening is related to an
increase in the yield stress, which can be observed after unloading, followed by an
increment of plastic deformation and upon reloading the specimen. The slope of
the stress–strain curve, being a measure of the increase in the stress on a stress–
strain curve, usually defines the strain hardening rate. The slope, at a constant
stress rate, is expressed as:

Fig. 5.4 Stress–strain curves
for MgO single crystals
compressed with a (111)
stress axis at various
temperatures. All specimens
were loaded at 20 psi per
second [5]. With kind
permission of John Wiley and
Sons
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dr
de
¼ dr

dt

de
dt

� ��1

ð5:3Þ

The plastic strain rate is related to the dislocations as:

dr
dt
¼ _e ¼ mqb�v ð5:4Þ

b is the Burgers vector, �v is an average dislocation velocity, m is a geometrical
constant = 1/2 for single crystals of MgO stressed in the h100i direction and q is
the total length of the mobile dislocation. LiF and MgO measurements made by
Johnston and Gilman [17] and Johnston [18], respectively, have shown that dis-
location velocity is related to shear stress by:

v ¼ v0
s
s0

� �n

ð5:5Þ

s is the resolved shear stress, m0 = 1 cm s-1, and s0 and n are constants. They also
indicate that the velocity of edge dislocations is much faster (in LiF) than that of
the screw dislocation by about:

�v ffi 2v0 ð5:6Þ

The slope of the stress–strain curve from (Eq. 5.3) through (Eq. 5.6) may be
written as:

dr
de
¼ 1

qbv0ðs=s0Þn
dr
dt

ð5:7Þ

Fig. 5.5 Stress–strain curves
for MgO single crystals
compressed with
a h100i stress axis at various
constant stress rates. The
specimens deformed at 165,
80, and 20 psi per second
were cleaved from the same
crystal block [5]. With kind
permission of John Wiley and
Sons
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s0 is an appropriate constant for screw dislocations. If the constants, s0 and n, and
the variation of q during plastic deformation are known, and m is set to �, the
slope, at a constant stress rate, can be predicted.

As indicated earlier, a very common method for studying the resistance of
ceramics to applied loads is by indentation, or rather by micro-indentation, to
reduce the propensity of ceramics for premature failure. In Fig. 5.6, an indentation
test is presented. The figure was obtained using Hertzian indentation with spherical
indenters; plasticity can be attained in ceramics by this test. A glass–ceramic was
used, a commercially available Corning product, basically consisting of K2O–
MgF2–MgO–SiO2. The specimens were heat treated for 4 h at the temperatures of
1000, 1040, 1060, 1080 and 1120 �C. The microstructure of the glass is illustrated
in Fig. 5.7. In Fig. 5.6, the brittle state of the base glass is also shown. The
intensity of the stress produced by the spherical indenter is related to the inden-
tation pressure, p0, by:

p0 ¼
P

pa2
ð5:8Þ

and the strain is related by the ratio of contact radius, a, to the sphere radius, r, as:

strain ¼ a

r
ð5:9Þ

In Fig. 5.6 the indentation pressure is plotted versus a/r. The Hertzian relation
between the indentation stress, p0, and the indentation strain, a/r, is linear (see, for
example, [2]) and given by:

p0 ¼
3E

4pk

� �
a

r
ð5:10Þ

The above considers the elastic region in a perfect Hertzian state of indentation.
Details of the analysis of this test in the plastic region may be found in the work of
Fischer-Cripps and Lawn [7]. The end result of their analysis may be given as:

sF ¼
1
2
ða3 � a1Þ sin 2W

� �
p0 � sc � l

1
2

a3 � a1ð Þ � 1
2

a3 � a1ð Þ cos 2W

� �
p0

ð5:11Þ

where sF is the frictional shear stress term, W is the angle between the fault plane
and r3 axis, a1 = -r1/p0, a3 = -r3/p0, l is the coefficient of sliding friction and
sc is the cohesion (adhesion) strength. For more information on the assumptions
made to calculate the lines in Fig. 5.6 by theoretical analysis, the reader is referred
to the originals work of Fischer-Cripps and Lawn [7].

The Hertzian contact test results described provide basic information on the
intrinsic properties of otherwise brittle ceramics, information not generally
attainable by more conventional testing procedures. Specifically, it enables one to
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Fig. 5.6 Indentation stress–strain curves for base glass and glass–ceramics heat-treated at
specified temperatures for 4 h. Data from experiments line fits from theoretical analysis [7]. With
kind permission of Elsevier
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generate (asymptotic) indentation stress–strain curves, such as those shown in
Fig. 5.6 for glass–ceramics and thus to quantify any plasticity characteristics.

5.2.3 Superplastic Ceramics

Superplastic structural ceramics were discussed in Sect. 2.2. They are character-
ized by large strains when deformed. The microstructure of superplastic materials
is characterized by fine grains, which resist grain coarsening during sintering and
are stable when deformed. Among the best-known superplastic materials are
Y-TZP polycrystals, Si3N4, Al2O3, etc. Second-phase particles are especially
effective in suppressing static and dynamic grain growth. Additives that segregate
to grain boundaries can be effective in retarding grain coarsening. High strain rates
are one of the requirements for inducing superplasticity during deformation. Often,
heat treatment can help to obtain the desired fine-grained microstructure required
for superplasticity. In Fig. 5.8, the ultrafine-grained structures of several ceramics
exhibiting superplasticity are illustrated.

However, it has often been observed that little or no hardening at all occurs.
Superplastic materials are characterized by high ductility, preferably achieved

at relatively low temperatures and high deformation rates. The strain rate is
expressed in terms of stress and grain size, d, as:

_e ¼ Arn

dp
ð5:12Þ

with n and p as the stress and grain size exponents. A is a temperature-dependent
coefficient related to diffusion and, thus, may be expressed by an Arrhenius
equation. The exponents, n and p, are in the 1–3 range. Figure 5.9 illustrates the
stress–strain relation of several zirconia-based ceramics.

Fig. 5.7 Scanning electron
micrograph of glass–ceramic
heat-treated at 1120 �C,
surface-etched to reveal mica
platelets in glass matrix [7].
With kind permission of
Elsevier
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In the above, the term TZP refers to tetragonal zirconia polycrystals containing
2-mol% yttria, 12 % ceria, while the term CSZ refers to cubic zirconia with the
respective additives. Note in the curves that 2Y-TZP and 12Ce-TZP/1%Ca do not
show any strain hardening and that these curves are flat. However, it has often been
observed, not only in these cases, that little hardening occurs or that there is none
at all. The most probable reason may be related to recovery processes which set in
immediately after the elastic region is surpassed and equilibrium is maintained by
stain hardening. The stress–strain curve of the nanocrystalline (NC) MgO, shown
in Fig. 5.10, indicates that no work hardening has occurred and its microstructure
is shown in Fig. 5.11.

Fig. 5.8 Scanning electron microscopy micrographs of ultrafine grains of superplastic ceramics:
a 2Y-TZP, b alumina, c silicon nitride, and d 2Y-TZP/alurnina at equal volume fraction [3]. With
kind permission of John Wiley and Sons
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Fig. 5.10 Stress–strain curves recorded by compression of rectangular NC-MgO bars at constant
cross-head speed and different temperatures. The curves exhibit elastic and perfectly plastic
behavior with no strain hardening. Specimen (A) was annealed to grow the grain size to 1 lm and
thus exhibited brittle behavior by compression at 800 �C (arrowed solid line) compared with the
ductile behavior of its nanocrystalline counterpart specimen (dashed curve) at 800 �C [26]

Fig. 5.9 Stress–strain curves of TZP and CSZ. Initial grain sizes are: 0.48 lm (8Y-CSZ),
0.56 lm (12 Ce-TZP with 0, 0.1, and 0.3 % Ca), 0.3 lm (12Ce-TZP with 1 % Ca), and 0.21 lm
(2Y-TZP). Tendency for strain hardening directly corresponds to the magnitude of grain-
boundary mobility shown in Fig. 5.10 (Strain rate is 10-4 s-1 except in the case of 8Y-CSZ and
12Ce-TZP with 1 % Ca where 3 9 1 0-4 s-l is used.) [3]. With kind permission of John Wiley
and Sons

5.2 Strain Hardening 363



www.manaraa.com

Grain-boundary mobility, which is related to grain growth, may be seen in
Fig. 5.12 with the effect of the same additives that was indicated in the stress–
strain curves of specimens deformed as illustrated in Fig. 5.9.

In Fig. 5.8, the microstructure of alumina is shown, indicating superplastic
behavior (early experiments failed to show superplasticity). Plastic deformation to
large strains was achieved, but the window for superplastic fabrication is very
narrow, because sintering below 1330 �C is quite difficult and requires much
experience for successful production. Above this temperature, grain growth is
quite fast. Therefore, proper additives are needed to reduce grain growth above this

Fig. 5.11 High resolution scanning electron microscope (HRSEM images,) using the secondary
electrons, showing the surface microstructure of the NC-MgO composed of equiaxed grains,
a prior to and b after the plastic deformation at 800 �C (40 % strain). No significant changes were
visible after the deformation, except some grain boundary cavities and faceting of the surface
grains which were in contact with the compressing pad. Arrows indicate the applied load
direction [26]

Fig. 5.12 Grain-boundary
mobility of TZP and CSZ
plotted versus reciprocal
homologous temperature (Tm

is the melting point) [3]. With
kind permission of John
Wiley and Sons
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temperature. The deformation of alumina doped with 200 ppm magnesia results in
large strain. In Figs. 5.9 and 5.10, compare the stress levels and strain hardening.
Except in the magnesia-doped alumina, the strain hardening is negligible or non-
existent. The relatively mild strain hardening of the magnesia-doped alumina is a
direct consequence of its slower dynamic grain growth. This magnesia-doped
alumina may be superplastically deformed to large strains, albeit at the expense of
strain hardening. Note that producing superplastic alumina is not that easy, since
sintering alumina below 1300 �C requires considerable experience and, when
sintering above 1300 �C, grain growth is quite fast; therefore, a very narrow
window is available for the processing of superplastic alumina. Grain growth is not
desirable for obtaining superplasticity. Adding various additives to ceramics, as
have been seen above (Figs. 5.9 and 5.12), is a method often effective for
improving superplastic performance while maintaining strain hardening. From the
above examples, the effect of an additive on strain hardening is clear.

The microstructure of a sintered pure alumina is shown in Fig. 5.14a. (a) The
grain size is a fine 0.5 lm and remains relatively stable during annealing at
temperatures below 1300 �C. Pure alumina at such a grain size has a very low
initial flow stress, as seen in Fig. 5.13. However, it fails to deform superplastically
due to rapid dynamic grain growth, shown in Fig. 5.14. (b) The structure of the
deformed specimen, represented by Fig. 5.14a and b, causes strain hardening, as
indicated on the stress–strain curve in Fig. 5.13. The grains become elongated
when deformed at 1400 �C, as illustrated in Fig. 5.14a. (c) Large grains of this
type serve as stress concentrators and potent nucleation sites for cavitation, thus
degrading the ductility. The higher deformation temperature only makes the
problem worse, as shown in Fig. 5.14c.

Si3N4 is another superplastic ceramic. Two polymorphs, a and b silicon
nitrides, exist. Both are hexagonal and capable of having a large range of solubility
with various constituents. Strain hardening in Si3N4 depends on its composition

Fig. 5.13 Stress–strain
curves for alumina. Strain
hardening in pure alumina
and magnesia-doped alumina
is due to dynamic grain
growth. The eventual
decrease in stress in pure
alumina is a result of
cavitation. Note that alumina
with 2 % liquid was tested at
a lower temperature [3]. With
kind permission of John
Wiley and Sons
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and its polymorph. In Fig. 5.15, strain hardening in b-Si3N4 is absent at all the
strain rates tested under compression at at 1500 �C. The data in Fig. 5.15 are
corrected curves that may be obtained by the following correction method for a
compression test. Some of the expressions from Chap. 1 may be rewritten as
below. Stress may be expressed as:

r ¼ P

A0
expðeÞ ð5:13Þ

with the usual meanings of the parameters (A0 as known is the initial cross-
section). The true strain is:

e ¼ ln
l

l0
¼ ln 1� Dl

l0

� �
ð5:14Þ

Fig. 5.14 a Microstructure of pure alumina: a as sintered at 1250 �C; b deformed in
compression at 1250 �C (strain rate of 1.5 9 10-5 s-1; total strain of 0.3) with compression
axis shown by hollow arrows and cavities by solid arrows; and c same as b but deformed at
1400 �C (strain rate of 2.4 9 10-4 s-1; total strain of 0.68) [3]. With kind permission of John
Wiley and Sons

Fig. 5.15 Compressive
stress–strain curves for
various strain rates of the
as-hot-pressed material at
1550 �C [34]. With kind
permission of John Wiley and
Sons
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Recall that Dl is the displacement (change in dimensions of the specimen).
Denoting the rate of the crosshead displacement, _l, and if it is assumed to be
constant during the test, then the initial strain rate is _e0, which is given by:

_e0 ¼
_l

l0
ð5:15Þ

The strain rate at some intermediate stage follows from Eqs. (5.14, 5.15) and

(5.16) is obtained. Also assign the symbol _e to _l
l for the strain rate at the inter-

mediate stage:

_e0 expð�eÞ ¼
_l

l
¼ _e ð5:16Þ

Rewrite Eq. (5.16) as:

_e ¼ _e0 exp �eð Þ ð5:16aÞ

Since a constant displacement was used, Eq. (5.16) indicates an increase in
strain rate under compression (the sign in the exponent represents compression,
since it is negative). Correction for the changing strain rate is possible if the stress
exponent is known. The strain rate is related to the stress exponent by:

_e ¼ Arn ð5:17Þ

Substituting for _e, one obtains:

rcorr: ¼ r0 exp �eð Þ½ �1=n ð5:18Þ

The steps for obtaining Eq. (5.18) are as follows.
From the substitution of Eq. (5.17) into Eq. (5.16), one obtains:

_e ¼ Arn ¼ _e0 expð�eÞ ðaÞ

This may also be written as:

rn ¼ _e0

A
expð�eÞ ðbÞ

r ¼ _e0

A

� �1=n

expð�eÞ ðcÞ

In the initial state, Eq. (5.17) may be expressed as:

_e0 ¼ A r0
n ðdÞ

By replacing _e0
A

� �1=n
in (c) with (d), one obtains Eq. (5.18), which is the cor-

rected stress:

rcorr: ¼ r0 exp �eð Þ½ �1=n ð5:18Þ
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The corrected curves of Eq. (5.14) are all at the constant strain rates indicated.
No strain hardening was observed during these tests, even at low strain rates.

This observation contradicts other observations, in which strain hardening was
observed especially at low strain rates. These contradictory reports are probably
due to whether a-Si3N4 or b-Si3N4 was the basic constituent. In Fig. 5.15, the
specimens tested are based on b-Si3N4. In the following illustration, a-Si3N4-based
deformation tests were performed, indeed indicating strain hardening of the
specimens. In Fig. 5.16, the b-Si3N4- based specimens indicate considerable strain
hardening. Note that the Si6-xAIxOxN8-x is referred so as b0-sialon (in solid
solution in b-Si3N4) and Mz/nSi6-x-z AIx+zOxN8-x is known as a0-sialon (in solid
solution in the a-phase). Even in this figure, note that specimens A and B work
harden much less, being based on an a-Si3N4 solid solution (i.e., containing a0-
sialon). It is to be expected that, if the a and b Si3N4 are mixed to some proportion
and tested, strain hardening will occur, depending on the amount of a-Si3N4 in the
mixture in the material (see Rouxel et al. [27]).

Certain additives, even to b-Si3N4, may induce strain hardening, as seen in
Fig. 5.17a. The major additive is SiC up to *30 wt%. Table 5.1 lists the com-
position of the ceramic Si3N4.

Figure 5.17a represents tensile test specimens (compositions and designations
in Table 5.1), before and after testing, obtained by optical micrographs, shown in
Fig. 5.17b. As may be seen in 5.6a, grades B, C and D exhibit quite large strain,
but specimens A, E, F and G fracture at elongations of less than 15 %. The effect
of the strain rate on the tensile deformation is illustrated for specimen D
(see Table) at 1600 and 1650 �C in Fig. 5.18a and that of the temperature at a
constant strain rate is seen in Fig. 5.19b. The generally known fact that the tem-
perature has an opposite effect on the flow curves and on strain hardening may also
be seen in Fig. 5.18.

Fig. 5.16 Stress–strain
curves of silicon nitrides,
where, A and B are mostly
(a0-sialon deformed in
compression, and C and D are
mostly b0-sialon with 30
vol% silicon carbide
deformed in tension. Note
that A and B have much less
strain hardening than C and
D [3]. With kind permission
of John Wiley and Sons
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It is the belief of this author that strain hardening, in the technically important
material Si3N4 (refer to Figs. 5.16, 5.17, 5.18), is mainly due to its additives, since
b-Si3N4, as the only phase, did not show work hardening (see Fig. 5.15).

In summary of this section, strengthening by strain hardening was discussed for
brittle ceramics (where no strain hardening exists, since there is no plastic
deformation), in ductile ceramics and in superplastic ceramics. The absence of
strain hardening in some ceramics is a consequence of the recovery process and of
dynamic grain growth during deformation. Various recovery processes can set in
immediately after elastic deformation. They are continuous processes accompa-
nying strain hardening during deformation. The rate of the two competing pro-
cesses, i.e., strain hardening and recovery, dictate the outcome of the deformation
in the plastic region. When in equilibrium, it appears as illustrated in Fig. 5.15. If
the recovery process occurs at a faster rate, the stress–strain curve reaches a
maximum early in the deformation, shortly after the elastic region has been

Fig. 5.17 a Tensile tests performed on the different grades (letters in brackets represent the
grades) in nitrogen atmosphere at 1600 �C with a strain rate of 4 9 10-5/s. b Optical
photographs of tensile specimens, before testing and after 114 % elongation [27]. With kind
permission of John Wiley and Sons

Table 5.1 Nominal compositions and preparation conditions of Si3N4/SiC c3 composites [27]
(with kind permission of John Wiley and Sons)

Grade Composition (wt%) Sintering conditions

SiC Al2O3/Y2O3 Temperature (�C) Duration (h) Density (g/cm3)

A 28 0/8 1700 1 3.17
B 33 2/6 1800 1 3.26
C 33 2/6 1750 4 3.27
D 33 2/6 1700 1 3.27
E 30 4/4 1650 1 3.26
F 30 4/4 1700 1 3.27
G 30 6/2 1700 1 3.22
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surpassed, when the stress for further deformation drops quickly. For meaningful
strain hardening, its rate should be greater than that of recovery.

In the present section, strain hardening is discussed as a consequence of dis-
location generation and the interactions of mobile dislocations with existing and
deformation induced dislocations. However, in general, and in some non-specific
exceptional cases, dislocations in ceramics are normally not very mobile, though
they can be strain-hardened to a small degree. Polycrystalline ceramics are also
porous; as a result, they behave like brittle materials, so significant deformation
and strengthening by cold working are not possible. The reason for this was
indicated above, namely that ceramics are ionically- or covalently-bonded mate-
rials and are too brittle to work harden appreciably. Glasses, in general, comprising
a vast variety of ceramics, are amorphous and may contain dislocations (though
not like those found in crystalline materials) and, therefore, they cannot be strain-
hardened, except in the special cases discussed above.

In the next section, other strengthening mechanisms are considered.

5.3 Solid Solution Strengthening

In metals, solid solution hardening by substitutional and interstitial atoms is related
to retarded dislocation motion, which strengthens materials. The effect of carbon in
steel, by forming Fe3C, is the most commonly known form of strengthening by
interstitial atoms. In ceramics, solid solution seems to have a smaller effect on
hardening and the main reason for the overall strength is dictated by the contri-
bution of flaws. Except for the flawed states, damage modes depend on ceramic
types (especially microstructures), loading conditions and geometric factors. An
example of flaws in SiC, in the form of pores, may be seen in Fig. 5.20.

Basically, solid solutions have a considerable impact on the physical properties
of ceramics, influencing, among others, their magnetic, dielectric and optical

Fig. 5.18 Tensile tests
performed in nitrogen
atmosphere at 1600 and
1625 �C on grade D with
various strain rates:
a 8 9 10-5, b 4 9 10-5, and
c 2 9 1010-5/s [27]. With
kind permission of John
Wiley and Sons
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properties. In metals, one usually talks of interstitial atoms and substitutional
atoms, as dictated by the phase relations of the constituents (equilibrium phase
diagrams); however in ceramics, the concept of solubility often refers to molecular
solubility as well. In the following, no distinction will be made between the effects
of the soluble entities, either interstitial or substitutional atoms, but rather the term
‘solid-solution effects’ is considered. Further illustration of these molecular sol-
ubility effects will be presented later on for selected ceramics. Here, the influence
of atomic solution is discussed.

The addition of Si, in order to strengthen Ti3AlC2 by forming a solid solution of
Ti3Al1-xSixC2, is presented as an example. Adding Si to Ti3AlC2 at a level of
x C 0.25 hardens the ceramics, as illustrated in Fig. 5.21. (The Si is given in wt.
percent). As may be seen, hardening (by Vickers) increases with the addition of Si.

Fig. 5.19 Tensile tests performed in nitrogen atmosphere with a strain rate of 4 9 10-5/s on
samples of grade D at various temperatures: a 1575, b 1600, c 1625, and d l650 �C [27]. With
kind permission of John Wiley and Sons

Fig. 5.20 Pores in SiC pipe and a disk joined to it by spark plasma sintering (SPS): a pores in the
pipe and the interface to pore free the disk is seen, b indent by nano indentation and cracks
emanation from the corners. Stern et al. (unpublished). Courtesy of Prof. A. Stern
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The solid-solution specimens in the indicated range were synthesized using an
in situ hot-pressing/solid–liquid reaction method. It was observed that the lattice
parameter, ‘‘c’’, decreased dramatically, but ‘‘a’’ remained almost unchanged with
the increase of Si in the Ti3Al1-xSixC2 solid solutions. A significant strengthening
effect was observed when x was greater than 0.15 in the Ti3Al1-xSixC2 solid
solutions; the Vickers hardness and other mechanical properties, flexural strength
and compressive strength, were enhanced by 26, 12 and 29 %, respectively, for
Ti3Al0.75Si0.25 C2 solid solution.

Furthermore, it can be seen in Fig. 5.21 that the hardness increases slowly for a
small x, but the strengthening effect is significant when x is greater than 0.15. The
compressive and flexural strengths variations with Si addition appear in Fig. 5.22.
A similar strengthening effect may be seen in the strength versus composition in
Fig. 5.22, where the flexural and compressive strengths are plotted as a function of
Si content, thus demonstrating a significant strengthening effect, particularly
beyond 0.15 wt% Si. The microstructures of the specimens used to evaluate the
mechanical properties indicated with and without Si additions are shown in
Fig. 5.23. Thus, Ti3AlC2 is strengthened by replacing Al with Si to form a
Ti3Al1-xSi xC2 solid solution. Moreover, the addition of Si to Ti3AlC2 to form this
solid solution has no deleterious effect on the oxidation resistance at 1100 �C due
to the formation of a continuous, protective Al2O3 layer.

The salient properties of this layered ternary ceramic are: good damage toler-
ance, good machinability, low density and excellent thermal shock and oxidation
resistance. Such unique properties make it possible to use Ti3AlC2 in structural
components for high-temperature applications and as oxidation-resistant coatings.

Another high-temperature ceramic for which solid-solution strengthening has
been evaluated is the solid solution of MoSi2 after Re alloying. Figure 5.24 is a
stress–strain curve showing the hardening effect of Re. Re was reported to be a
potent solution hardener for MoSi2. Indeed, the addition of 2.5 at% Re increases
the hardness of MoSi2 by 30 % at RT and by 100 % at 100 �C.

Fig. 5.21 Measured Vickers
hardness of Ti3Al1-xSixC2

solid solutions as a function
of Si content [35]. With kind
permission of Elsevier
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Figure 5.24 compares compression tests of MoSi2 and MoSi2 ? 2.5 at% Re
alloys. Compressive plasticity in MoSi2 is observed only above 900 �C, whereas in
the MoSi2 ? 2.5 at% Re alloy only above 1000 �C. This indicates the increase in
ductile-to-brittle transition temperature due to the Re alloying. Typical dislocation
structures of these two materials are compared in Fig. 5.25. Arrays of subgrains

Fig. 5.22 Flexural and compressive strength of Ti3Al1-xSixC2 solid solutions as a function of Si
content [35]. With kind permission of Elsevier

Fig. 5.23 Microstructure of: a Ti3AlC2, b Ti3Al0.85 Si0.15 C2 and c Ti3Al0.75 Si0.25C2 solid
solutions observed using scanning electron microscope [35]. With kind permission of Elsevier
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and a few isolated dislocations are observed in MoSi2, but the addition of Re
changes the dislocation substructure significantly, as may be seen. In MoSi2 ? 2.5
at% Re alloys, no tendency toward grain-boundary formation is observed and the
dislocations are randomly distributed. Only [100] dislocations were observed in
MoS2. The yield stress was found to be very low at 1400 �C, which suggests that
the dislocation glide is very fast and that the climb of dislocations, when
encountering obstacles, becomes the rate-controlling factor.

The addition of Re increases the flow stress and changes the high-temperature
behavior from climb-controlled to viscous glide-controlled and the glide of the
dislocations becomes restricted by the solute Re atoms. The dislocation substruc-
tures in Fig. 5.25b mostly have [100] Burgers vectors, but some �[111] disloca-
tions are also observed. Those labeled Fig. 5.25 as a, b and d have [100] Burgers

Fig. 5.24 Compressive stress–strain curves at different temperatures for a MoSi2 and
b MoSi2 ? 2.5 at% Re alloys. In these graphs, an arrow at the end of the curve indicates
catastrophic failure of the specimen. The stress–strain curves shown without an arrow at the end
represent tests that were stopped prior to fracture [23]. With kind permission of Elsevier

Fig. 5.25 Bright field TEM images showing the dislocation substructures in a MoSi2 and
b MoSi2 ? 2.5 at% Re alloys deformed in compression at 1400 �C [23]. With kind permission of
Elsevier
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vectors, while those labeled as c and e are �[111] dislocations. The �[111] dis-
locations in the MoSi2 ? 2.5 at% Re alloy, deformed at 1400 �C, dissociate. A BF
image of � [111] for reflecting vector g = 006 is shown in Fig. 5.26a. Under these
imaging conditions, all the dislocations with [100]-type Burgers vectors are
invisible. Weak-beam images (g/3 g with g = 002) of the non-screw dislocations,
labeled x and y in Fig. 5.26a are shown in Fig. 5.26b and c, respectively. Split
dislocations, with a separation of *3 and *3.6 nm, are observed in Fig. 5.26b and
c. The electron-beam direction in these images is *5–10� from [100] towards
[110]. Re-induced hardening is illustrated in Fig. 5.27.

The experimental hardness data may be fit into a linear relation when plotted
versus the atomic concentration of Re. This relation is plotted versus the square root
of the atomic concentration, c. Figure 5.27 indicates a considerable increase in
hardness due to the solid solution of Re in the MoSi2. The above figures (Figs. 5.24
and 5.27) show a considerable increase in the strength properties by means of
solid-solution strengthening in polycrystalline MoSi2 with small additions of Re
(B2.5 at%) up to a temperature of 1600 �C. This strengthening is the result of the
Re atoms acting as obstacles to dislocation glide. When encountering such obsta-
cles, dislocations must climb for continued motion in other respective planes.

Fig. 5.26 a Bright field TEM image of � h111i dislocations in MoSi2 ? 2.5 at% Re alloys in
compression at 1400 �C. Weak beam images of dislocations labeled x in (a) are shown in (b) and
(c) respectively. The electron beam direction is *5–10� from [100] [23]. With kind permission
of Elsevier
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Often, solid solutions in ceramics are expressed in terms of molecular concen-
trations, rather than atomic ones. An illustration indicating the solid-solution
strengthening of Al2O3 by Cr2O3 is shown in Fig. 5.28. The strengthening effect of
increasing the chromia in solid solution in fine-grained alumina is expressed in terms
of microhardness. The specimens were prepared by wet ball-milling of the constit-
uents. Grain growth was retarded by the addition of 0.5 wt% magnesia. The magnesia
also served for densification during the next step–hot pressing. The microstructures of
the hot-pressed and recrystallized specimens are illustrated in Fig. 5.29.

On average, the tests shown in Fig. 5.28 represent ten microhardness indenta-
tions per specimen. When cracks occasionally appear to emanate from the corners
of the indentations (as also observed in SiC, seen in Fig. 5.29b, these values were
not averaged in. The line in Fig. 5.28 is linear and, thus, microhardness values of
the solid solutions may be represented as linear relations plotted against mol%
chromia. The large scatter around the least-square line is assumed to be associated
with the microindentation crossing many grains. Hot-pressed materials contain a

Fig. 5.27 Dependence of
room temperature hardness of
(Mo, Re)Si2 alloys on square
root of the Re concentration
[23]. With kind permission of
Elsevier

Fig. 5.28 Microhardness of
Al2O3 as a function of Cr2O3

content [1]. With kind
permission of John Wiley and
Sons
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large number of fine grains. This assumption was affirmed for recrystallized
samples, which provided large grains, as seen in Fig. 5.27b. In Fig. 5.28, the line
of the recrystallized samples (not drawn) seems to have a smaller scatter, but the
hardness values are lower, as expected. The solid-solution hardening effect of
alumina by chromia is clearly visible.

To emphasize the effect of solid-solution strengthening, especially on yield
stress and, consequently, on flow stress itself, the case of YSZ serves as a good
example. Figure 5.30 is a stress–strain curve illustration with various amounts of
Y2O3 additives, which are usually used to stabilize ZrO2. Well-defined upper and
lower yield points are observed, somewhat similar to those in steels, but without the
serrations characterizing the yield-point phenomena in steels. The yield-point drop
is followed by the flow, but with an absence of strain hardening. Additions of Y2O2

increase both the yield and the flow stress. The absence of strain hardening is
probably associated with the fact that only one slip system, that of {001} h110i, is
operative. When, however, multiple slips of {111} occur, such as in the case of
9.4 mol% YSZ, then more work hardening is observed than in the {100} slip. Note
that in Fig. 5.30 the solid solution is also expressed in terms of a molecular, rather
than an atomic, percentage. The engineering flow stress, plotted against the Y2O3

concentration on a logarithmic scale, is illustrated in Fig. 5.31. The solution-
hardening rate ds/dc is l/200 (l = G). The slopes a = � and 2/3 correspond to the
well-known Fleischer and Labusch [8] solution-hardening models, respectively.

The Fleischer’s theory was derived for the impurity-controlled dislocation
mobility of the flow stress of LiF. It predicts the observed variation in flow-stress
values of the slopes of the velocity-stress relations. The critical shear, sc, stress
needed to move a dislocation through a random array of obstacles on a glide plane
is calculated using a statistical theory. The calculated result is an expression of sc

in terms of the obstacle concentration, the dislocation-line tension and the inter-
action force between a dislocation and a single obstacle. However, as seen in
Fig. 5.31, the experimental slope is a = 0.87, which deviates, to a large extent,
from the aforementioned theories. This difference between the above theories and
the experimental results may be explained by Friedel’s model, which assumes a
zigzag dislocation line interacting with temporary pinning points (solid atoms in

Fig. 5.29 Alumina with 12.5 wt% chromia in solid solution. a As-hot-pressed, and b recrystal-
lized at 1800 �C for 2 h. (X 1000.) [1]. With kind permission of John Wiley and Sons
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structure). In Fig. 14.9 on page 381 of Friedel’s book, there is an illustration of a
zigzagged dislocation line pinned at several points by impurities. A large enough
applied stress is required to tear the dislocation away from its impurity. TEM
observations of the dislocation substructure of a 9.4 mol% YSZ crystal, deformed
to &14 % strain, is shown in Fig. 5.32. Many of these dislocations are curved and
a few dislocation loops are also visible. The g-b = 0 conditions obtained at two

Fig. 5.30 Engineering stress–strain curves of Y2O3-stabilized ZrO2 deformed along h112i at
1400 �C in air; Y2O3 content is shown on each curve [6]. With kind permission of John Wiley
and Sons

Fig. 5.31 Flow stress vs Y2O3 content of samples deformed (X) along (112) and (O) a direction
4� from h001i at 1400 �C in air [6]. With kind permission of John Wiley and Sons
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different zones, B = [001] and [112], confirm that b is � h110i for the majority of
the dislocations. The shapes in Fig. 5.32 also indicate that substantial cross-slip
and climb occurred during this deformation. An additional specimen was deformed
only to the upper yield point (*0.4 % deformation) and its TEM image was
basically the same as that in Fig. 5.32, in regard to density and the form of the
substructure. An 18 mol% yttria containing stabilized zirconia, deformed
to &15 %, is found in Fig. 5.33. Here, the dislocation density is considerably
higher, but the other dislocation features are the same as the ones illustrated in
Fig. 5.32, with &9.4 mol%. More information on dislocation-point defect inter-
actions may be found in the work of Rodrigez et al. [6].

In summary, this section discussed solid-solution strengthening and provided a
few illustrations of technically important ceramics. Additives forming solid
solutions may enhance the strength properties of ceramics. The applications of
some ceramics are often limited by their poor mechanical properties, but the use of
certain additives to create solid solutions improve the performance of these
enhanced ceramics, enabling their use as structural materials.

5.4 Second Phase Strengthening

Here, the effect of a non-soluble second phase on the strength properties of
ceramics will be considered, irrespective of whether the second (or more) phase
was originally a part of the process and was mixed with the basic ingredients of a
ceramic to be strengthened or whether it was produced as precipitates during

Fig. 5.32 Dislocation substructure in 9.4 mol% Y2O3-stabilized ZrO2 sample deformed
along h112i by {00l} h110i slip to &14 % strain at 1400 �C in air, shown as stereo pair with
h = 17o, using b = 220 in [00 l] zone. Loops Ly and Li are of vacancy and interstitial character,
respectively. Dislocation reaction at node N gives rise to dislocation segments with different
Burgers vectors (Sl, S2 and S3) [6]. With kind permission of John Wiley and Sons
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high-temperature processing. This non-soluble second phase effect will be con-
sidered below, regardless of the location of the second phase, whether randomly
distributed or segregated at grain boundaries. The focus in this section is on the
strengthening effect itself, on the terms ‘strengthening’ and ‘softening’. In fact, the
term ‘second-phase strengthening’ does not exclude the presence of more than one
additional constituent. A second phase may take any form, manifesting as: fibers,
precipitates, new phases (forming at elevated processing temperatures) and even as
single elements. Increased density is a general property involved in any
strengthening mechanism and is a good parametric indication of microstructural
and, hence, strength modification. Ceramics having a second phase often are
referred to as ‘composites’, since this general term refers to materials composed of
two or more constituents with significantly different physical and chemical
properties that produce resultant characteristics in the new composite material
different from those of the prior individual components. In the following, examples
will be given of second-phase hardening attained by means of:

(i) the addition of a ceramic second phase;
(ii) the formation of a second phase during some stage of the processing (pre-

cipitation or particle dispersion);
(iii) the addition of fiber;
(iv) the addition of a single element.

Of these, only (i) and (ii) will be discussed in this chapter. Illustrations of these
methods of second-phase strengthening are presented below.

5.4.1 Addition of a Ceramic Second Phase

As previously indicated, the methods and techniques used to form such composite
materials are not of interest here. Instead, this and the following sections will focus

Fig. 5.33 Dislocation
substructure in 18 mol%
Y2O3-stabilized ZrO2

deformed to &15 % under
same conditions as sample in
Fig. 5.32 [6]. With kind
permission of John Wiley and
Sons
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on the changes in the mechanical properties of the resultant composites. The first
example relates to the effect of a second phase on Al2O3, which is one of the most
studied composite ceramics, found to have excellent mechanical properties. The
properties of alumina (like those of most materials) are microstructure-dependent.
To obtain the best properties, fine grain size and homogeneous microstructure are
essential. However, fracture toughness is not necessarily the best in fine-grained
ceramics. The addition of Zr2O3 to Al2O3 produces a composite ceramic with very
attractive mechanical properties. Zirconia-toughened alumina (ZTA) exhibits
excellent wear resistance and good hardness properties. The combination of zir-
conium oxide and aluminum oxide belongs to a class of composite ceramics called
‘AZ composites’. Such composite ceramics are used as components in diverse
structural and medical applications. AZ Structures based on alumina–zirconia are
characterized by high strength, fracture toughness and elasticity, in addition to the
aforementioned hardness and wear resistance and have many structural applica-
tions, such as: bearings, joint implants, bushings, cutting tool inserts, wear
components, devices for biological use, etc. To this list, one should add the high-
temperature stability and corrosion resistance of ZTA. In the following figures,
these materials are designated as ZAXX, where ZA represents the ZTA ceramics
and XX represents the volume fraction of the alumina present in the specimens.
The variation of the bending stress of three Al2O3-ZrO2 composites at sintering
temperature is shown in Fig. 5.34.

Note that the specimens containing 90 % Al2O3 have the lowest bending stress
at all the sintering temperatures, whereas the ceramics containing 50 % Al2O3 and
50 % ZrO2, i.e., ZA50, has the highest value. The microstructure at various stages
of the processing may be seen in Fig. 5.35.

Fig. 5.34 Bending strength
as a function of sintering
temperature of ZTA samples
[15]. With kind permission of
Elsevier
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Also note that the constituents of the starting powders used to obtain ZTA
contain 3Y-TZP as the source for ZrO2 in the composite ceramics. Observe the
change in the bending stress (and fracture toughness) of the ZrO2 content as
expressed in Fig. 5.36 in terms of 3Y-TZP. The microstructure of the composites
shown was sintered at 1400 �C. In Fig. 5.35a, plate-like grains formed in the

Fig. 5.35 SEM micrographs of polished and thermally etched surfaces for the Al2O3/3Y-TZP
composites sintered at 1400 �C: a Al2O3, b ZA90, c ZA80, d ZA60 and e ZA50 [15]. With kind
permission of Elsevier
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sintered Al2O3 specimen. It is believed [33] that these plate-like grains of Al2O3

are the results of small amounts of impurities, especially of SiO2, and that their
formation requires a higher temperature (C1500 �C). The pinning effect of ZrO2

on the grain growth of Al2O3 is indicated in Fig. 5.35b–e. Furthermore, with the
increase of ZrO2, the morphology of Al2O3 changes to equiaxed grains and their
size decreases. At low ZrO2 concentration, exaggerated grain growth occurs
readily (Fig. 5.35b, only 10 vol% 3Y-TZO), whereas at 55 vol%, grain growth in
ZTA is prevented. Figure 5.36 shows the average bending strength and fracture
toughness of the various specimens sintered at 1400 �C.

This section deals with the effect of a non-soluble second phase, specifically of
ZTA. Indeed, the phase diagram shown below in Fig. 5.37 indicates that the
system in the temperatures considered above is a two-phase region for both the
monoclinic and tetragonal ZrO2. As may be seen in that phase diagram, 1150 �C
alumina and monolithic zirconia coexist, but, at sintering temperatures, the
monolithic zirconia transforms into its tetragonal allotrope. During cooling from
the fabrication temperature, the dispersed zirconia in the alumina matrix retains a
tetragonal phase in the composite, probably as a metastable phase. When
strengthening alumina with zirconia, there is the added possibility of tetragonal-
zirconia strengthening (especially at temperatures above 1150 �C), but reports also
indicate monoclinic zirconia hardening of alumina resulting in ZTA. Moreover,
note the concept of transformation toughening (hardening) which is associated
with volume expansion and shear-strain change during transformation from the
tetragonal to the monoclinic phase.

Alumina may be strengthened by other additives, as well. The most common
additives to alumina are: iron oxide, titanium oxide, calcium oxide, magnesium
oxide, potassium oxide and sodium oxide.

Fig. 5.36 Bending strength
and fracture toughness as a
function of 3Y-TZP content
for the composites sintered at
1400 �C/2 h [15]. With kind
permission of Elsevier
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5.4.2 Second Phase Formation During Some Stage
of the Processing (Precipitation or Phase
Transformation)

Here, two kinds of strengthening are considered, which are basically process-
related effects:

(i) particle dispersion (precipitation) hardening;
(ii) transformation hardening.

Selected examples of each are illustrated below.
(i) As is well known, a solid solution precedes precipitation hardening; the first

occurs at some appropriate temperature for an additive solution, while the latter
sets in at some lower temperature, rejecting a phase or a precipitate from the
solution at favorable sites, which may be grain boundaries, phase boundaries, other
surfaces. Later on, at the temperature of the process, this precipitate may become
dispersed more randomly within the matrix. In addition to the precipitates obtained
during this process, dispersion hardening differs from precipitation hardening in
that the small, insoluble particles are added a priori into the ceramics and dispersed

Fig. 5.37 Phase diagram of the system Al2O3–ZrO2 [22]. With kind permission of John Wiley
and Sons
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in them either randomly or preferentially at various surfaces. To achieve optimal
strengthening, small particles (less than 0.25 microns in diameter) are finely dis-
tributed in the matrix to impede the movement of dislocations and, thus, the
deformation of the material is made more difficult, requiring higher stresses. The
overall effect of such strengthening is similar to that of the well known precipi-
tation hardening. However, during precipitation strengthening the particles are
dissolved at the high temperature treatment (solution stage) in the matrix, while
during dispersion hardening the particles (usually ceramics particles) do not dis-
solve and are stable. The temperature at which a particle is stable and retained
within the matrix is a very important aspect of dispersion hardening, since most
ceramics are intended for high-temperature use and applications. The large, sec-
ond-phase particles dispersed within the matrix have a low strengthening effect.
Therefore, the impact of the dispersed particles on ceramic properties depends on
the particles’ dimensions. Clearly, the properties of the particles, beside their size,
have a great influence. A particle can be weaker (softer) or stronger (harder) than
the matrix and both types have their own merits. The choice of what kind of
particle should be used depends on the purpose of the ceramic application. For
instance, soft particles should be added for improved machinability. Particles of
iron oxide, titanium oxide, calcium oxide, magnesium oxide, potassium oxide and
sodium oxide are some of the common additives in alumina as previously
mentioned.

In the following, a matrix reinforced by a dispersed phase in the form of particles
will be illustrated. Alumina has been strengthened by the addition of Fe3Al
nanoparticles. Sintering was performed at 1530 and 1600 �C for A12O3/5
wt% Fe3Al and A12O3/10 wt% Fe3Al, respectively. Compared to alumina,
ceramics with these additives show strength increase by 132 % and toughness
increase by 73 %. Furthermore, their bending and fracture toughness were
832 MPa and 7.96 MPa m1/2, respectively. Figure 5.38a shows the variation of
hardness versus temperature for A12O3 with Fe3Al additions in the range
5–30 wt%. In (b), the hardness of Al2O3/Fe3Al10 % is shown versus the holding
time of the sintering. The change in holding time did affect the hardness values. In
Fig. 5.39, the variation in bending strength and fracture toughness are shown as
functions of sintering temperature.

The effect of holding time on the bending strength and fracture toughness of an
Al2O3/Fe3Al10 wt% sample sintered at 1560 �C is seen in Fig. 5.40. Note that the
holding time affects both the bending strength and the fracture toughness. It is
likely that the grain size and the particle distribution are also affected by the
holding time. This may have occurred after *30 min., as a decrease in the
bending strength occurred. This fracture-toughness improvement is a consequence
of the increased Fe3Al particle size at intergranular locations.

SEM microstructures of the fractured surface are compared in Fig. 5.41 with
and without additions to the alumina at 1520–1530 �C. Similar microstructures are
shown at 1600 �C for 10 and 20 wt% Fe3Al. The monolithic Al2O3 has platelet-
shaped grains with an average size of 51 lm (aspect ratio 4.2). EDS analysis
indicated that the alumina phase is dark, whereas the bright phase is Fe3Al.
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Abnormal grain growth was observed in the alumina matrix with the consequent
deterioration. The addition of Fe3Al, already at a level of 5 wt% and sintered at
1530 �C, caused the alumina platelets to become smaller and distributed more
homogeneously than observed in the alumina without additives (Fig. 5.41b). More
additions of Fe3Al particles further decreased the aspect ratio and the grain size of
the matrix. However, these structures show porosity and cracks (Fig. 5.41c and d.
Nevertheless, grain growth in the alumina was eliminated. The fracture mode was
intergranular and the mechanical properties were low. Figure 5.42 illustrates the
microstructure when the hot-pressing temperature is increased to 1600 �C in
ceramics containing 10 and 20 wt% Fe3Al. Now, the fracture is transgranular and

FIg. 5.38 Variation of hardness HRA of Al2O3/Fe3Al nano-composites with a sintering
temperature and b holding time [11]. With kind permission of Elsevier

Fig. 5.39 Variation of a the bending strength and b the fracture toughness (KIc) of Al2O3/Fe3Al
nano-composites with sintering temperature and contents [11]. With kind permission of Elsevier
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Fig. 5.40 Variation of a the bending strength and b the fracture toughness (KIc) of 10 wt%
Al2O3/Fe3Al nano-composite sintered at 1560 �C with holding time [11]. With kind permission
of Elsevier

Fig. 5.41 SEM micrographs of fracture surfaces of Al2O3/Fe3Al: a monolithic alumina;
b 1530 �C FA5; c 1520 �C FA10; d 1520 �C FA20 [11]. With kind permission of Elsevier
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the intragranular particles (Fe3Al) are increased. At higher sintering temperatures,
some grain growth occurs in the alumina and the Fe3Al particles coalesce at the
alumina grain boundaries.

During the cooling of the specimens from the sintering temperature, residual
stress arises in the matrix, due to the mismatch created between the alumina matrix
and the Fe3Al particles during the sintering step. Crack propagation is observed in
Al2O3/Fe3Al5 wt% already at the Vickers indentation, 308 N. In some places, the
path was deflected by the Al2O3 platelet-like grains (Fig. 5.43a). When the crack
orientation is parallel to the direction of its propagation, debonding along the
Al2O3 interface is observed.

Relief of the residual stresses (resulting from the mismatch between the various
ceramic constituents) during cooling from the sintering temperature generates
dislocations, as illustrated in Fig. 5.44. These dislocations surround the second-

Fig. 5.42 SEM micrographs of fracture surface of Al2O3/Fe3Al: a and c at 1600 �C, FA10;
b 1600 �C, FA20 [11]. With kind permission of Elsevier
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phase particles (Fe3Al), as seen in this figure at two magnifications. Their location
around the particles is consistent with dislocation pinning caused by particles
added to a matrix to enhance its mechanical properties.

An interesting microstructure of ZrO2 particles, toughened by Al2O3, is illus-
trated in Fig. 5.45. Generally, hard particles dispersed in a softer matrix increase
wear and abrasion resistance.

To summarize, the effects of the addition of a second phase in the form of
particles, as illustrated above, explain why small particles dispersed in a ceramic
matrix are an integral part of the matrix strengthening of ceramic materials.

Fig. 5.43 The interaction between crack and Al2O3 grains in Al2O3/5 wt% Fe3Al [11]. With
kind permission of Elsevier

Fig. 5.44 TEM morphology of dislocations in Al2O3/Fe3Al nano-composite [11]. With kind
permission of Elsevier
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5.5 Transformation Hardening

One of the well-known ceramics undergoing phase transformation is ZrO2. It has
three monoclinic polymorphs at RT and is stable up to 1170 �C. It becomes
tetragonal above this temperature and transforms to cubic at 2370 �C, which is
stable up to the melting point of 2680 �C. At high temperatures, the major phase is
cubic, which may contain tetragonal and/or monoclinic precipitates as minor
phases These precipitates may exist at grain boundaries in polycrystalline zirconia.
Clearly of interest are the tetragonal and monoclinic phases. Transformation
during cooling from tetragonal to monoclinic is somewhat sluggish and takes place
in a temperature range of *100 �C below the transition point of 1170 �C (some
reports note the transition temperature on cooling as *950 �C). Also, the
tetragonal to monoclinic phase is considered to be a Martensitic transformation
(sometimes reported to set in at 1200 �C), which is not a diffusional transforma-
tion. This phase transition is associated with a volume change, *3–4 %, and,
therefore, expansion stresses arise which may cause cracking in pure ZrO2. Often
therefore, various phases are added to stabilize zirconia. Nevertheless, additional
strengthening occurs in stabilized zirconia, known as ‘transformation toughening’.
Thus, a temperature range exists in which both polymorphic ZrO2s may be present
in some proportion in the microstructure, being sintering- and process-tempera-
ture-dependent. In pure zirconia, it is essential to be aware of the propensity for
crack formation above a certain temperature. However, as mentioned above,
various stabilizing agents may be added during fabrication, the most common of
which are oxides, such as: CaO, MgO, CeO2, Y2O3, etc. One very effective sta-
bilizer is Y2O3 and other potential stabilizers are the PSZ, whose microstructures
may contain several phases (a multiphase material). As such, it is possible to
produce various matrix phases containing other zirconia- transformed products
distributed within them. For example, even a cubic zirconia matrix has been

Fig. 5.45 Microstructure of
ZrO2-toughened A1203. The
ZrO, particles, most of which
are intergranular, appear
bright in this scanning
electron micrograph [14].
With kind permission of John
Wiley and Sons
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produced with its monoclinic polymorph in the CaO-ZrO2 system [10]. The high-
temperature cubic phase can be stabilized down to RT when cubic oxides, such as
MgO, CaO, Y2O3, CeO2 and other rare earth oxides, are added to the zirconia
during fabrication. These additives not only strengthen the zirconia matrix, but
stabilize the cubic phase by suppressing the transformation temperature during
cooling. Tetragonal ZrO2 may be retained as a metastable phase at RT and this
stress induced transformation becomes the basis for transformation toughening.
Extensive information on the transformations in the ZrO2 system appears in sev-
eral publications [13] which may be consulted.

Below, the exemplary properties of Al2O3–ZrO2 are presented. This system was
chosen due to its technological importance for applications at elevated tempera-
tures. As expected, its microstructure dictates the properties of the samples pre-
sented below. Figure 5.46 shows the microstructure of this system. Both tetragonal
(t-phase) and monoclinic (m-phase) zirconia particles are incorporated into an
alumina matrix and their total content is in the range 5–30 vol%. Figure 5.47
shows the variation of the elastic modulus versus the total zirconia content. The
best fit line encompassing the points Al2O3/t-ZrO2, Al2O3/m-ZrO2 and Al2O3/t-
ZrO2 ? m-ZrO2 was evaluated by the rule of mixtures. One may see that the
elastic modulus of pure alumina is higher than those of alumina with zirconia
additives, regardless of the zirconia polymorph type. It is assumed that the pres-
ence of porosity and microcracks can reduce the elastic modulus associated with
zirconia, especially of the m-ZrO2. The strength of Al2O3/ZrO2, as a function of
the total zirconia content, is illustrated for m-ZrO2, t-ZrO2 and m-ZrO2 ? t-ZrO2

toughened alumina in Fig. 5.48. The top curve, associated with Al2O3/t-
ZrO2 ? m-ZrO2, shows the highest strength in this system having a value of
940 MPa. The toughness of ZTA is illustrated in Fig. 5.49. Observe that the top
curve, representing the highest degree of toughness, occurs in Al2O3/m-ZrO2. The
data mentioned above indicate that addition of m-ZrO2 and t-ZrO2 improves the
mechanical properties of alumina. This alumina, strengthened by both types of
zirconia, was sintered at 1600 �C. The t-ZrO2 also contained some yttria, which
had an influence on the transformation. One may see in Fig. 5.49 that the m-ZrO2

is represented by the top curve with the highest toughness, associated with the
effect of the Y2O3 originally shown by the t-ZrO2.

It was observed that ions of yttria are absorbed in the m-ZrO2, stabilizing it at
the expense of the t-ZrO2. As expected, they affect the microstructure and, con-
sequently, the transformation, as well. Inspecting Figs. 5.49 and 5.50, one finds a
decrease in flexure strength and toughness at around 15 vol% of total zirconia.
This is likely caused not only by grain-size change, but also by the presence of
cracks and pores. Support for this theory may be inferred from Fig. 5.51c, where
pores and cracks of various shapes and dimensions may be observed. Nevertheless,
the microstructural refinement of alumina by the addition of both types of zirconia
may be inferred from Fig. 5.46b, d. In general, adding t-ZrO2 and m-ZrO2 to
alumina greatly improves its mechanical properties in proportion to the amount of
transformable zirconia (a basic precept in transformation hardening).
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The zirconia toughening of various ceramics is of great interest and techno-
logical importance. It also undergoes Martensitic transformation. Figure 5.50
shows such a transformation in MgO-partially-stabilized ZrO2 [henceforth: Mg-
PSZ]. The Martensitic transformation upon cooling is a t ? m transition.

Fig. 5.46 Microstructures of a Al2O3, b Al2O3/15 % t-ZrO2, c Al2O3/15 % m-ZrO2 and
d Al2O3/(15 % t-ZrO2 ? 15 % m-ZrO2) composites [31]. With kind permission of Elsevier

Fig. 5.47 Elastic modulus of
composites as function of
total zirconia content. The
straight line predicted by the
rule of mixtures is shown for
comparison [31]. With kind
permission of Elsevier
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Fig. 5.48 Flexural strength
of composites as a function of
total zirconia content [31].
With kind permission of
Elsevier

Fig. 5.49 Toughness of
composites as a function of
total zirconia content [31].
With kind permission of
Elsevier

Fig. 5.50 Microstructure of
t-ZrO2, precipitates in c-Zr02

matrix in Mg-PSZ. The
c axes of two of the three
possible precipitate variants,
which are parallel to the cube
axes, are shown. The third
variant cannot be imaged
under the diffracting
conditions of this example.
Bright-field electron
micrograph [13]. With kind
permission of John Wiley and
Sons
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The phase diagram of the ZrO2–MgO system shows, on the ZrO2 side, the three
polymorphic phases that exist in ZrO2 (here, the solid solution of MgO in ZrO2 is
shown, indicating the three polymorphs of ZrO2 at 0 % MgO).

A fraction of the total ZrO2 which has transformed into a monolithic zirconia
(m-ZrO2) polymorph is shown in Fig. 5.52. Here, two lines, representing 4 and
8 wt% Y2O3 in the zirconia, are plotted respectively. A higher monoclinic fraction
was obtained for the zirconia containing 4 wt% yttria. The matrix of this ceramic
is ZnO. The starting materials, containing pure ZrO2, indicated the exclusive
existence of m-ZrO2, but the PSZ contained some t-ZrO2. In Fig. 5.52, the relative
amount of m-ZrO2 obtained for the partially stabilized materials is indicated versus
the total volume concentration of ZrO2.

Fig. 5.51 Phase diagram of
the high-ZrO, portion of the
Zr02-Mg0 system (grain).
The shaded region shows the
composition range of
commercial alloys. The
dotted lines are metastable
extensions of equilibrium
solvuses [13]. With kind
permission of John Wiley and
Sons

Fig. 5.52 Plot of monoclinic
fraction in partially stabilized
ZrO,/ZnO composite [28].
With kind permission of John
Wiley and Sons
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As previously stated, the transformation to m-ZrO2 is Martensitic and the
Martensite starting (Ms) temperature, related to the pure volume fraction (Vf) of
the zirconia, is shown in Fig. 5.53. Two regimes are graphically shown in
Fig. 5.53. For the volume fraction B 0.2, the transformation temperature at the
start of the Martensite formation (Ms) varies slowly with the volume fraction of
ZrO2 up to Ms &600 �C and this transformation extends over an appreciable
temperature range (such that Mf = 100 �C). At concentration C 0.3, Ms

is *850 �C and proceeds to completion over a narrow temperature range
(Mf = 550 �C). It is believed that transformation at C0.3 is associated with par-
ticle interaction, which supports cooperative transformation in neighboring parti-
cles. The TEM micrograph indicates that the m-ZrO2 particles are twinned, as
indicated in Fig. 5.54. The twin spacing seemed to increase with particle size,
ranging from 22 to 100 nm for a (zirconia) particle size of 0.16–1.3 lm. Micro-
cracks are observed at the twin terminals, but it was postulated that these are not of
sufficient size to affect the mechanical properties and, thus, are unlikely to be a
source of stress-induced microcracks.

The elastic modulus (a) and Vickers hardness (b), indented with a 200 N load
on polished surfaces, are shown in Fig. 5.55. The lines increase linearly with the
increasing fraction of ZrO2. Such a trend may reflect the absence of spontaneous
microcrack formation.

The critical stress-intensity factor, as a function of the total zirconia content,
and relative toughness, as a function of the m-ZrO2 content, when the t-ZrO2 is
excluded, are shown in Fig. 5.56.

SEM micrographs show that fracture in ZnO is mainly transgranular. The
cracks are deflected around the ZrO2 particles along the ZnO/ZrO2 interface. The
crack-surface area increases as the ZrO2 increases. No zone of microcracks is
found (at the tip of an arrested crack). This finding is in line with acoustic emission
measurements. Figure 5.57 illustrates the SEM results and the deflection of the

Fig. 5.53 Plot of martensite
start temperature, Ms, as
a function of ZrO2 volume
concentration (for pure Zr02),
determined from dilatometer
studies [28]. With kind
permission of John Wiley and
Sons
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Fig. 5.54 Transmission electron micrographs of twinned ZrO2 particles in ZnO;
bar = (a) 0.02 lm and (b) 0.2 lm [28]. With kind permission of John Wiley and Sons

Fig. 5.55 Plots of trends in (a) Young’s modulus and (b) hardness versus ZrO2 volume
concentration [28]. With kind permission of John Wiley and Sons

Fig. 5.56 a Critical stress intensity factor as a function of total ZrO2 content and b relative
critical strain energy release rate as a function of monoclinic Zr02 content [28]. With kind
permission of John Wiley and Sons
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crack. ZnAl2O4 (detected by XRD) is present in all the samples tested and their
size and quantity (4 wt%) are independent of the ZrO2 content. This phase was
incorporated in the material from the Al2O3 ball mills during the processing, since
fabrication was performed at high temperatures (hot pressing of the powders) and a
reaction occurred with the ZnO. Since ZnAl2O4 is present in all the systems, its
contribution to toughness is uniform in all the systems; thus, its influence
regarding toughness with ZrO2 content should not be appreciable.

The relative increase in toughness during transformation toughening is usually
expressed [24] as:

DKT
c ¼ 0:22Vfe

TE
ffiffiffiffi
w
p

=ð1� vÞ ð5:19Þ

where DKc
T is the transformation-toughening increment; eT-the unconstrained,

dilatational transformation strain; E is the Young’s modulus; w-the width of the
transformation zone and m is Poisson’s ratio.

Transformation strengthening is associated with its effect on microstructure,
particularly on crack conditions and the ways of inhibiting crack propagation.
Fracture toughness, based on microstructural considerations, may be achieved by
inducing shielding near a crack tip or by locally impeding the motion of a
crack front. The stress-induced, Martensitic transformation (Fig. 5.50) and micro-
cracking mechanism represent crack-tip shielding from expansion. However,
crack-bowing and crack-deflection effects can also contribute to microstructural
toughness enhancement (see Fig. 5.57c and d). Toughening by m-ZrO2 is a

Fig. 5.57 Secondary electron images of indentation cracks indicating the change in crack
deflection intensity with ZrO2 content. a ZnO/0.06ZnA1204 (dark particles are ZnAl2O4 phase,
which apparently does not deflect the crack), bar = l0 lm; b as in (a), bar = 2.5 lm; c ZnO/0.07
ZnAI204/0.02 ZrO2, bar = 2.5 lm; d ZnO/0.07ZnAl2O4/0.16 ZrO2, bar = 2.5 lm [28]. With
kind permission of John Wiley and Sons
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consequence of crack retardation by ZrO2 particles that undergo a stress-induced
transformation directly ahead of the crack tip. The monoclinic mechanism of
toughening also exists in the presence of t-ZrO2 particles located in front of the crack
tip that undergo a stress-induced transformation into m-ZrO2 prior to crack
extension.

In the case of Zn/ZrO2 ceramics, the relative peak toughening is achieved at the
monoclinic ZrO2 volume fraction C 0.2. This may be seen in Fig. 5.58, where
another comparison is made between the relative toughness values of ZnO/ZrO2

with glass alumina and a possible stage of crack propagation (whether by crack
bowing or crack deflection).

More on the t-ZrO2 ? m-ZrO2 Martensitic transformation in TZP ceramics is
found in the work of Yin in his discussions on the thermodynamics, crystallog-
raphy and kinetics of this transformation. The solid transformation in pure zirconia
is:

m-ZrO2 �
1170 C

950 C
t-ZrO2 �

2370 C

c-ZrO2:

The free energy of transformation into the Martensitic phase through the
monoclinic ? tetragonal phases may be presented as:

Fig. 5.58 Comparison of
toughening in ZnO/ZrO2 with
that for glass/alumina. Also
shown are toughness levels
predicted for crack-deflection
and crack-bowing
mechanisms [28]. With kind
permission of John Wiley and
Sons
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DGt!m ¼ V �DGch þ DGstrð Þ þ SDGsur ð5:20Þ

In the above subscripts, the terms ‘‘ch’’, ‘‘str’’ and ‘‘sur’’ refer, respectively, to
the chemical, strain and surface-free energies. As usual, V and S represent the
volume and the entropy associated with transformation. Given an equilibrium
temperature, T0, of the t-ZrO2 ? m-ZrO2 transformation, at which DGch = 0,
define Ms as the temperature at which DGt?m = 0. To describe the free-energy
change, divide the RH side of Eq. (5.20) by V and add a term, DGext, for the
interaction-energy density due to the external force to obtain:

DGt!m ¼ �DGchem þ DGstr þ
S

V
DGsur � DGext ð5:21Þ

This may be rewritten in terms of the barrier, DGbarrier, which is the sum of the
changes in the strain and surface free energies, given as:

�DGchem � DGext þ DGbarrier ð5:21aÞ

Critical transformation stress, rc may be defined as:

rc ¼ �DGchem þ DGextð Þ=et ð5:22Þ

where et represents the resulting dilatational transformation strain, which is
localized in the vicinity of the crack tip in the transformation zone and is related to
transformation toughening.

Again, Martensitic transformations occur at high velocities with shape change
and are the basic reason for the toughening which takes place when metastable t-
ZrO2 transforms into a stable m-ZrO2 phase around a propagating crack. At this
same tip location, the transformation introduces a compressive stress, due to the
4–5 % volume change associated with the t-ZrO2 ? m-ZrO2. As a consequence
the local crack-tip, stress intensity is reduced, as well as the driving force for crack
propagation.

5.6 Grain Boundaries and Grain-Size Strengthening

It has been indicated on several occasions that plastically deforming a material
depends on the ability of dislocations to move within that material. All obstacles,
in whatever form they exist in materials, act to retard dislocation motion. Thus,
whatever the mechanism may be (work hardening, grain-size reduction, etc.), they
all hinder dislocation motion, thus rendering the material stronger than before. In
addition to the aforementioned strengthening mechanisms, one should add grain-
boundary strengthening. In polycrystalline materials, grain size has a very large
influence on overall mechanical properties, not only because small grain-sized
materials have a large number of grain boundaries, which act as barriers to dis-
location motion, but also due to the various orientations of the grains. Dislocations
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must change their direction of motion in accordance with the different orientations
of the grains; as such, they have to deviate from their unimpeded paths, which
would be dictated in a single crystal form. The slip systems, namely the plains and
directions dictating dislocation motion, vary from grain to grain and, as such,
dislocation motion must accommodate these changes; a compromise must be made
and some motion deflected, complicating the resultant route taken by the dislo-
cation. It becomes clear why polycrystalline materials are stronger than their
single- crystal counterparts. Thus, by changing the grain size, dislocation move-
ment may be affected. The grain size of a material may be altered by heat treat-
ment after deformation or by changing the rate of solidification, if processing has
occurred at the liquid stage.

Recall that, at elevated temperatures, most, if not all, ceramics are ductile. One
widely used concept is the H–P relation, showing the inverse variation in yield
stress with grain size (in ductile ceramics), given as:

r0 ¼ ri þ kD�1=2 ¼ ri þ aGbq1=2 ð5:23Þ

Here, r0 and ri represent the yield stress and friction stress, respectively,
expressing the resistance of the material to dislocation movement; k is a parameter
expressing some contribution to strengthening by the grain boundaries; and D is
the grain size. The right side of Eq. (5.23) expresses the dislocation density, q,
with a being a numerical constant. G and b have their usual meanings—the shear
modulus and Burgers vector, respectively. Equation 3.80 (from Sect. 3.3.15)
regarding pile-ups is rewritten here as:

n ¼ pLsk

Gb
ð3:80Þ

n represents the number of dislocations in the pile-up; L is the distance along the
pile-up to the obstacle detaining it; s, as usual, is the applied stress; while the
parameter k = 1 is for screw dislocations and (1-m) for edge dislocations. Con-
sidering that L extends in both directions from the operating source, which is
assumed to be located at the center of the D-sized grain, i.e., L/2 in one direction,
then the distance, in terms of the grain size at this location, is D/2 and Eq. (3.80)
may be rewritten as:

n ¼ pD sk

2Gb
ð3:80aÞ

Considering Eqs. (3.79a–3.79c), it is possible to express the stress needed to
overcome the barrier (i.e., the grain boundary) more specifically as ss, which is the
difference between the applied stress, s, and the lattice resistance, si, given as:

ss ¼ s� si ð5:24Þ

(the equivalent of Eq. (3.79c)).
The stress at the end of the pile-up (i.e., at the grain boundary) has to be larger

than some critical shear stress, sc, in order to overcome the grain-boundary

400 5 The Strength and Strengthening of Ceramics

http://dx.doi.org/10.1007/978-3-319-04492-7_3
http://dx.doi.org/10.1007/978-3-319-04492-7_3
http://dx.doi.org/10.1007/978-3-319-04492-7_3
http://dx.doi.org/10.1007/978-3-319-04492-7_3


www.manaraa.com

resistance and to enable dislocation motion through it. Thus, Eq. (3.79b) may also
be expressed in a different form, with a more specific meaning as:

sc ¼ nss ð5:25Þ

Rewrite Eq. (3.80a) in terms of grain size as:

n ¼ pD ssk

2Gb
ð3:80bÞ

Take n from 3.80b and replace n in Eq. 5.25 to get the following for sc:

sc ¼
pDk

2Gb
s2

s ¼
pkD

2Gb
s� sið Þ2 ð5:26Þ

In Eq. (5.26), the last term is a result of replacing ss by its value from
Eq. (5.24). This relation may be rewritten as:

s1=2
c ¼ pkD

2Gb

� �1=2

ðs� siÞ ð5:27Þ

Rearranging this equation, one obtains:

s� si ¼
2Gb

pDk
sc

� �1=2

ð5:28Þ

Designate the following expressions in Eq. (5.28) as:

2Gbsc

p

� �1=2

¼ a and
1

k1=2

� �
¼ k0 and

1

D1=2

� �
x

D1=2

D12
:

Rewrite Eq. (5.28) with the notation shown as:

s ¼ si þ ak0D�1=2 ð5:29Þ

This is equivalent to Eq. (5.23), given in terms of the normal stress, r.
Experimental observation suggests that dislocation density is an inverse func-

tion of grain size, namely q = 1/D. Equation (5.29), in terms of dislocation
density may be given as:

s ¼ si þ ak0q1=2 ð5:30Þ

Equations (5.23) or (5.30) have been used to calculate various strength prop-
erties, for example, one showing bending strength is illustrated in Fig. 5.59.

The data points of the linear relation represent three-point bending test results.
Strength increased as the average grain size decreased and the slope was exactly
-1/2 in the log plot, in accordance with the H–P relation. Grain size usually
increases with temperature and with holding duration at some temperature. Once
the characteristic grain size at a specific sintering temperature is achieved, no
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further increase occurs during additional holding time. The microstructure char-
acterizing the tests reported in Figs. 5.59 and 5.60 is shown in Fig. 5.61.

This microstructure was a result of sintering at 1300 �C for 6 h followed by
HIP. Before HIPping, the structure contained micropores at the grain-boundary
junction, as seen in Fig. 5.61a; however, when the fabrication process occurred for
12 h, namely sintered at 1300 �C, the specimens did not show micropores and had
a relative density of *100 %.

For good mechanical properties of alumina, this ceramic must be largely flaw-
free and must have a high density; these properties would make it useful as a
structural material and for various industrial applications. The presence of cracks

Fig. 5.59 Relationship
between transmittance and
mechanical strength on
average grain size [25]. With
kind permission of Elsevier

Fig. 5.60 Plots of average
grain size versus sintering
time at 1300–1800 �C [25].
With kind permission of
Elsevier
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and various other flaws often override the beneficial effect of small grain size.
Considerable scatter may be induced in experimental results as a consequence of
such flaws, even in very pure alumina.

One of the important ceramics, of great technological interest, is high-purity
alumina, in light of its quality, mechanical properties and many potentially sig-
nificant applications. Of the many parameters that influence the behavior of alu-
mina, the effect of grain size is of prime importance. However, to take full
advantage of the positive impact of grain size, the strengthening of flaws should be
kept minimal, otherwise it may nullify the beneficial effect of grain-size
strengthening. Flaws can be minimized by proper production techniques to provide
dense and low flaw-content ceramics. In the following illustration, the grain-size
strengthening in alumina is indicated. Figure 5.62 shows the effect of grain size on
bending strength and fracture toughness.

The numbers in Fig. 5.62 refer to the conditions shown in Table 5.2. In this
figure, the variation in strength indicates the fabrication effect also on the strength-
grain size relation (plots). The lower lines were obtained by dry pressing and cold
isostatic pressing [henceforth: CIP]. Beforehand, the CIP samples at 700 MPa
were uniaxially pressed at 50 MPa. This procedure increased the green density to
60 % and also reduced the sintering temperature to 1400 �C.

In Fig. 5.63a, the average strength/grain-size relationship is illustrated for
selected samples used for subcritical measurements, while in Fig. 5.63b, the
measured subcritical growth of the indentation-cracks is indicated. The lines are
least-squares approximations. As expected, bending strength decreased with sub-
critical-crack growth. Figure 5.65 is a plot of subcritical-crack growth versus grain
size to obtain information on the shaping of the samples regarding the grain-size
effect in reducing subcritical-crack propagation. This figure averages the results of
samples produced by different approaches. The numbering is the same as in
Fig. 5.63a. High-purity alumina exhibits an increasing potential for higher
strengths at decreasing grain sizes. However, this potential depends on the flaw

Fig. 5.61 SEM micrographs of sintered alumina (a) before and (b) after HIP treatment at
1300 �C for 12 h [25]. With kind permission of Elsevier
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population. The great scatter in data in the high purity alumina in Figs. 5.62, 5.63,
5.64 and 5.65 is an indication of the effect of the cracks in the ceramics. This effect
has to be eliminated, as much as possible, and, therefore, the most appropriate
production method has to be used. It is essential to reduce the number of flaws in
order to improve the strength properties while maintaining higher hardness and
stability; it is the combination of these properties that make this advanced alumina
attractive for wider use and open new fields of application.

Zirconia, in its various forms, is yet another worthy ceramic previously
mentioned in this chapter, but not yet discussed in connection with the grain-size
effect on strength properties. It is quite difficult to maintain stable, sintered zir-
conia, because of the large volume change accompanying the t-ZrO2 ? m-ZrO2

transition; therefore, the stabilization of zirconia is customary. One of the popular
stabilizing agents in use is yttria, producing YSZ, a zirconium oxide crystal, stable
at RT (and moisture-resistant). Such stability is also important when using zirconia
for artificial joint replacements (one of its many applications). Oxide constituents,

Fig. 5.62 Grain size and
technology effects in the
strength and toughness of
pressureless sintered alumina.
Each data point represents the
averages of grain size and
strength measured for a group
of specimens sintered at the
same temperature. The
numbers that distinguish
different gel casting routes
refer to Table 5.2. Different
data points for one casting
route refer to microstructures
sintered at different
temperatures [20]. With kind
permission of Elsevier

Table 5.2 Strength data of gelcast aluminas after pressureless sintering [20] (with kind per-
mission of Elsevier)

Batch
number

Monomer
content (wt)

Duration of slurry
dispersion) min

Grain size
(lm)

Average
strength (MPa)

Standard
deviation (MPa)

1 3.8 130 1.31 862 ±102
2 7.4(+CIP) 130 0.97 822 ±19
3 3.8 40 1.12 720 ±47
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such as yttria, are added to further toughen and strengthen the zirconia, which has
good mechanical qualities from the outset. The stabilization of zirconia over a
wider range of temperatures is accomplished by substituting the Zr4+ ions in its
crystal lattice with Y3+, in the case of YSZ.

Fig. 5.63 Strength-grain size relationship (a) and subcritical growth of radial indentation cracks
(b) of sintered batches selected from Fig. 5.62. Straight lines are least squares fits. Strength
ranking numbers associate specimens in (b) to batches in graph (a), numbers l–3 are consistent
with Table 5.2 and Fig. 5.62 [20]. With kind permission of Elsevier
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Fig. 5.64 Subcritical growth of radial indentation cracks versus grain size for the time interval
between 6 weeks and 6 months after indentation. The straight line is a least squares fit. Strength
ranking numbers are identical with Fig. 5.63 [20]. With kind permission of Elsevier

Fig. 5.65 Subcritical growth of radial indentation cracks versus grain size for the time interval
between 6 weeks and 6 months after indentation. The straight line is a least squares fit. Strength
ranking numbers are identical with Fig. 5.63 [20]. With kind permission of Elsevier
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Of greatest significance for mechanical properties is the t-ZrO2 ? m-ZrO2

phase transformation that occurs by a diffusionless shear process at near sonic
velocities, similar to those of Martensite formation, as mentioned earlier. Thus,
zirconia ceramics will exhibit high strength, provided that the critical-defect size is
kept small, which necessitates the optimization of this and other ceramic manu-
facturing processes. Stress-induced phase transformation involves the transfor-
mation of metastable tetragonal crystallites into the monoclinic phase at the crack
tip, which, accompanied by volumetric expansion, induces compressive stresses.
The extent of strengthening depends on the vol% of transformed ZrO2, e.g. on the
depth of the surface compressive layer, which increases with the thermodynamic
instability of the tetragonal ZrO2 grains. It was shown that zirconia exhibits a
transformation-toughening mechanism, acting to resist crack propagation.

Due to their excellent mechanical properties, Y-TZPs are used not only for
medical applications, but also for various important technological applications
requiring properties such as: high density, high strength, high hardness, good wear
resistance and fracture toughness. In its pure form, crystal-structure changes limit
mechanical applications, however stabilized zirconias produced by the addition of
oxides, such as those of C, Mg or Y, can produce very high strength, hardness and
particularly toughness. Various physical properties are also of great interest.

Although the specific subject under discussion is the effect of grain size on
strength properties, basically here, the high strength is the result of the transfor-
mation occurring in the zirconia; thus, the effect of grain size on the mechanical
properties of 3Y-TZP ceramics are considered in this context. Illustration 5.64
shows the variation of the hardness with grain size for two types of stabilized
zirconia. Note in the figures TZ-3YB refers to a commercial powder (Japan)

Now, the focus shifts to TZ-3YP which is an yttria-stabilized tetragonal zir-
conia polycrystalline ceramic (equivalent to 3Y-TZP) containing three moles of
yttria. Its hardness was evaluated by an equation given in Sect. 1.10b, as:

DPH ¼ 2P sinðu=2Þ
d2

¼ 1:854P

d2
ð1:127Þ

As may be seen in Fig. 5.66, hardness increases with the decrease in grain size.
The data in the graph fit reasonably along a line, which means that the dependence
follows the H–P relation. The microstructure of TZ-3YP may be seen in Fig. 5.67.

The Fig. 5.67 shows (a) a dense microstructure obtained at 1400 �C sintering.
Larger grains were obtained by the action of both higher sintering temperatures
and longer sintering times as seen in (b) the structure of TZ-3YB ceramic remains
dense, but the theoretical density of these ceramics is decreased due to the
spontaneous transformation of the tetragonal into the monoclinic phase. The
density change of TZ-3YB as a function of grain size is illustrated in Fig. 5.68.

At higher temperatures, holes and voids are visible in the micrographs, as
indicated in Fig. 5.69. However, the presenter of this microstructure claims that
they are not pores, but rather the remnants of grains pulled out during processing
by grinding and polishing.
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Fig. 5.66 The dependence of the hardness of TZ-3YB and B261 ceramics on the inverse square
root of grain size [30]. With kind permission of Dr. Trunec and the author

Fig. 5.67 a SEM micrograph showing the microstructure of the TZ-3YB ceramic sintered at
1400 �C for 2 h.; b SEM micrograph showing the microstructure of the TZ-3YB ceramic sintered
at 1650 �C for 20 h [30]. With kind permission of Dr. Trunec

Fig. 5.68 Density of TZ-
3YB and B261 ceramics as a
function of grain size [30].
With kind permission of
Dr. Trunec
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In Figs. 5.70 and 5.71, the variation of the fracture toughness with grain size is
indicated. Figure 5.70 illustrates the effect of the applied indentation load on
fracture toughness.

One can see that the fracture toughness is almost constant up to a grain size
of *0.4 lm, above which it increases to *1.8 lm; however, further grain growth
results in spontaneous transformation from the tetragonal to monoclinic phase and
damage occurs in the samples, due to cracking.

One should not overlook the exceptional ceramics obtained by the combination
of alumina and zirconia. Beyond its many technological applications, ZTA is of
increasing interest also for biomedical applications, due to its excellent strength
properties, e.g. for improved, long-life, orthopedic implants (current implants are
relatively short-lived). In alumina, even in ZTA, age-related degradation is asso-
ciated with the volume change of the t-ZrO2 ? m-ZrO2 phase transformation

Fig. 5.69 SEM micrograph
showing the microstructure of
the TZ-3YB ceramic sintered
at 1650 �C for 50 h [30].
With kind permission of
Dr. Trunec

Fig. 5.70 Fracture toughness
of TZ-3YB ceramic as a
function of grain size,
determined at different
indentation loads [30]. With
kind permission of
Dr. Trunec
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occurring at the surface in a humid atmosphere (or in corrosive surroundings, when
implanted in the body), followed by superficial microcracking over time. The
addition of one ceramic to another often produces a composite with more desirable
properties than those of the individual components themselves, is true for ZTA. A
microstructure of alumina, toughened by 5 % zirconia, is illustrated in Fig. 5.72
and compared to unaltered alumina. Note the dispersion of the zirconia in the
micrograph comparing the two ceramics, the alumina and zirconia containing
alumina. This dispersion, mostly at triple boundary junctions, prevents grain
growth, as seen in Fig. 5.73, where grain growth in both ceramics is indicated as a
function of density. Small grain size strengthens the material, thus the retardation
of grain growth is beneficial for a strong ceramic. In this case, the grain growth is

Fig. 5.71 Average fracture toughness of TZ-3YB and B261 ceramics as a function of grain size
[30]. With kind permission of Dr. Trunec

Fig. 5.72 Micrographs of a alumina and b alumina containing 5 % zirconia, sintered at a rate of
5 �C/min to1700 �C. Particles of zirconia at the triple junctions restrict grain growth during the
final stage of sintering (see Fig. 5.73) [32]. With kind permission of John Wiley and Sons
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retarded almost threefold at a density of *98 %. The expression for the instan-
taneous sintering rate, _q, is given below as:

_q ¼ A
exp �Q=RTð Þ

T

f ðqÞ
dn

ð5:31Þ

where:

A ¼ CcV2=3

R
ð5:32Þ

_q ¼ dq
dt is the rate of instantaneous densification; d is the grain size; f(q) is a

function only of the density; Q is the activation energy; c is the surface energy; V
is the molar volume; R and T have their usual meanings (the gas constant and the
absolute temperature); C is a constant; and A is a material parameter that is
insensitive to d. The sintering rate is given by dn, where n = 3 for controlled
lattice diffusion and n = 4 for controlled grain-boundary diffusion. In the case of
this ZTA, n = 4, indicating that the sintering of the green compact is grain-
boundary diffusion controlled.

For orthopedic applications, alumina–zirconia composites have a higher reli-
ability than single-phase ceramics, due to the combined advantages of both the
alumina and the zirconia. With the same pre-existing defects, these composites can
work at loads two times higher than monolithic alumina without delayed failure
and are not susceptible to the hydrothermal instability (low temperature degra-
dation) observed in the case of stabilized—zirconia bioceramics.

An additional mechanical property of interest in ZTA is its wear resistance. The
wear transition load, namely the wear load at which a rapid increase in wear
occurs, increases with increased zirconia content. The wear in ZTA depends on the

Fig. 5.73 Alumina grain size
as a function of density.
Growth of the alumina grain
is significantly impeded by
addition of 5 % zirconia only
in the final stage of sintering.
In the initial and intermediate
stages of sintering, the
zirconia particles do not have
a measurable effect on grain
growth [32]. With kind
permission of John Wiley and
Sons
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material properties as influenced by its microstructure. The effect of the micro-
structure on wear has been demonstrated in various publications and an H–P-type
relation between microfracture stresses and grain size was found. Fig. 5.74 shows
critical damage stress, rD, as a function of grain size.

Figure 5.74 shows the effect of the average grain size on the onset of brittle
fracture for AZ15, calculated using Eq. (5.33) given below [33]:

rD ¼ r�1
d�

d

� �1=2

�
X

r1 ð5:33Þ

where d is the grain size; r1 is the thermally-induced internal stress; d* and r1
* are

the critical grain size and the critical internal stress, respectively, corresponding to
instantaneous microfracture; and rD = 0. If the process parameters remain con-
stant, the following H–P-type relation between grain size and critical damage
stress may be obtained from (5.33):

rD ¼ f ðd�1=2Þ ð5:34Þ

This relation shows that the smaller grain size results in higher critical damage
stress (i.e., a higher transition to brittle fracture). Figure 5.74 also includes data
from the literature. In brief, rD for an average grain size of 1.7 lm
is *2200 MPa, whereas, for 5.6 lm, a drastic drop in rD, the stress required for
failure occurs at a level of 1200 MPa, which is significantly lower than the value
for the small-grain size (i.e., a mean grain size of 1.7 lm). Figure 5.75 is a SEM
microstructure. At loads above the transition load, i.e., above 340 N, the worn
surface exhibits massive surface damage, apparently formed by a brittle fracture,
as seen in Fig. 5.75b.

Fig. 5.74 Hall-Petch-type
relationship describing the
fracture stress between the
external sliding damage-
induced stresses and grain
size in AZ15 material. AZ15
means 15 % zirconia [13].
With kind permission of
Elsevier
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There is a transition from the plastic deformation to the brittle-fracture-dominated
wear process. When the coefficient of the friction level is about 0.1, the maximum
shear stress under sliding contact is underneath the sliding surface. This stress induces
subsurface cracks, which propagate along the grain boundaries. The rate of inter-
granular crack propagation depends on the internal, residual stress at the grain
boundaries. Once the grains and particles are detached from the surface, they dras-
tically change the stress distribution at the point of contact. Particle abrasion begins to
act, inducing wear on the sliding surface. The lowest wear rate of ZTA was found for
a 15 % ZrO addition, namely at AZ15. The reason for this wear reduction is related
to: (a) the refinement of the alumina grain size; (b) the reduction of the hardness at the
worn region; and (c) the formation of a compressive zone in the wear scar.

Finally, it is worth reemphasizing the microstructural properties of ZTA basi-
cally responsible for its advanced performance and key role in biomedical appli-
cations, as indicated earlier. In brief:

(i) The microstructure of ZTA reveals that the zirconia grains are quite evenly
distributed in the ceramic;

(ii) The zirconia grains are mainly found in the corners, or rather at triple junc-
tions, of the Al2O3 matrix;

(iii) There are indications in the relevant literature that zirconia grains remain
inter-granular at sintering temperatures;

(iv) Although additions of zirconia to alumina are expected to retard grain growth
in an Al2O3 matrix, a coarsening of the grains of both components of ZTA
may occur at high temperatures; however, despite the change in grain sizes,
their ratios remain unchanged;

(v) The fabrication method influences the density of ZTA (as it does in other
ceramics). HIP seems to provide a density close to the theoretical one,
of *100 %. Thus, the densities of pores, microcracks and other flows are reduced,
which is a prerequisite for the better performance of these ceramics in use.

Fig. 5.75 SEM images of worn surface of AZ15: a before transition to brittle-fracture-controlled
wear (load 260 N; speed 0.23 ms-1; paraffin oil lubricant; sliding distance 2068 m); b after
transition to brittle-fracture-controlled wear (load 340 N, speed 0.23 ms-1; paraffin oil lubricant;
sliding distance 2.55 m) [13]. With kind permission of Elsevier

5.6 Grain Boundaries and Grain-Size Strengthening 413



www.manaraa.com

5.7 Concluding Remarks to this Chapter

Several strengthening mechanisms were discussed in this chapter. The emphasis
throughout was on the effects of the flaws and on the contribution of the dislo-
cations. It has been stated several times that defect-free ceramics are much
stronger than those usually observed (which are, regretfully, not defect free). To
achieve a near-100 % density in ceramics, special production techniques, often in
combination, are necessary, and they are both time-consuming and expensive.
Nevertheless, the broad applications of ceramics in industry and medicine make
these efforts worthwhile, even when cost considerations are critical. The hope is to
be able to make common ceramics ductile to various degrees. Doing so will further
extend the domain of ceramic applications at a wide range of temperatures while
retaining the good strength properties of these ceramics. This would certainly
make all the research and experimental efforts worthwhile.

The second point, threaded throughout all the chapters of this book, is partic-
ularly relevant to this chapter. When considering strengthening processes in
general, the retardation of dislocation motion plays a key role. Regardless of what
manner of obstacles dislocations encounter, the end result is material strength-
ening, because a higher stress is required to maintain dislocation motion. In strain
hardening, the dislocations themselves act as obstacles to the motion of other
mobile dislocations. A second, insoluble phase or grain boundaries act as barriers
to dislocation motion, either pinning or entangling them, stopping or delaying the
dislocations. Foreign atoms, when in solution, act no differently than indicated
above, since such atoms, even when dissolved in the matrix, disrupt the periodicity
of the lattice and, by so doing, the retardation of dislocation motion occurs. Thus,
the presence and generation of new dislocations are responsible for the strength-
ening of ceramics.
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Chapter 6
Time-Dependent Deformation: Creep

Abstract Creep is time-dependent deformation under constant stress. It may occur
at relatively moderate temperatures. Most ceramics are intended for use at high
temperatures, where they are ductile and creep deformation might occur. For
ceramics with low-temperature ductility, creep may occur at *0.5 Tm or even at
lower temperatures. Creep generally is a function of the stress applied, the time of
load duration and the temperature. Many ceramics are characterized by a high
melting point even above 2000 �C (MgO, Al2O3, SiC, etc.) which makes them natural
candidates for high temperature applications without the risk of creep failure during
their lifetimes. Single and polycrystals creep, but to eliminate grain boundary sliding
single crystals are preferred in certain important applications, despite the cost factor
involved. Although small grain size enhances most of the mechanical properties, for
creep resistance large grained materials are preferred. Mechanisms of creep that can
act individually or simultaneously (depending on conditions) are Nabarro-Herring
Creep, Dislocation Creep and Climb, Climb-Controlled Creep, Thermally-Activated
Glide via Cross-Slip and Coble Creep, involving Grain-Boundary Diffusion. Creep
may terminate in rupture which has to be avoided by choosing the proper ceramics
and the safe temperature use for the desired life time. The presence offlaws (cracks) in
ceramics intended for high-temperature applications can be controlled by the man-
ufacturing process, which should be reduced to a minimum. It is essential for design
purposes to estimate the life time in service of a ceramics to avoid failure, which is
evaluated by some parametric method. The most popular methods to predict life time
are the Larson-Miller and Monkman–Grant methods.

6.1 Introduction

Most simply and generally defined, creep is ‘time-dependent deformation under
constant stress’. Even though creep may occur at relatively moderate temperatures,
most ceramics are intended for use at high temperatures, where they are ductile. For
ceramics with low-temperature ductility, creep may occur at *0.5 Tm or even at
lower temperatures. The term defined below, indicating ‘homologous

J. Pelleg, Mechanical Properties of Ceramics, Solid Mechanics
and Its Applications 213, DOI: 10.1007/978-3-319-04492-7_6,
� Springer International Publishing Switzerland 2014
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temperature’, may be considered a demarcation point for creep, separating ‘low-
temperature creep‘ from ‘high-temperature creep‘. The homologous temperature
of a material is defined in terms of its melting point, Tm, or, more specifically, as the
ratio of some absolute temperature, T, at some value to its melting point, namely:

homologous temperature ¼ T=Tmp ð6:1Þ

Low-temperature creep, at or below 0.5Tm, is believed to be governed by non-
diffusion- controlled mechanisms, whereas high-temperature creep, above 0.5Tm,
is diffusion controlled. Stress, time and temperature, mentioned above, act
simultaneously during creep. These three parameters determine the creep rate and
may be expressed in terms of strain rate as:

_e ¼ f ðr; t; TÞ ð6:2Þ

Clearly then, based on the fact that many ceramics are characterized by high
temperatures, some even above 2000 �C, there may be safe uses for certain
ceramics over long periods of time at high temperature without the risk of creep
failure during their lifetimes. Note the very high Tm of some ceramics, such as:
MgO (2798 �C), Al2O3 (2050 �C), SiC (2500 �C), etc. Some ceramics even have
ultrahigh melting points, such as: TiB2 (3225 �C), ZrC (3400 �C), HfC (3900 �C),
etc. Thus, some (high-melting) ceramics are more appropriate than others (low-
melting) for use when resistance to creep is an essential prerequisite. Ceramics
having high melting points are natural candidates for applications in which
resistance to creep is of primary interest. Other requirements for good performance
at high temperatures also must not be overlooked, depending on the particular
application intended for use. However, common to all these applications is the
importance of their resistance to environmental influences, especially corrosion
and humidity. For example, ceramics intended for biomedical applications, like
implants, are constantly exposed to humid and corrosive surroundings.

In order to study creep without the other additional effects that usually con-
tribute to overall creep deformation, it is essential to investigate single crystals.
This eliminates the effects of grain-boundary sliding, which is usually a significant
contributor to creep. In polycrystalline materials, grain-boundary sliding generally
has a considerable impact on creep strain. In this chapter, the following topics will
be discussed (not necessarily in their listed order):

(1) basic concepts;
(2) brittle ceramics (ductile at high temperatures, at which deformation is

possible):

(i) single-crystal ceramics,
(ii) polycrystalline ceramics;

(3) RT ductile ceramics:

(i) single-crystal ceramics,
(ii) polycrystalline ceramics;
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(4) superplastic ceramics;
(5) creep mechanism;
(6) grain-boundary sliding;
(7) creep rupture;
(8) prediction of service lifetime;
(9) recovery;
(10) design and selection of creep-resistant materials.

As indicated throughout the sections of this book, deformation, including creep
deformation, occurs by some form of dislocation motion. The objective of
selecting materials or developing new materials is to slow down dislocation
motion, as far as possible, in order to ensure their long lifetime of service.

6.2 Basic Concepts

The generally accepted method for recording the results of a creep test is by
plotting strain versus time, as shown schematically in Fig. 6.1a. The schematic
curve is composed of three stages, known as ‘primary’, ‘secondary’ and ‘tertiary’
creep and an instantaneous elongation upon applying the force. ‘Primary creep’ is
also known as ‘transient’, or simply ‘stage I creep’. For most materials, including
metals and alloys, low-temperature creep occurs in a single transient stage, in
which the creep rate decreases continuously over time (see schematic in Fig. 6.1b).
A decrease in strain rate is associated with increases in dislocation density or
changes in the characteristics of the dislocation structure.

Strain hardening occurs during transient creep, which is induced by pure glide.
Mobile dislocations, present at the start of creep and continue to move under the
influence of an effective stress, which slowly declines as the mobile dislocations
are trapped in the network. The total dislocation density, equal to the sum of the
mobile and network densities, remains constant. It is clear that strain is a function
of stress and increases with stress.

Secondary creep or ‘stage II creep’ is often referred to as ‘steady state’ or
‘linear creep’. During the tertiary creep or ‘stage III creep’, the creep rate begins to
accelerate as the cross-sectional area of the specimen decreases due to necking,
which decreases the effective area of the specimen. If stage III is allowed to
proceed, fracture will occur. The instantaneous strain, e0, is obtained immediately
upon loading; this is not a creep deformation, since it is not dependent on time and
is, by its nature, elastic. However, plastic strain also contributes in this case.

The strain rates characterizing these stages are as follows: in stage I, the strain
rate, _e, is decreasing, while, in stage II, the strain rate is constant, because of the
balance between recovery processes and strain hardening. In stage III, creep is
accelerated and the strain rate continuously increases until fracture sets in.
Figure 6.1b shows the variation of strain rate over time.
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Temperature and stress both affect the shape of a creep curve. Figure 6.2
illustrates these temperature and stress effects on the shape. A schematic repre-
sentation of this effect appears in Fig. 6.3a for low, medium and high tempera-
tures. At medium temperatures (A in the figure), the commonly observed creep
curve resembles the one seen in Fig. 6.1a. Schematic creep curves at a constant
temperature, with stress as the varying parameter, are shown in Fig. 6.3b. At the
stress indicated by r3, the curve is similar to the ideal creep curve shown in
Fig. 6.1a, having all three stages. The effects of stress and temperature on the
shapes of these creep curves are similar. In Fig. 6.3b, the effect of stress at a
constant temperature is shown schematically and similar curves may be obtained
when the stress is kept constant and temperature is the varying parameter. The
transient creep stage gradually diminishes with increased stress and, at a suffi-
ciently high stress level, it disappears and the steady state dominates the shape of
the strain–time relation.

In Fig. 6.1b, a minimum, constant creep rate, which is an important design
parameter, is shown. The magnitude of the minimum creep rate on the strain–time
relation (see Fig. 6.1a) is associated with steady-state creep and is stress and
temperature dependent. Two criteria are commonly applied to alloys: (a) the stress
needed to produce a creep rate of 0.1 9 10-3 %/h (or 1 % in 1 9 104 h) and
(b) the stress needed to produce a creep rate of 0.1 9 10-4 %/h, namely 1 % in

st
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secondary creep tertiary creep

xfracture

instantaneous 
strain, ε0

time
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Fig. 6.1 a A schematic creep
curve showing three stages of
creep and an instantaneous
elongation on application of
load; b schematic strain rate
plot versus time [69]
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100 9 103 h (or approximately 11.5 years). Criterion (a) is used for turbine
blades, while (b) is commonly applied to steam turbines.

Several empirical models have been suggested for creep. Andrade was the first
to consider creep in 1914. He considered creep to be the superposition of transient
and viscous creep terms (discussed in the next section dealing with creep in
polycrystalline materials). Since creep is a thermally-activated process, the min-
imum secondary-creep rate may be described by an Arrhenius equation (see
McLean [15]) as:

de
dt
¼ _e ¼ A exp�

�
Q0 � ar

kT

�
ð6:3Þ

In Eq. (6.3), A and a are constants and Q0 is the activation energy for creep at
zero stress. A is also known as the ‘frequency’ or ‘pre-exponential factor’.
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Fig. 6.2 Strain-time creep curves: a the shape of creep curves; A the standard creep curve (see
6.1a); B a creep curve at low temperature and stress and; C a high temperature and high stress
curve; b Schematic creep curves at a constant temperature with variable stress. Note that r3
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An additional expression for the creep rate, where the stress and temperature terms
are separated, is given as:

_e ¼ Brn exp�
�

Q

kT

�
ð6:4Þ

In Eq. (6.4), the stress affects the frequency factor, B, while Q has the same
meaning as Q0.

Many experimental data indicate that the creep rate, in its early stages, may be
expressed by a function suggested by Cottrell [39] as either:

dc
dt
¼ _c ¼ At�n ð6:5Þ

or

de
dt
¼ _e ¼ Bt�n ð6:5aÞ

A (B) and the exponent, n, are constants with 0 B n B 1.
Equation (6.5) may also be expressed in logarithmic terms and many transient

regimes of creep curves may be fitted to a logarithmic law when n = 1. In the
extreme case, when n = 1, which is often observed experimentally, one obtains
the logarithmic creep law as:

c ¼ a ln t ðt [ 1Þ ð6:6Þ

Note that Eq. (6.5) adequately describes the experimental creep data, since the
creep rate in the primary stage (transient) decreases over time, as shown in the
schematic illustration in Fig. 6.1b. Various values of n, in the range 0–1, may be
observed experimentally, but, very frequently, the value of 2/3 is preferred. Thus:

dc
dt
¼ _c ¼ At�2=3 ð6:5bÞ

and integration gives the equation for strain as:

c ¼ bt1=3 ð6:7Þ

Equation (6.7), representing transient creep, is often referred to as ‘b-creep’ or
‘Andrade creep’, since Andrade [24] was the first to show that it applies to many
materials. The creep behavior obeying Eq. (6.6) is often called ‘a’ or ‘logarithmic
creep’.

Often, the instantaneous non-creep strain is also taken into account, suggesting
an equation [85] in the form of:

c ¼ c0 þ a lnðbtþ 1Þ ð6:8Þ

in which a and b are constants. Figure 6.3 shows schematically logarithmic creep
curves at various stresses.
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Figure 6.1a shows that stage II creep is linear, such that the function describing
this region must also be linear. Much of the creep data is expressed by functions
taking this linear contribution into account as:

c ¼ c0 þ bt1=3 þ jt ð6:9Þ

This relation is a combination of instantaneous strain, c0, Eq. (6.7) and the
linear contribution of second stage creep, Kt [39], and it well-describes many creep
experiments. Usually, especially in experiments performed at high temperatures,
transient and steady-state creep occur together. A graphic expression of Eq. (6.9),
namely the combination of these stages, is seen in Fig. 6.4 without the instanta-
neous, non-creep strain, c0 obtained upon loading.

In tertiary creep, the strain and strain rate increase until fracture occurs. In
ceramics, tertiary creep is usually not recorded, but, if the test is continued long
enough, a tertiary creep may develop. In metals, entering stage III occurs when
there is a reduction in the cross-sectional area due to necking or internal void
formation. In ceramics, it is void formation, in the form of pores or flaws, which
effectively causes a reduction in area. Thus, tertiary creep is important in engi-
neering ceramics, because it is often associated with the formation of structural
instability, as indicated by void and/or crack formation, leading to failure-by-
fracture. The onset of tertiary creep occurs at the end of steady-state creep. It is
easier to locate the onset of tertiary creep from the _e-t relation than from e-t, as
seen in Fig. 6.1b, since the location of the deviation from the minimum creep rate
is well defined. It is clear that the minimum creep-rate parameter must limit
allowable stress in practice to prevent the onset of tertiary creep. In light of the
minimum creep-rate concept, the attention in experimental creep investigations is
focused on steady-state creep, where it is constant over an extensive period of
time. Generally in ceramics, tertiary creep is relatively short and sometimes even
absent.

γΙ = βt1/3

1/3

γΙΙ =κt

γ = βτ     + Κτ

γ

t

Fig. 6.4 A graphic
presentation of Eq. (6.9)
without c0, obtained from the
combination of transient
(cI = bt1/3) and steady-state
(cII = jt) creeps
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Several investigators have shown that the starting time of tertiary creep and
rupture life are related for various alloys according to the relation (e.g., Garofalo
et al. [11]):

t2 ¼ Atar ð6:10Þ

in which tr is the rupture life, t2 is the starting time of the tertiary creep, A and a are
constants, often *1. Equation (6.10) is one of many expressions for creep, in
general, and for tertiary creep, in particular, and is widely used for various
materials under consideration for high-temperature applications. Other expressions
are common in creep studies, such as power, exponential and logarithmic func-
tions. For example, these three functions are shown respectively as:

eIII ¼ _emint þ Atg ð6:11Þ

eIII ¼ h3ðexp½h4tffi � 1Þ ð6:12Þ

eIII ¼ �ðln½1� C_emint])/C ð6:13Þ

In these expressions, for tertiary creep without a primary stage, _emin is the
minimum-creep rate, A, g, h3, h4 and C are parameters. The creep curves with a
higher applied stress, which have a pronounced tertiary stage, may be successfully
described by all three equations. Dobeš [44] has indicated that the calculated value
of g (*7–10) is higher than the one proposed by Graham and Walles [48] (g = 3).

6.3 Creep in Brittle Ceramics (Ductile at High
Temperature Where Deformation is Possible)

It is important to also consider brittle materials in ceramics, since they deform at
high temperatures. Deformation is essential for creep and, since ceramics are
potential candidates for high-temperature applications during which deformation
occurs, studies of creep and its retardation are important despite their RT brit-
tleness. This discussion of creep will begin with single crystals, since no grain-
boundary sliding is involved and, thus, creep occurs only within the lattice.

In Fig. 6.5, experimental transient creep is illustrated. This illustration repre-
sents commercially available SiC-fiber/calcium aluminosilicate matrix composites
(Nicalon SiCJCAS-11). These composites contain 40 vol% Nicalon SiC fibers and
had been hot-pressed.

Table 6.1 summarizes the experimental details together with symbols (desig-
nations) including values for: applied load, load time, strain, strain rate and the
creep-strain recovery ratio, Rcr.

An experimental illustration of the strain-rate variation over time shown for the
primary creep rate in Fig. 6.1b is presented in Fig. 6.6 for ceramics having the
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Fig. 6.5 a Total strain versus
time for [0I]16 and [0]32

Nicalon SiCf/CAS-II
composites crept at 1200 �C
in high-purity argon [95].
With kind permission of John
Wiley and Sons

Table 6.1 Summary of loading histories and experimental results [95] (with kind permission of
John Wiley and Sons)

Fiber layup Loading history e10th (%) _e100th (S-1) Rcr,100th (%) Rr,100th (%)

[0]16 200 MPa/100 h 3.38 2.2 9 10-8

[0]32 120 MPa/100 h 1.36 1.1 9 10-8 23 32
[0]32 60 MPa/100 h ? 2 MPa/100 h 0.58 4.6 9 10-9 27 33
[0/90]4s 60 MPa/100 h ? 2 MPa/100 h 0.59 4.0 9 10-9 49 56
[0/90]4s 60 MPa/100 h ? 2 MPa/100 h 0.55 2.7 9 10-9 45 52
[0/90]4s 60 MPa/100 h ? 2 MPa/100 h 0.62 3.9 9 10-9 51 56
[0/90]4s 60 MPa/40 min ? 2 MPa/

40 min
57/80* 73/70*

*Two 40-min cycles (first cycle/second cycle)

Fig. 6.6 Strain rate versus creeping time, creeping temperature a 1400 �C, b 1500 �C [84]. With
kind permission of Dr. Nina Obradovic, Science of Sintering Editorial Board Secretariat
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compositions indicated in Table 6.2 at two temperatures. Note the decrease of the
strain rate over time in a similar fashion as shown in the aforementioned schematic
Fig. 6.1b.

6.3.1 Creep in Single Crystals

The interest in single-crystal studies is not only a consequence of understanding
creep phenomena without the influence of grain-boundary sliding, for example, but
also for practical reasons regarding engineering applications. Many components
based on single crystals are in use. The common denominator of all these appli-
cations is the prerequisite that the materials be stable during high temperature use.
At such high temperatures, it is critical to use ceramics that have excellent creep
capabilities, which can resist dimensional changes during long-term applications.

The dislocation structures of AI2O4Mg single crystals, which have crept (pre-
sented in the curves below in Fig. 6.7) may actually be seen in Fig. 6.8. Note that
only a few dislocations are visible in the as-grown crystal. There are subgrains
of *500 lm with an inter-boundary misorientation of *1/2�. Figure 6.8b–d
shows a bulk-creep substructure once the damaged, superficial regions have been
chemically removed. In Fig. 6.8b, slip lines are visible in the two (011) and (011)
directions, but, in some other parts, traces of the two other {110} slip planes are
also found. Figure 6.8c and d shows that dislocations at 1 % or 3 % strain are still
concentrated in glide bands nearly parallel to the h110i directions. Many bands are
seen stopping against each other, so no real cell structure is formed. These
structures represent low-strain, transient creep (primary creep). The 1 % creep
strain is shown in a more detailed manner in Fig. 6.9. One may observe on
the (001) lamella: (a) that the subgrain boundaries were probably already in the
as-grown crystals formed by two dislocation families not in any of the {110}
planes, seen on the right side of the figure and (b) that the long-edge dislocations
are parallel to [100]. More random, steeply-inclined dislocations are also visible;
they almost have an edge character and belong to the (110) [110] system. With
increased strain, a cell structure develops (see Fig. 6.10) at 7 % creep strain.

Table 6.2 Chemical composition of ladle lining bricks [84] (with kind permission of Dr. Nina
Obradovic, Science of Sintering Editorial Board Secretariat)

Brick type Chemical composition, (mass %)

SiO2 Al2O3 Fe2O3 MgO CaO Cr2O3 TiO2 MeO2

HAS 25.50 70.20 1.17 1.45 0.41 – 0.56 0.76
HAD 26.50 72.40 0.54 – 0.21 – 0.11 0.26
TMR 2.61 – 0.58 95.34 1.37 – 0.05 –
TDS 1.01 1.40 0.31 43.82 52.74 – – –
CMM 4.38 4.56 4.70 61.00 1.07 21.0 – –
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However, it is not yet homogeneous throughout the entire structure (observe
Fig. 6.10a and b) until reaching 9 % strain. At 9 % strain, this cell structure is
observed throughout the entire sample (Fig. 6.10c and d).

Fig. 6.7 a Creep curve at a temperature T = 1412 �C and under a resolved shear stress
r = 5 kg/mm2. b Creep rate (logarithmic scale) versus 1/kT, for the constant resolved shear stress
r = 5 kg/mm2. The slope gives the creep activation energy [45]. With kind permission,
Permissions Dept., EDP Sciences by Dr. Corinne Griffon and Professor Escaig

Fig. 6.8 Berg-Barrett
topographies of the (100) face
of spinel single crystals with
the g = [4�40] reflection:
a as-grown: b loaded only a
few minutes; c one percent
creep strain at T = 1450 �C;
d three percent creep strain at
T –1300 �C [45]. With kind
permission. Permissions
Dept, EDP Sciences by
Dr. Corinne Griffon and
Professor Escaig
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Considering Eq. (6.4), the experimental value of the stress exponent, n,
obtained for the AI2O4Mg single crystal is 3.9 with an activation energy of
Q = 5.3 eV. The creep range of this single crystal is 0.65 Tm–0.71 Tm and it
follows a dislocation mechanism of the creep law. More specifically, the values of

Fig. 6.10 Berg-Barrett
topographies of the (100) face
of spinel single crystals after
creep; g = [440]: on these
topographics, orientation
contrasts would be given by
[001] lattice rotation
component, and displacement
contrasts by [110]
components: a and b 7 %
crept specimens at 1350 �C,
two regions showing different
sizes of cell structure: c 9 %,
1412 �C; d 12 %, 1450 �C,
crept specimens: the cell size
is homogeneous everywhere
[45]. With kind permission.
Permissions Dept., EDP
Sciences by Dr. Corinne
Griffon and Professor Escaig

Fig. 6.9 MV electron micrograph of a one percent creep strain specimen: (031) lamella: the edge
dipole seen in A is enlarged; note an as-grown sub-boundary on the right and numerous long edge
dislocations parallel to [100] [45]. With kind permission. Permissions Dept., EDP Sciences by Dr.
Corinne Griffon and Professor Escaig
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n and Q and the observed dislocation slip indicate that the mechanism is climb-
controlled glide creep. The relation given in Eq. (6.4) has been used to calculate
the above activation energy, expressed as:

_e ¼ Ar3:9 expð� 5:3 eV
kT
Þ ð6:4aÞ

The stress exponent of Eq. (6.4a) may be obtained by the known stress-jump
method, giving for n:

n ¼ o ln _e
o ln r

� �
T ;str

ffi ln _e2 � ln _e1

ln r2 � ln r1
ð6:14Þ

where _e1and _e2 are the steady-state creep rates before and after the jump.
Furthermore, it seems (as understood by Doukhan et al. [45]) that the climb
mechanism of creep occurs in the cell walls.

6.3.2 Creep in Polycrystalline Ceramics

Creep in single crystals is not complicated by the presence of grain boundaries,
which elsewhere produce a dual effect: (a) strengthening occurs due to retarded
dislocation motion through the grains and (b) grain-boundary sliding may occur
which contributes significantly to creep at high temperatures. Not surprisingly (and
unlike the case of conventional, static plastic deformation), to get the best creep
resistance in polycrystalline materials, the contribution of grain-boundary sliding
should at least be kept to a minimum (if its complete elimination is unlikely). For
this reason, the polycrystalline material chosen should be large-grained. Inducing
large grains in a polycrystalline ceramic reduces the number of grain boundaries
and, thus, decreases the effects of grain-boundary sliding.

These basic relations and factors also apply to polycrystalline materials with
the appropriate variations dictated by experimental observations. Historically,
Andrade [24] should be considered ‘the father of creep’, since it was he who first
suggested a unified creep relation. All the many equations describing creep given
in the literature follow in the wake of Andrade’s concept [24] of this empirical
relation. One may express the variation of strain over time as:

e ¼ e0ð1þ bt1=3Þ expðjtÞ ð6:15Þ

According to the symbols b and j in Eq. (6.15), it describes beta or kappa
creep. When j = 0, the constant b creep is obtained:

e ¼ e0ð1þ bt1=3Þ ð6:16Þ

This represents transient creep, since the creep rate is a decreasing function of
time. By differentiating Eq. (6.15), with respect to time, one obtains (6.17):
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de
dt
¼ _e ¼ 1

3
e0bt�2=3 ð6:17Þ

However, when b = 0 in Eq. (6.15):

e ¼ e0 expðjtÞ ð6:18Þ

This is j creep, describing the stationary stage. Clearly, the strain rate (as
obtained from Eq. (6.18)) gives a linear relation, as seen in Eq. (6.19) and, thus,
describes steady-state creep:

_e ¼ Ke0 expðjtÞ ¼ je ð6:19Þ

Andrade postulated that b creep is related to dislocation glide within the grain,
while j flow is related to slip along grain boundaries. Ascribing j flow to grain-
boundary sliding is known to be in error. Equation (6.18) may also be expressed
as:

ln e ¼ ln e0 þ jt ð6:18aÞ

A schematic plot of this function at different temperatures is seen in Fig. 6.11.
From the intercept of such curves, e0, and from the slopes j for various temper-
atures can be evaluated. Note that the plots in this figure are similar to those in
Fig. 6.12, but this should not be surprising since stress and temperature increase
have similar effect of creep as already indicated above.

The term ‘viscous creep’ is often used for creep at high temperatures with low
stresses. Two mechanisms have been proposed to describe such creep in poly-
crystalline materials. The one known as ‘Nabarro-Herring creep’ conceives of a
stress-directed, diffusional migration of vacancies, while the other, originally
suggested by Mott and subsequently elaborated by Weertman, is based on a dis-
location-climb model [66]. Extensive experimental evidence also exists to support
a ‘dislocation-climb model’.

It was suggested by the dislocation-climb model that the activation energy for
creep in many materials at high temperatures is equal to their activation energy for
self-diffusion. According to both models, the activation energy for high-temperature

T3 > T2

T2 > T1

T1ln
ε

t

Fig. 6.11 Creep strain
versus t for a few
temperatures
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low-stress creep should be equal to that of self-diffusion. The Nabarro-Herring
model of creep, due to the stress-directed diffusion of vacancies, is given as:

Z ¼ _e exp
DH

RT

� �
¼ Ar ð6:20Þ

where Z = the Zener-Hollomon parameter, A is a constant and DH is the acti-
vation energy. As seen in Eq. (6.20), Z is related to the strain rate as affected by
temperature and it is constant at constant strain. The above relation was given by
Sherby [77] as obtained from constant-stress creep tests done on metals at 0.5 Tm

and higher:

e ¼ fh ð6:19aÞ

with:

h ¼
Z7

0

expð�DHc

RT
Þdt ð6:19bÞ

Equation (6.20) is obtained by differentiating Eq. (6.19b) with respect to time at
a constant stress.

In an empirical relation, as in Eq. (6.20):

Z ¼ _es exp

�
DH

RT

�
¼ f ðrÞ ð6:19cÞ

_es indicates the secondary-creep rate and f(r) is a function of stress and the
structural changes. By plotting Z as a function of stress, it is revealed that Z

Fig. 6.12 Creep curves of
GN-10 Si3N4 tested at
1150 �C. (Symbols are
experimental data; solid lines
are curve fitting [35]. With
kind permission of John
Wiley and Sons
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increases linearly up to a certain stress, in agreement with the Nabarro-Herring
theory.

Since one, universal creep function can hardly fit all the experimental data,
many functions were suggested to provide an empirical description of creep
phenomena. As seen above, functions for logarithmic, transient and linear creep
have been suggested in various forms and combinations.

One of the high-temperature, high-strength ceramics of technological interest
for advanced applications is Si3N4. During high-temperature applications, creep
must be considered and, since it is usually accelerated at high temperatures, the
interest has been focused on its behavior at these temperatures; tests have been
performed in this context. Figure 6.12 is a creep curve at 1150 �C of two stresses
obtained by uniaxial tension. GN-10 is marketed as a commercial-grade HIPed
Si3N4, containing Y2O3 and SrO as densifiers. Figures 6.13 and 6.14 shows the
transition from primary to steady-state creep.

No such transition is indicated in the test at 1150 �C (see Fig. 6.12). Creep
failure has occurred in the initial transient stage (see Figs. 6.10–6.12). Note that
Figs. 6.14 and 6.15 shows the same character as does Fig. 6.2b), in which the
effects of the stresses on the shapes of the creep curves are indicated. Not all the
curves show the two stages characterizing transient and steady-state creeps.

The SEM microstructure of this specimen, tested at 1300 �C, is illustrated in
Fig. 6.12. No cavity or void formation at the grain boundaries was observed, even
after the specimen crept at 1300 �C and 100 MPa for 1721 h.

The fabrication procedure is crucial when a ceramic is intended for high-
temperature applications; it must produce good creep resistant performance.
Figures 6.17 and 6.18 clearly show that the HIP-fabricated Si3N4 is more durable
and has a longer service life.

Recall Fig. 6.1b, where the minimum creep rate was indicated schematically.
The concept of ‘minimum creep rate’ is of key importance in the creep-resistant

Fig. 6.13 Creep curves of
GN-10 Si3N4 tested at
1200 �C [35]. With kind
permission of John Wiley and
Sons
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design of ceramics or, as a matter of fact, generally of all materials. Figure 6.19
shows experimental curves by using Norton’s power-law relation given below,
which is basically Eq. (6.4):

_e ¼ Arn expð� Q

RT
Þ ð6:4Þ

The data on creep in this important ceramic (Si3N4), suitable for high-tem-
perature applications, indicate that no tertiary creep sets in under the experimental
conditions.

Fig. 6.14 Creep curves of
GN-10 Si3N4 tested at
1250 �C [35]. With kind
permission of John Wiley and
Sons

Fig. 6.15 Creep curves of
GN-10 Si3N4 tested at
1300 �C [35]. With kind
permission of John Wiley and
Sons
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Si3N4, an exceptional high-strength ceramic at RT, considered for potential use
in high-temperature applications, suffers degradation in its strength at high tem-
peratures, which is a function of load and the duration at the specific high tem-
perature. Within the limited ranges of stress and temperature considered above, no
tertiary creep or detrimental effects were observed. However, one cannot overlook

Fig. 6.16 SEM image of the
specimen crept at 1300 �C
and 100 MPa for 1721 h, as
shown in Fig. 6.12. No void
formation is visible [35].
With kind permission of John
Wiley and Sons

Fig. 6.17 Comparison of the
initial transient creep
behavior of the as-HIPed
specimen tested at 1200 �C
with 225 MPa and that of a
precrept specimen subjected
to the same test condition but
preceded by initial testing at
1200 �C with 125 MPa for
1031 h [35]. With kind
permission of John Wiley and
Sons
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the susceptibility of slow crack formation, which limits the reliable, long-range use
of Si3N4 without appropriate additives. Of the many and various additives used to
improve the performance of Si3N4, the use of a SiC additive will be illustrated
below. SiC is considered an effective additive for stabilizing the structure of Si3N4

and for controlling GBS by impeding that process [56]. Furthermore, with this
additive, good corrosion resistance is exhibited by Si3N4 at high temperatures.

Figure 6.20 illustrates creep plots in the range of 1200–1400 �C under different
stresses obtained by a four-point bending test with inner and outer spans of 20 and
40 mm, respectively.

Fig. 6.18 Comparison of the
creep behavior of the as-
HIPed and that of the
annealed specimen both
tested at 1250 �C and
175 MPa [35]. With kind
permission of John Wiley and
Sons

Fig. 6.19 Comparison of the
minimum creep rate data and
the Norton power-law
equation (straight lines) with
stress exponent and activation
energy equal to 12.6 and
1645 kJ/mol, respectively.
Open and filled-in symbols
represent the data above and
below the experimentally
observed transition region,
respectively. Arrowed data
imply the actual creep rate
may be lower than the
indicated one [35] with kind
permission of John Wiley and
Sons
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These creep experiments were performed by stepped-load tests to obtain mul-
tiple creep-rate data. The crept samples were used for TEM investigations. The
tests were carried out on specimens having the sintered microstructure shown in
Fig. 6.21. The arrows indicate the globular SiC particles located in Si3N4 grains.
Their amount is 3.2 vol%. Another 1.9 vol% SiC is distributed intergranularly. BF
TEM (Fig. 6.22) revealed that the SiC nanoparticles are located in multigrain
pockets, being smaller in size (*45 nm) than the Si3N4 grains, while the inter-
granularly distributed SiC has larger dimensions (*150 nm). A tendency was
observed for the particles to be trapped at the triple points or the multigrain
pockets. The minimum creep rate is shown as a function of stress for each tem-
perature tested (see Fig. 6.23a). An Arrhenius-type relation from Eqs. (6.4) or
(6.4a) was used to evaluate the activation energy and the respective plots are
shown in Fig. 6.23b.

The creep results in the ranges investigated did not show tertiary creep, because
the duration of the tests was not sufficiently long. Compared with Figs. 6.12–6.15
and 6.19, the creep tests, after the addition of SiC, are indeed quite short. The
temperatures in the creep tests with and without SiC are about the same (if the
1400 �C test is not considered). Therefore, one cannot safely ascertain that
impeding grain-boundary sliding by the addition of SiC–which is one of the claims
regarding the effect of SiC–would be true for longer creep tests. Apparently, a 5.1
vol % addition of SiC (3.2 % in the grains and a 1.9 % intergranular distribution)
does not have a large impact on improving the high temperature behavior of Si3N4.
It is likely that more SiC is required in order to attain a significantly improved
high-temperature performance. Indeed, numerous reports (e.g., Rendtel et al. [71])
indicate a significant improvement in creep resistance up to 1400 �C and this
excellent creep resistance was comparable to or better than other Si3N4-base
ceramics with other high-temperature strengthening media.

The decision to illustrate a 5.1 vol% SiC addition, rather than the 15–35 wt%
additives to the basic Si3N4 was done intentionally to indicate the fact that the
improvement of a ceramic material is strongly influenced by the amount of the

Fig. 6.20 Creep deformation
behavior at different
temperatures and stresses
[57]. With kind permission of
John Wiley and Sons
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additive and certainly by the methods used during all the fabrication stages,
including the choice of the constituent powders for the sintering process. The
example presented shows that, within the same temperature range and while using
the same chemically-composed additives, the outcomes for the base-ceramics may
nonetheless be, if not conflicting, then different.

6.4 Creep in RT Ductile Ceramics

More on RT ductile ceramics will be considered in Chap. 9, devoted to ceramics
having small dimensions (nano-scale). Many nano-sized ceramics are ductile at
ambient temperatures. In this section, those ceramics found to possess ductility at

Fig. 6.21 Secondary
electron scanning electron
microscopy image of the
plasma-etched microstructure
of a Si3N4-5 wt% SiC
composite [57]. With kind
permission of John Wiley and
Sons

Fig. 6.22 Bright-field
transmission electron
microscopy micrograph
showing the presence of a
SiC nanoparticle located in a
multigrain pocket (arrow)
[57]. With kind permission of
John Wiley and Sons

6.3 Creep in Brittle Ceramics 437

http://dx.doi.org/10.1007/978-3-319-04492-7_9
http://dx.doi.org/10.1007/978-3-319-04492-7_9


www.manaraa.com

RT are considered in terms of their high-temperature performances, specifically
under creep conditions. In Sect. 5.2.2, MgO was singled out as an example of a
low-temperature ductile ceramic (see Figs. 5.3 and 5.4). Of further interest is RT
ductile SrTiO3, which is one of many studied ceramics, due to its interesting and
unique features (Fig. 6.24).

6.4.1 Single Crystal Ceramics

MgO was mentioned in Chap. 5, Sect. 5.2.2 as being ductile at ambient temper-
ature, thus undergoing plastic deformation. Having a high melting point of
2798 �C, it is expected that creep may occur at high homologous temperatures. In

Fig. 6.23 Creep rate as a function of stress for different temperatures—stress exponent n (a) and
creep rate as a function of temperature for different stresses—activation energy Qc (b) [57]. With
kind permission of John Wiley and Sons
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Fig. 6.25, a set of creep curves are shown, pre-strained by tension at various rates
at 1800 �C to induce dislocation structures. Creep tests were performed at 1400 �C
and under a stress of r = 44.1 MN/m2. The focus here is on the curve without
pre-strain before the creep test. It represents the classical creep curve (illustrated
schematically in Fig. 6.1a) without a tertiary (stage 3) creep region. Not all the test
specimens are fractured and, thus, the final stage of creep is missing and is not
generally observed in experiments until so desired.

The creep substructures in annealed h110i MgO single crystals show that no
subgrains were formed during tensile creep at 1400 �C. The 1800 �C true-flow
stress at 10 % strain increased with the increasing strain rate (i.e., 25.5, 55.3, and
71.6 MNm2 for strain rates of 0.002, 0.02, and 0.2 min-1, respectively). Note that
inducing a substructure, which produces various arrays of dislocations, is equiv-
alent to the effect of stress (as indicated in Fig. 6.2b).

During an additional set of experiments done on single MgO crystals, micro-
structure evolution and recrystallization during creep were considered [62]. In
these experiments, compression was applied to orientation h100i in the tempera-
ture range 1573–1773 K up to 69 % strain. Strain-rate values were obtained from
the quasi-steady-state part of the strain versus time curves. As expected, the elastic
(instantaneous) strain and the transient creep preceded the quasi-steady-state. The
results were expressed in terms of shear strain versus normalized shear stress (s/G).
These curves were fitted to _c (shear strain rate), r and T data using a semi-
theoretical model of dislocation-climb-controlled creep. The plots are presented in
Fig. 6.26. For details on microstructure evolution and recrystallization during
creep and on the active slip systems operating during creep, the reader should
consult the original work of Mariani et al. [62].

The unique nature (plasticity and creep deformation) of SrTiO3 also merits
discussion. Quite surprisingly, this ceramic, unlike most ceramics, can be plastically
deformed (under compression) in the temperature ranges 78–1050 K and
1050–1500 K, although it acts in a brittle fashion [31]. Here, the rare phenomenon

Fig. 6.24 Transmission
electron microscopy
micrograph of a sample crept
at 1350 �C at 150 MPa for
148 h (creep strain 0.53 %)
[57]. With kind permission of
John Wiley and Sons
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of ductile–brittle–ductile transition may be observed. Typical stress–strain creep
curves for two orientations are shown in Fig. 6.27 and all the results are summarized
in Table 6.3. Compression tests were done at orientations h100i and h110i in the
temperature range 1473–1793 K. The figures are shown for both orientations.
A modification of Eq. (6.4) was applied for the relation of the strain rate, _c, as given
below in Eq. (6.21), which expresses the shear stress as normalized by the shear
modulus (l = G):

_c ¼ lb

kT

s
l

� �
AD0 exp � Q

RT

� �
ð6:21Þ

A short transient stage is observed in the above figures in the 0.3–1 % strain
range with work hardening. Following the transient stage, second stage (steady-
state) creep sets in as a flat plateau, meaning that the flow stress remains unchanged.
Anisotropy in strength is observed in these figures, indicating that the specimens in
the h100i orientation are stronger than those in the h110i orientation, as seen from
their respective stress values. Table 6.3 summarizes the experimental results.
Figures 6.28 and 6.29 illustrate the state of creep for both orientations tested.

This analysis was performed as usual for the evaluation of values of interest.
Based on Eq. (6.4), the exponent and activation energies are rewritten as:

Fig. 6.25 Creep curves of
MgO crystals having different
pre-creep substructures
(T = 1400 �C, r = 44.1
MN/m2) [35]. With kind
permission of John Wiley and
Sons
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_e ¼ Arn exp�ðQ

kT
Þ ð6:4Þ

where the constant B, has been replaced by A.

Fig. 6.26 Diagram of log10
shear strain rate versus log10
shear stress/shear modulus
curves obtained for
temperatures of 1573, 1673
and 1773 K. Symbols
represent experimental data,
solid lines are best fit linear
regression curves and dashed
lines are data from Yoo [98]
plotted using the value of the
stress exponent n = 4.5
obtained in this study. The
maximum error on the
differential stress is ±

2.5 MPa [63]. With kind
permission of Elsevier

Fig. 6.27 Typical stress–
strain curves for samples
compressed along a (100) and
b (110) deformed at various
strain rates [88]. With kind
permission of Elsevier
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Table 6.3 Summary of experimental results [88] (with kind permission of Elsevier)

Run T(k) r(MPa) (%) (s-1) fo2(pa) Orientation

SrTiO34 1723 140(3) 4.5 5.5 9 10-6 2.1 9 104 (100)
SrTiO36 1673 216(9) 4.0 7.5 9 10-6 2.1 9 104 (100)
SrTiO3

J-1 1748 149(4) 2.0 1.0 9 10-5 2.1 9 104 (100)
SrTiO3

J-2 1748 193(6) 3.5 2.5 9 10-5 2.1 9 104 (100)
SrTiO3

J-3 1748 236(8) 6.1 5.0 9 10-5 2.1 9 104 (100)
SrTiO3

9-1 1793 76(2) 3.8 5.2 9 10-6 2.1 9 104 (100)
SrTiO3

9-2 1793 125(3) 2.3 2.4 9 10-5 2.1 9 104 (100)
SrTiO3

9-3 1793 144(4) 3.5 4.9 9 10-5 2.1 9 104 (100)
SrTiO3

10-1 1703 155(4) 3.0 4.0 9 10-6 2.1 9 104 (100)
SrTiO3

10-2 1703 185(5) 3.9 7.5 9 10-6 2.1 9 104 (100)
SrTiO3

10-3 1703 233(6) 5.8 1.8 9 10-5 2.1 9 104 (100)
SrTiO3

11* 1723 160(3) 5.0 7.0 9 10-6 2.1 9 104 (100)
SrTiO3

13-1 1623 14(\1) 1.5 7.5 9 10-6 2.1 9 104 (110)
SrTiO3

13-2 1623 16(\1) 2.0 1.0 9 10-5 2.1 9 104 (110)
SrTiO3

13-3 1623 20(\1) 3.0 3.0 9 10-5 2.1 9 104 (110)
SrTiO3

14-1 1573 26(\1) 3.0 7.5 9 10-6 2.1 9 104 (110)
SrTiO3

14-2 1573 30(\1) 1.7 1.0 9 10-5 2.1 9 104 (110)
SrTiO3

14-3 1573 36(1) 2.4 2.5 9 10-5 2.1 9 104 (110)
SrTiO3

15-1 1523 36(1) 3.0 1.0 9 10-5 2.1 9 104 (110)
SrTiO3

15-2 1523 44(1) 2.5 2.5 9 10-5 2.1 9 104 (110)
SrTiO3

15-3 1523 56(1) 2.5 5.0 9 10-5 2.1 9 104 (110)
SrTiO3

16 a 1473 49(1) 4.1 8.7 9 10-6 2.1 9 104 (110)
SrTiO3

17-1 1573 20(\1) 1.0 4.8 9 10-6 1.8 9 104 (110)
SrTiO3

17-2 1573 20(\1) 1.2 4.0 9 10-6 1.3 9 103 (110)
SrTiO3

17-3 1573 20(\1) 0.9 3.0 9 10-6 1.4 (110)
SrTiO3

17-4 1573 20(\1) 0.8 1.5 9 10-6 1.4 9 10-1 (110)
SrTiO3

17-5 1573 20(\1) 0.7 5.0 9 10-6 2.1 9 10-3 (110)
SrTiO3

17-6 1573 20(\1) 0.8 1.6 9 10-6 1.2 9 10-1 (110)
SrTiO3

17-7 1573 20(\1) 1.0 2.7 9 10-6 7.1 9 10-1 (110)
SrTiO3

17-8 1573 20(\1) 1.1 2.9 9 10-6 2.3 (110)
SrTiO3

17-9 1573 20(\1) 1.2 3.1 9 10-6 15.8 (110)
SrTiO3

17-10 1573 20(\1) 1.3 3.5 9 10-6 4.0 9 103 (110)
SrTiO3

17-11 1573 20(\1) 1.0 4.0 9 10-6 8.9 9 103 (110)
SrTiO3

18-1 1723 122(5) 1.0 1.6 9 10-6 2.1 9 104 (100)
SrTiO3

18-2 1723 122(5) 1.0 1.5 9 10-6 8.2 9 103 (100)
SrTiO3

18-3 1723 122(5) 1.1 1.4 9 10-6 3.4 9 103 (100)
SrTiO3

18-4 1723 122(5) 0.9 1.3 9 10-6 1.0 9 102 (100)
SrTiO3

18-5 1723 122(5) 0.8 1.1 9 10-6 25 (100)
SrTiO3

18-6 1723 122(5) 0.8 1.0 9 10-6 0.9 (100)
SrTiO3

18-7 1723 122(5) 0.8 1.0 9 10-6 5.4 9 10-2 (100)
a Data obtained from the initial steady-state creep of stress-dip tests
Only runs reaching steady-state creep have been completed; numberes in parantheses are esti-
mated errors
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The stress exponent, n, may be determined from the slopes of the (a) images in
Figs. 6.28 and 6.29. Similarly, the activation energy for creep in the steady state
may be obtained from the (b) images. The creep parameters are listed in Table 6.4.
One observes from the results listed in Table 6.4 that is about the same for both
orientations of the SrTiO3 crystals; however, a considerable difference exists in Qc,
the activation energy for creep. TEM observations indicate that gently-curved
dislocations with b = h100i are generated in the crystal under compression along
the h110i orientation, whereas very straight dislocations with b = h110i are gen-
erated in the crystals compressed along the h100i orientation.

It was suggested that these different results are due to the creep mechanism
itself. Creep, in specimens with f1�10g h110i orientation slip systems, is controlled
by dislocation glide and, due to the high Peierls stress, is essentially determined by
the crystal structure. In contrast, creep, in specimens with {100} h010i slip sys-
tems, is controlled largely by dislocation climb, which depends on the diffusion of
vacancies to the climb site.

6.4.2 Polycrystalline Ceramics

Having described creep in single-crystal MgO, now it is appropriate to illustrate
the behavior of its polycrystalline form as well. But first, note that the experi-
mental results (see Fig. 6.30) resemble the shape found in Fig. 6.1b. In addition to
the transient curve seen in the Fig. 6.30, this experimental transient curve is joined
with the steady-state creep curve. The solid line represents the fitting of both these
parts of the creep along the experimental points. The transient creep, _et, is
expressed by an exponential decay relation, given as:

_et ¼ _ei expð� t

s
Þ ð6:22Þ

Fig. 6.28 Log–log plots of a strain rates versus flow stresses and b strain rates versus
temperatures for the h100i samples [88]. With kind permission of Elsevier
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_ei is the initial strain rate and s is a characteristic relaxation time. This exponential
relation describes transient creep when time-dependent steady-state creep is
assumed to follow a Cobel-type creep-model (described later in this chapter),
namely when creep is controlled by grain-boundary diffusion. In the above figures,
one may see that the overall creep rate in both stages may be expressed by:

_e ¼ _et þ _ess ð6:23Þ

with _ess representing the second-stage creep rate.
The overall creep appearance, as indicated in Fig. 6.1a, is illustrated by the

experimental results for MgO in Fig. 6.31. Two curves are indicated in Fig. 6.31,
both exhibiting a transient creep (decreasing creep rate over time, as seen in
Fig. 6.1a) and a constant rate second-stage creep. The larger stress plot also shows
a third-stage creep, which corresponds to the accelerated strain rate before frac-
ture. Similar curves were also found in other ceramic materials, indicating that it is
quite sound to analyze creep phenomena in terms similar to those used for the
creep deformation of metals, in which stage III creep is generally observed if
sufficient time is allowed for the measurements and if fracture does not set in
earlier.

Fig. 6.29 Similar plots as Fig. 6.25 for the h110i samples [88]. With kind permission of Elsevier

Table 6.4 Creep law parameters [86] (with kind permission of Elsevier)

Orientation T(K) n r(MPa) Qc(KJ mol-1) In A (s-1 MPa-n)

h100i 1703 3.6 (±0.3) 100 768 (±32) 24.2 (±2.5)
h100i 1748 3.5 (±0.3) 150 747 (±36) 22.6 (±2.0)
h100i 1793 3.4 (±0.2) 200 730 (±25) 21.6 (–1.8)
h110i 1523 3.6 (±0.2) 15 620 (±19) 24.9 (±2.0)
h110i 1573 3.6 (±0.3) 30 624 (±24) 25.0 (±2.2)
h110i 1623 3.6 (±0.2) 45 616 (±26) 25.1 (±2.3)

Power law formula, _e ¼ Arn expð�Qc=RTÞ, is assumed
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Hot-pressed MgO is deformed for creep studies by compression at stress and
temperature ranges of 1000–6500 psi and 1200–1500 �C, respectively, and at
steady-state creep rates of 0.001–0.8 %/h. The microstructure has equiaxed grains
and porosity mostly in the grain boundaries, as seen in Fig. 6.32. The densities of
the specimens were in the range 97.3–98.9 %. Heat treatment produces a stable
grain size, but when this stage is omitted during fabrication, grain growth is
expected to occur during creep, which is one of the reasons explaining the different
results. For good creep resistance, no structural changes should result from creep
deformation and no increase in the degree of porosity should occur, in so far as is
possible. However, when rupture is approached, changes in the structure are
unavoidable. Steady-state creep at several temperatures as a function of stress may
be seen in Fig. 6.33. An analysis of the creep data was performed by using two
functions respectively, each representing a different creep model. Both are pre-
sented below: (a) is the ‘power method’ and (b) is known as the ‘stress-activation
model’:

Fig. 6.30 Typical fit to
actual data showing necessity
for adding steady-state and
transient creep rates [49].
With kind permission of John
Wiley and Sons

Fig. 6.31 Compressive
creep curves for magnesium
oxide [52]. With kind
permission of John Wiley and
Sons
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_e ¼ K1r
n ð6:24Þ

_e ¼ K2 expðarÞ ð6:25Þ

K1 and K2 are material-related parameters and a is the stress-activation con-
stant. The values of n and a are indicated on the curves. Clearly, a is given as
psi-1. The curves in Fig. 6.33 are isothermal and the lines obtained by least-square
regression represent the modes mentioned in Eqs. (6.24) and (6.25), including a
thermal activation to calculate the activation energy. Thus, the above relations may
be written as:

_e ¼ K3r
n exp � Q1

RT

� �
ð6:26Þ

and

_e ¼ K4 expðarÞ exp � Q2

RT

� �
ð6:27Þ

Both models for presenting the experimental data are equally satisfactory, as
may be inferred from the values of the activation energies for creep:
Q1 = 111 ± 12 kcal/mole for the power law and Q2 = 105 ± 12 kcal/mole for
the activation law. It has been claimed that creep in MgO appears to be associated
with extensive grain-boundary sliding. Certainly, grain-boundary sliding is
dependent on the time, applied stress and temperature of creep. Therefore, addi-
tives are required to pin-down grain-boundary sliding, as much as possible.
Among the constituents in Fig. 6.30, iron is present in different amounts, as
indicated in the plots on Fig. 6.34 also (where the strain rate vs. time is shown).

Fig. 6.32 Microstructure of
MgO before creep
deformation (50 % nitric acid
etch; X250) [53]. With kind
permission of John Wiley and
Sons
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The curves in Fig. 6.1a and b express the exponential decay of the strain rate
during the transient stage, which may be expressed as in Eq. (6.22), which takes
into account the initial strain rate, _eI, and a characteristic relaxation time, s.
The stress relaxation process in transient creep may be expressed by incorporating
activation energy, DH, as given by Eq. (6.28):

1
s
¼ 1

s0
exp�DH

RT
ð6:28Þ

Plotting this relation provides the activation energy for the relaxation as
being &44 kcal/mol, which may be seen in Fig. 6.35, where 1/s is plotted versus
1/T. On the basis of the above data, it seems that transient creep in polycrystalline
MgO is a diffusion-controlled process.

At this point, it is constructive to observe the dislocation structure in MgO
polycrystalline ceramics, as revealed by TEM. In Fig. 6.36, a typical dislocation
structure is shown for creep deformation, not unlike that found in metals, with the
presence of subgrains, in which a 3D dislocation network may be seen. Note that the
long dislocation segments seldom run in a straight line from one node to another, but
are bowed out, often in only one plane, though, sometimes, as seen in Fig. 6.36a,

Fig. 6.33 Creep rate
measurements and computed
lines of best fit [53]. With
kind permission of John
Wiley and Sons
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apparently in more than one plane. In Fig. 6.36b, the 3D network structure is more
obvious, because of the shorter segment lengths. The subgrain boundaries often
consist of somewhat irregular hexagonal networks, as seen in Fig. 6.37.

To conclude the subject of creep in MgO polycrystalline ceramics, notice that
the vast quantity of experimental data on this ceramic in the literature show marked
differences between the various sources. Some of the data discrepancies observed in
various investigations on MgO may be attributed to the different methods used for
specimen preparation, different densities and grain sizes and, particularly, different
loading levels and geometries (torsion, tension, compression and bending).
Therefore, the message of this section is that the best and most effective way to
study creep is under similar conditions.

As in the previous discussion on single crystals, this section concludes with a
consideration of creep in polycrystalline SrTiO3. Experimental data on the high-
temperature deformation of SrTiO3 are fairly limited and most of the studies were
conducted on single-crystal specimens. The deformation experiments presented
below were performed at 1200–1345 �C by compression at strain rates in the range

Fig. 6.34 Exponential decay
of transient creep in MgO–
Fe2O3 solid solutions [49].
With kind permission of John
Wiley and Sons
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5 9 10-6 to 5 9 10-5 s-1. The steady-state flow stresses were 0.05–30 MPa and
increased with increasing strain rates. From the experimental data, one may infer
that creep deformation is a diffusion-controlled mechanism.

In Fig. 6.38, the strain-rate dependence on flow stress is shown for the indicated
temperatures. The stress exponents at each temperature are also shown on the
plots. A steady-state creep equation was used to define the dependence of strain
rate on the flow stress, as given in Eq. (6.4), resulting in an activation energy of
628 ± 24 kJ/mol for diffusion-controlled deformation.

The microstructure of an as-fabricated SrTiO3 with a density of &95 % is
shown in Fig. 6.39. The grains are relatively equiaxed with few entrapped pores.
The average grain size is &6 lm. The stress exponents are *1, except the one
related to the 1200 �C plot. The explanation of the higher stress-exponent value in
the tests on SrTiO3 at 1200 �C plot is not clear.

This higher value may be due to the onset of microfracture or a change in the
deformation mode. A value of &1 indicates diffusion-controlled flow. The

Fig. 6.35 Arrhenius plot of
reciprocal relaxation time
[49]. With kind permission of
John Wiley and Sons
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Fig. 6.36 Typical
dislocation structures. In
a loops, L, and bowed-out
dislocations, b are visible
[28]. With kind permission of
John Wiley and Sons

Fig. 6.37 Subgrain
boundary consisting of
hexagonal network [28]. With
kind permission of John
Wiley and Sons
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activation energy, based on plots such as Eq. (6.4), may be evaluated by
expressing the data in an Arrhenius-type relation, as shown Fig. 6.40. SEM and
TEM microstructures of the deformed SrTiO3 at 1350 �C are illustrated in
Figs. 6.41 and 6.42, respectively. These samples were deformed up to a 5 % strain.
Grain-boundary sliding was identified as the principal deformation mechanism.
The absence of cavitation and grain-shape changes are consistent with grain-
boundary sliding as the principal deformation mechanism.

Fig. 6.38 Strain-rate
dependence on flow stress for
SrTiO3 samples at various
test temperatures [21]. With
kind permission of Elsevier

Fig. 6.39 SEM
photomicrograph of polished
and thermally etched as-
fabricated SrTiO3 [21]. With
kind permission of Elsevier
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6.5 Superplastic Ceramics

The subject of superplasticity has been extensively discussed in Chaps. 2 (Sect. 2.2)
and 5 (Sect. 5.23); therefore, only material relevant to creep will be discussed here.
The power law given in Eq. (5.2), rewritten here as:

_e ¼ arn ð6:29Þ

Fig. 6.41 SEM micrograph
of SrTiO3 deformed at
1350 �C to e = 0.05 [21].
With kind permission of
Elsevier

Fig. 6.40 Flow stress in
SrTiO3 as a function of test
temperature at constant strain
rates [21]. With kind
permission of Elsevier
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is often used to describe creep and superplasticity, as well. a and n are material
constants. Values above one are commonly related to dislocation creep, whereas
n = 1 is usually associated with viscous flow in fluids, known as ‘Newtonian
flow’. A semi-empirical relationship between strain rate and steady-state flow
stress is given by:

_e ¼ Arnd�p expð� Q

RT
Þ ð6:30Þ

This relation determines the activation energy. A is the material constant, r is the
steady-state flow stress, d is the grain size, n and p are the stress and grain exponents,
respectively, and Q is the activation energy for superplastic flow. Thus, it may be seen
from this equation that the parameters n, p and Q play a role in the deformation
mechanism. Superplasticity is considered to be similar to ‘diffusion creep’.

‘Diffusion creep’ refers to the deformation of crystalline solids by the diffusion
of vacancies through their crystal lattice and results in plastic deformation, rather
than the brittle failure of the material. In fine-grained materials, tested in a high-
stress regime, deformation inside the grains is fast and grain-boundary sliding has
little effect, leading to stress exponents typical of dislocation creep. Under lower
stresses and with sufficiently high temperatures, grain boundaries slide freely and
the creep rate is higher than that predicted by only taking into account the effect of
dislocation creep. The microstructures of some selected superplastic ceramics are
shown in Fig. 6.43.

Fig. 6.42 TEM micrograph
of SrTiO3 deformed at
1350 �C to e = 0.05 [21].
With kind permission of
Elsevier
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One ceramic material which may serve to represent superplastic creep behavior
is yttria-tetragonal ZrO2 polycrystals (Y-TZP), illustrated below. Figure 6.44
describes superplastic deformation in this material, though some differences
should be noted: (a) the grain-shape change after large deformation is very small;
(b) the contribution of grain-boundary sliding is quite large and; (c) the stress and
grain-size exponents are often substantially different from those predicted by
simple, diffusion creep models.

Although the deformation mechanisms in superplasticity are similar to those in
diffusional creep, certain circumstances in interface-controlled deformation may
arise when grain boundaries do not act as perfect sources and sinks for vacancies
or they do not slide or migrate freely. In such a case, the strain rate may increase
nonlinearly with stress and, sometimes, the materials may even exhibit threshold-
deformation stress. For example, interface reactions involving dislocation glide or
climb result in a quadratic dependence of strain rate on stress, whereas those
involving nucleation may show an exponential dependence on stress. The col-
lected strain-rate data comes from various references indicated in the figures, but
not listed in the references to this chapter (refer to the work of Chen and Xue [4]).
Figure 6.44 shows the stress exponent as influenced by grain size for three
ceramics.

Equation 6.29 may be expressed differently for superplastic ceramics, to
include the effect of grain size, as seen in Eq. (6.31):

_e ¼ Arn=dp ð6:31Þ

A is a temperature dependent diffusion related coefficient.

Fig. 6.43 Scanning electron
microscopy micrographs of
ultrafine grains of
superplastic ceramics: a 2Y-
TZP, b alumina, c silicon
nitride, and d 2Y-TAP/
alurnina at equal volume
fraction [4]. With kind
permission of John Wiley and
Sons
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In Fig. 6.44, the grain-size exponent is also shown at a value of p = 2. Also
note that the additives have an important effect on limiting grain growth. Actually,
solute segregation or particle pinning may also hinder diffusional creep by
restricting grain-boundary sliding or migration, that are generally necessary for
grain-to-grain accommodation. In addition, one may observe (in Fig. 6.45) that the
stress exponents tend to decrease with increasing grain size. An increase in grain
size is favorable for creep resistance, but reduces the superplasticity of the
ceramics and, therefore, reduces the formability of the material into desirable
shapes. Therefore, it is a common technological practice to execute the forming
operation while the ceramic grain size is very small and may be superplastic, after
which it is heat-treated for grain growth to induce creep resistance.

Fig. 6.44 a Relationship between strain rate and stress for 2Y-TZP. Grain size is 0.21 lm for
Ref. 24, 0.39 lm for Ref. 17, and 0.48 lm for Ref. 75. Data are replotted in the lower figure after
normalization to a reference temperature T* and a reference grain size d* using values of grain-
size exponent p and activation energy Q, as shown. Very good agreement between different data
sets is apparent. b Relationship between strain rate and stress for Y-CSZ. Grain size for Ref. 71 is
17 lm, Ref. 72 is 17.5 lm, Ref. 73 is 29 lm, Ref. 20 is 0.48 lm, and Ref. 74 is 2.6, 3.5, and
4.2 lm for 1450, 1500, and 1550 �C, respectively. Compositions of yttria are indicated as well.
When the data are normalized, as in Fig. 6.44a, they fall on a single line. Data of the fine-grained
Y-CSZ are comparable to those of 2Y-TZP, shown in Fig. 6.44a [4]. With kind permission of
John Wiley and Sons
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Note that many early studies on the subject attributed a stress exponent, n, to some
form of intragranular dislocation creep. At 9.4 %, yttria stabilizes cubic zirconia
single crystals. The compressive creep characteristics tested in the ½�1�12ffi orientation
appear in Fig. 6.46. Here, the strain is normalized for tests in the temperature range
1723–1823 K using an activation energy of 590 kJ mol-1. The data are represented
by a straight line with a stress exponent of n * 4. In this case, the deformation is
attributed to dislocation-climb-controlled intragranular creep (Fig. 6.47).

Fig. 6.45 Stress exponent
versus grain size for three
ceramics [4]. With kind
permission of John Wiley and
Sons

Fig. 6.46 Variation of
temperature compensated
strain rate with stress for
9.4 mol% yttria stabilized
cubic zirconia [6]. With kind
permission of Elsevier
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The experimental data on diffusion creep in 25 mol% yttria stabilized cubic
zirconia may be seen in Fig. 6.44, where a grain-size, normalized strain rate versus
stress is illustrated. The data may be expressed as Nabarro-Herring diffusion creep

Fig. 6.47 Variation in grain
size compensated strain rate
with stress for a 25 mol%
yttria stabilized cubic
zirconia [6]. With kind
permission of Elsevier

Fig. 6.48 Comparison of
experimental data on the
superplastic zirconia with the
dislocation and diffusion
creep data on cubic zirconia
[6]. With kind permission of
Elsevier
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with n & 1, p = 2.2 and Q = 550 kJ mol-1. In Fig. 6.48, the experimental
results for dislocation and diffusion creep in cubic zirconia are compared with
superplastic 3YTZ having a grain size of 0.4 lm at 1723 K. These data were
normalized to a grain size of 0.41 lm (at 1723 K) using p = 2.2.

To conclude this section on superplasticity in yttria stabilized zirconia, it may be
of interest to show the amount of strain expressed as elongation in superplastic 5 wt%
SiO2 TZP, in which the extent of elongation is *1038 % at 1400 �C (Fig. 6.49).

6.6 Mechanisms of Creep

There are several basic mechanisms that may contribute to creep in materials (and
ceramics are no exception:

(i) dislocation slip;
(ii) climb, leading to subgrain formation;
(iii) grain-boundary sliding; and
(iv) diffusion flow caused by vacancies.

A short summary of the above contributions to creep follows:

(i) Glide-by-slip strengthens materials as they deform. In primary creep, stress
is constant, while strain increases to a certain extent (see Fig. 6.1a) over time,
but strain rate decreases (Fig. 6.1b) until a minimum strain rate is
achieved. This minimum strain rate, on a strain–time plot, represents steady-
state creep.

(ii) During steady-state creep, strain increases over time. The increased strain
energy stored in the material, due to deformation, together with the high tem-
perature, provide the driving force for the recovery process. There is, therefore,

Fig. 6.49 The largest
elongation to failure of
1038 % in a superplastic
zirconia-5 % silica ceramic
[6]. With kind permission of
Elsevier
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a balance between the processes of work hardening and recovery. Recovery
involves a reduction in dislocation density and the rearrangement of disloca-
tions into lower energy arrays, such as subgrain boundaries. For this to occur,
dislocations must climb, as well as slip, and this, in turn, requires atomic
movement or self-diffusion within the lattice. Hence, it is often said that the
activation energies for self-diffusion and for creep are almost the same.

Vacancies must be located at a site where climb is supposed to occur, to enable
climb by means of a vacancy-atom exchange. As the temperature increases, atoms
gain thermal energy and the equilibrium concentrations of these vacancies in the
metals increase exponentially. In Chap. 3, Sect. 3.2.1, the number of vacancies, n,
was given by Eq. (3.9), which may be rewritten (see, for example, Damak and
Dienes [7]) as:

n ¼ N expð�EF

kT
Þ ð6:32Þ

And again, as given in Chap. 3, N is the number of lattice sites and EF is the
energy of vacancy formation. The activation energy, Q, for the jump rate, J, is
given by the sum of the energy of vacancy formation and the vacancy’s energy for
motion, EM, (Q = EF ? EM):

J ¼ J0 exp� Q

kT
ð6:33Þ

J0 represents the respective entropies. The diffusion coefficient, D, may be
given as:

D ¼ D0 exp� Q

kT
ð6:34Þ

D0, the pre-exponential factor, is equivalent to J0 and Q is the overall activation
energy for self-diffusion. The rate of steady-state creep increases with temperature,
as does the essential number of vacancies for effective vacancy-atom exchange for
climb.

(iii) Grain-boundary sliding is considered in detail in Sect. 6.7.
(iv) Diffusion flow by vacancies must be considered, since the mechanism of

creep depends on both temperature and stress. The various methods detailed
below involve some sort of diffusion occurring with vacancy-atom exchange.
This may occur either by lattice diffusion or grain-boundary diffusion, or both
may be involved. Bulk-diffusion-assisted creep occurs during the processes
listed in (a)–(d) below, where the kinetics of atom-vacancy exchange occurs
due to lattice diffusion. Afterwards, creep, involving grain-boundary diffu-
sion, will be considered (e).

(a) Nabarro-Herring creep;
(b) climb, in which the strain is actually obtained by climb;
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(c) climb-assisted glide, in which climb is a mechanism allowing dislocations to
bypass obstacles;

(d) thermally-activated glide via cross-slip;
(e) Coble creep, involving grain-boundary diffusion.

Before entering into a detailed discussion of the above list and based on what
has been said thus far on the subject, briefly summarized: (a) creep in materials
(including ceramics), namely time-dependent plastic deformation, may occur
during mechanical stresses well below the yield stress and (b) in general, two
major creep mechanisms characterize the time-dependent plastic-deformation
process–dislocation creep and diffusion creep. Now, a detailed discussion of
paragraphs (a)–(d) follows.

6.6.1 Nabarro-Herring Creep

One type of creep, in which creep is diffusion-controlled, is Nabarro-Herring
creep. In this type of creep, atoms diffuse through a lattice, causing grains to
elongate along the stress axis. Mass transport (i.e., the diffusion of atoms) takes
place in regions ranging from lower to higher tensile stress. A common illustration
may be seen in Fig. 6.50. This schematic figure illustrates the flow of vacancies
and atomic movements as induced by tensile stress, r. During creep deformation,
vacancy-atom exchanges take place to and from the grain boundaries. One would
expect that, during creep under tension, atoms would tend to diffuse from the sides
of the specimen in the direction shown in Fig. 6.50 (a counter-flow of vacancies),
causing the sides to lengthen. Assume that local equilibrium of the vacancy
concentration exists at the boundaries of the crystal when no stresses are acting on
it. Also note that grain boundaries serve as vacancy sources or sinks. In this
mechanism, lattice diffusion occurs within the grain and the creep rate (strain rate)
is assumed to be proportional to the vacancy flux. See below that the strain rate is
inversely proportional to the square of the grain size, i.e., _e / 1

d2 [11, 20, 72]. In
Eq. (6.32), the number of vacancies is given. Equation (6.32), in terms of vacancy
concentration at equilibrium, is given as:

n
N
¼ C0

V ¼ exp(� EF

kT
Þ ð6:35Þ

The energy to create a vacancy under acting stress is given by:

EF þ rV ð6:36Þ

V is the atomic volume (here, it is the volume of a vacancy) and EF is defined
by Eq. (6.35). There is a small concentration difference in the vacancies between
the faces of AB and BC in the above figure, where tensile and compressive stresses
are acting, respectively. Denoting the vacancy concentrations at the respective
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faces as CV
+ and CV

- and their difference as DC, one may write for each of them, by
means of Eqs. (6.35) and (6.36), respectively:

CV
þ ¼ exp� ðEF � rV

kT
Þ ¼ CV

0 expðrV

kT
Þ ð6:37Þ

CV
� ¼ exp�ðEF þ rV

kT
Þ ¼ CV

0 expð� rV

kT
Þ ð6:38Þ

DC ¼ CV
þ � CV

� ¼ a
V

expð�EF

kT
Þ expðrV

kT
Þ � expð� rV

kT
Þ

� �� �
ð6:39Þ

Clearly, in this relation EF was replaced by Eq. (6.36). Equations (6.37) and
(6.38) represent the local equilibrium concentrations under tension and compres-
sion in Fig. 3.50a. Recalling that:

sin h x ¼ 1
2

exp xð Þ � exp �xð Þ½ ffi;

Equation 6.39 may be rewritten as:

DC ¼ 2a
V

expð�EF

kT
Þ sin h

rV

kT

� �
¼ 2a

V
CV

0 sin hðrV

kT
Þ ð6:40Þ

where CV
0 = exp(-EF/kT) and EF is the energy of vacancy formation in the

absence of stress.
As indicated, there is a flow of atoms from the tensile to the compressed faces

and an opposite flow of vacancies. When a concentration gradient exists, diffusion
flux will occur. This flux of vacancies may be expressed as:

Vacancy flow

Flow of atoms

D

Grain before mass transfer

Vacancy flow

Flow of atoms

d - gain size

After mass transfer

A B

C

σ

σ σ

σ

(a) (b)

Fig. 6.50 The Nabarro-Herring concept of creep: a a schematic of vacancy and mass flow; b the
elongated grain in the tensile-axis direction after mass flow
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J ¼ �DVrC ¼ � aDVðDCÞ
d

ð6:41Þ

DV is the diffusion coefficient of the vacancies and a is a geometrical factor.
The corresponding transport of matter occurs in the opposite direction and pro-
duces a creep strain under the applied stress. In a unit time, Jd2, atoms in the
crystal leave the faces under compression and are added to the faces under tension.
(Recall that J is the number of atoms in a unit time per unit area; thus, multiplying
this value by the square of the grain size, d, one gets the number of atoms per unit
time). Consequently, the grain lengthens in the tensile-axis direction and gets
thinner in the transverse direction. The change in grain size may be written as:

Dd ¼ ðJd2ÞV
d2

¼ JV ð6:42Þ

where V is the atomic volume (often given as X). The strain rate is given as:

_e ¼ Dd

d
¼ JV

d
ð6:43Þ

An expression for the strain rate, given by Eq. (6.44), is obtained by substi-
tuting the value of Dd from Eq. (6.42) into Eq. (6.43), followed by inserting J from
Eq. (6.41) into Eq. (6.43) to get:

_e ¼ aDVDC

d

V

d
¼ aDVDCV

d2
ð6:44Þ

With Eq. (6.40) substituted into Eq. (6.44), it is possible to write:

_e ¼ 2b
V

DV V

d2
expð�EF

kT
Þ sinhðrV

kT
Þ ð6:45Þ

For small values of stress, and since the nominator is always smaller than the
denominator, the quotient is small and sinh(rV/kT) = rV/kT. Substituting this
value into Eq. (6.45), one obtains:

_e ¼ 2bDV

d2
CV

0 rV

kT
ð6:46Þ

DV is the diffusion coefficient of the vacancies. DVCV
0 is, DS, the self-diffusion

coefficient. Thus, Eq. (6.46) may also be expressed as:

_e ¼ 2bDS

d2

rV

kT
ð6:47Þ

More exact calculations, in terms of shear strain (i.e., c = 2b/d) and macro-
scopic shear stress, s (i.e., r = bs and b is close to unity and recalling that the
shear stress at 45� is given by s ¼ r

ffiffiffi
2
p

) gives:

_cS ¼
32abDSsV

pd2

1
kT

ð6:48Þ
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This relation defines a simple, ideal, viscous solid. One sees that increasing
grain size reduces creep rate. Creep-rate change is proportional to d-2. Nabarro-
Herring creep is a low-stress and high-temperature process.

A somewhat alternate method for showing that _e / 1
d2 is as follows. Based on

Eqs. (6.35) through (6.38), the difference in concentration may be expressed as:

DC ¼ CV
þ � CV

� ¼ a
V

exp �EF

kT

� �
expðrV

kT
Þ � exp � rV

kT

� �� �� �
ð6:39Þ

The flux of the vacancies, going from the tensile to the compressive regions, is:

JV ¼ �DV
DC

Dx
ð6:49Þ

where Dx is the distance in the x direction, so that DC/Dx is a gradient. Bear in
mind that the atomic flux, J, is in the opposite direction to the vacancy flux, JV,
and, therefore, DDC = - DVDCV. In our case, the diffusion distance is l.

Stress is not constant along the grain faces, therefore, the diffusion paths are
shorter near the corners. Due to stress relaxation, one may assume that r = brS at
distance d/4 from the boundaries (when rS is the macroscopic shear stress and b is
nearly unity). The length of the diffusion path through this point is l = p/2(d/4).
The atomic flux across the area of a single atom is given by:

J ¼ aDV
DC

l
¼ aDV

8DC

pd
ð6:50Þ

The previous expression is the result of substituting for the value of l = p/2(d/4).
DV is the diffusivity of the vacancies. One may rewrite Eqs. (6.42) and (6.43) as:

Dd ¼ ðJd2ÞV
d2

¼ JV ð6:42Þ

_e ¼ Dd

d
¼ JV

d
ð6:43Þ

Substituting from Eq. (6.49) for J yields:

_e ¼ aDV
8DC

pd

V

d
ð6:44Þ

and from Eq. (6.40):

DC ¼ 2a
V

expð�EF

kT
Þ sinh

rV

kT

� �
¼ 2a

V
CV

0 sinhðrV

kT
Þ ð6:40Þ

When the argument in the hyperbolic function is small, as mentioned earlier, it
is equal to the argument itself; thus, for the strain rate, one may write:

_e ¼ 16a
DV CV

0

pd2

rV

kT
¼ 16aDSrV

pd2kT
ð6:51Þ
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DS is the self-diffusion coefficient and is equal to CV
0 DV. Again, the strain rate is

proportional to d-2.
One sees in Eqs. (6.48) and (6.51) that the strain rate is linearly proportional to

the stress and inversely proportional to the grain size. In Eq. (6.48), the expression
is given in terms of shear strain and macroscopic shear stress. The above
expressions explain why large-grained materials are preferential for creep appli-
cations at high temperatures.

As mentioned previously, one of the bulk-diffusion-assisted creeps occurs in the
Nabarro-Herring model, though the Coble creep mechanism is also diffusion-
assisted. As such, the interpretation of creep results is, to a large extent, chosen by
the researchers. In mullite type ceramics, one of the interpretations of the creep
results is in line with the Nabarro-Herring model, according to a modified
Eq. (6.51) [55, 40]. use:

_e ¼ 14rXDeff

d2kT
ð6:51aÞ

as one of the models, which is consistent with the observed stress dependence and
microstructural observations in diffusional creep. In Eq. (6.51a), X is equivalent to
V in Eq. (6.51). In Fig. 6.51, diffusion data are plotted for mullite calculated from
the creep data by the Nabarro–Herring model. The creep data of strain rate versus
stress is given in Fig. 6.52.

The designations SP, 5G, and 9G refer, respectively, to pure mullite, 5 and 9 %
Y2O3 additions to mullite and 5C containing Y2Si2O7. Photo micrographs and
SEM microstructures are illustrated in Figs. 6.53 and 6.54, respectively.

Fig. 6.51 Data for diffusion
coefficient for pure mullite
calculated from the Nabarro–
Herring model (triangles) and
oxygen diffusion (bold line—
Ikuma et al., and dashed line
[40]. With kind permission of
Elsevier
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Fig. 6.52 Strain rate versus stress plot. SP Mullite, filled square; 5G Mullite, open triangles; 5C
Mullite, filled triangles; and 9G Mullite, open circles [40]. With kind permission of Elsevier

Fig. 6.53 a TEM photomicrograph of SP Mullite, b secondary electrons, and c back-scattered
electrons SEM photomicrographs of mullite–5 wt% Y2O3 sintered for 3 h at 1550 �C [40]. With
kind permission of Elsevier
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6.6.2 Dislocation Creep and Climb

Bulk-diffusion-assisted creep occurs in the processes listed above, namely in (b)
climb; (c) climb-assisted glide and; (d) thermally-activated glide via cross-slip. All
these are obviously associated with dislocation motion. High stress, below yield
stress, causes creep by conservative dislocation motion, namely by dislocation glide
within its slip plane. This readily occurs at high temperatures above 0.3 TM for pure
metals and at about 0.4 TM for alloys, where the dependence on strain rate becomes
quite strong. For ceramics, T [ 0.4–0.5 Tm (K). A formulation used for such creep is:

_c� rS

G

ffi 
n
ð6:52Þ

where n has a value of 3–10 in high-temperature regimes. Since n is in the
exponent, this creep is referred to as ‘power-law creep’. At high temperatures,
obstacle-blocked dislocations can climb, not only glide. If gliding dislocations are
blocked by some obstacle, climbing may release them to move on until they meet
another obstacle, where the same process is repeated. Climb is performed by the
diffusion of vacancies through the lattice or along the dislocation core, diffusing
into or out of the dislocation core. By climbing, dislocations change their slip
planes, enabling them to bypass their obstacles. Dislocation glide is responsible for
most strain, while the average dislocation density is determined by the climb step
in the deformation process. This mechanism is known as ‘climb-controlled creep’.

6.6.3 Climb-Controlled Creep

At relatively high stresses, beyond the elastic region or the shear moduli, creep is
controlled by dislocation-glide movement and by glide in adjacent planes following
climb. Real materials contain various internal obstacles (such as dislocations) or

Fig. 6.54 Back-scattered electrons SEM photomicrograph of deformed a 5G (54 % strain) and
b 5C (18.2 % strain) composites. The grain morphology is unchanged. Cavities are observed in
5C composite [40]. With kind permission of Elsevier

466 6 Time-Dependent Deformation: Creep



www.manaraa.com

external ones (introduced intentionally, such as solutes and particles, or uninten-
tionally by the fabrication process) which block dislocation glide in their respective
slip planes. Dislocation motion is also hindered by the crystal structure itself, namely
by crystal resistance, an internal obstacle. At high temperatures, obstacle-blocked
dislocations can be released by dislocation climb. Creep arises as a consequence of
climb, when further deformation by glide is enabled by means of vacancy-atom
exchange. The creep rate is a function of several factors, usually given as:

X
_e ¼ f ðr; T ; S;GS;PÞ

S is the structure, GS is grain size and P represents the material properties, such
as the lattice parameter, atomic volume, etc. Vacancies increase with increasing
temperature and are likely to diffuse into dislocations, thus, decreasing the overall
free energy of the system. By the diffusion of vacancies to locations at which
dislocations are blocked by obstacles, climb becomes possible, letting the dislo-
cations bypass those obstacles. Climb allows further glide in an adjacent slip plane
to occur and, by such deformation, creep strain arises.

A steady-state-based model for edge-dislocation climb [11, 72] was suggested
by Weertman [89]. He assumed that strain hardening occurs whenever dislocations
are hindered in their motion by some obstacle and pile up behind it. The dislo-
cations beyond the barrier, such as a Lomer-Cottrell lock, may escape by climbing.
However, climb beyond Lomer-Cottrell barriers would lead to the generation of
new dislocation loops and to a steady-state creep rate (which is applicable to FCC
and BCC structures, but not to HCP ones). Weertman [89] also suggested that edge
dislocations with opposite signs, gliding on parallel slip planes, would interact and
pile up when a critical distance of 2r between them is not exceeded. In such a case,
as in the prior case, dislocations could escape from the piled-up array by means of
climb. Dislocation pile-ups lead to work hardening, whereas climb is a recovery
process. A steady state is reached when the hardening and recovery rates are equal.
The creep rate will, therefore, be controlled by the rate at which dislocations can
climb. This climb mechanism requires the creation of vacancies or their destruc-
tion at the obstacle-blocked dislocations (in this case, at the pile-up) in order to
maintain the equilibrium concentration required to satisfy the climb rate. At the tip
of a pile-up dislocation, a non-vanishing, hydrostatic stress ±ri may develop,
exerting a force on the dislocation in a normal direction to the slip plane and
causing a positive (up) or negative (down) climb. Vacancies will be absorbed
where the stress is compressive and will be created where the stress is tensile.
A change in vacancy concentration develops in the vicinity of the dislocation line
and a vacancy flux is established between the segments of the dislocations, acting
as sources or segments of sinks.

The vacancy concentration, Ce, in equilibrium with the leading dislocation in
the pile-up, is given by:

Ce ¼ Co exp
�2Lr2

Sb2

GkT

� �
ð6:53Þ
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2L is the length of the dislocation pile-up and C0 is the equilibrium concen-
tration of the vacancies in a dislocation-free crystal. The vacancy concentration at
a distance, r, from each pile-up is assumed to be equal to C0. The rate of climb, _X,
is given (Garofalo) as:

_X ¼ 2C0DVr2
SLb4

GkT
ð6:54Þ

DV is the vacancy-diffusion coefficient and 2Lb2rS
2/GkT \ 1.

When self-diffusion occurs due to the vacancy mechanism, C0DV may be
replaced by:

C0DV ¼ DS ¼
m
b

expðDS

R
Þ expð�DH

RT
Þ ð6:55Þ

and _X is given by:

_X ¼ 2r2
SLb3

GkT
m expðDS

R
Þ expð�DH

RT
Þ ð6:56Þ

DH is the activation energy for self-diffusion, m is a frequency factor and S is an
entropy term. Equation (6.56) is obtained under the assumption that vacancies are
easily destroyed or created and that an equilibrium concentration exists between
pile-ups of dislocations. However, the diffusion of flux vacancies may be different
in specific climb processes.

In an additional model created by Weertman [89], the rate of dislocation climb
is also given by Eqs. (6.54) and (6.56) and the steady-state creep-rate model, in
this case, becomes:

_c ¼ NAb
_X

2r
ð6:57Þ

N is the density of the dislocations participating in the climb process (or the
density of the sources), A is the area swept out by a loop in a pile-up and 2r is the
separation between those pile-ups. The stress necessary to force two groups of
dislocation loops to pass each other on parallel slip planes must be greater than Gb

4prS

(in terms of shear stress it is Gb
4ps). When this relation is satisfied, an estimate for r

may be made:

r ¼ Gb

4prS
ð6:58Þ

The probability, p, of blocking the dislocation loops generated from one source
by means of loops emanating from three other sources is given by:

p ¼ 8pNL2r

3
¼ 2NL2Gb

3rS
ð6:59Þ
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Using Eqs. (6.54) and (6.57)–(6.59) and setting p = 1 and A = 4pl2, the creep
rate at low stresses becomes:

_cS ¼
Cp2r4:5

S DSffiffiffiffiffiffi
bN
p

G3:5kT
ð6:60Þ

C is a numerical constant on the order of 0.25 and DS is the coefficient of self-
diffusion.

Equation (5.54) has been substantiated experimentally for pure metals to a greater
extent than other theoretical relations. Exceptions to the exponent 4.5 (Eq. (6.60))
were obtained, but this value is very close to the observed experimental values.

6.6.4 Thermally-Activated Glide via Cross-Slip

Edge dislocations climb when their motion is hindered. The non-conservative
motion of screw dislocations is by cross-slip, since they cannot climb. The ease of
cross-slip is stacking-fault dependent (see Chap. 3). Materials with high SF energy
cross-slip readily, but not so when the SF energy is low. For screw-oriented
dislocations, the Burgers vector is parallel to the dislocation line (see Chap. 3) and,
therefore, it can move in any plane in which it lies (in isotropic materials). In real
crystals (which are in most cases anisotropic), screw dislocations may favor cer-
tain planes having the lowest energy. Cross-slip can occur without diffusion, but
thermal activation helps cross-slip movement from the original to other slip planes.
Climb and cross-slip are recovery processes. Recall that steady-state creep is a
deformation process, balanced by work hardening and dynamic recovery. The
temperature dependence of creep is:

_e� exp� Qc

kT

� �
ð6:61Þ

One of the known equations for steady-state creep, indicating stress dependence
[10] is:

_es ¼ Arn exp� Qc

kT

� �
ð6:62Þ

Here, Qc is the activation energy for creep and n is the stress exponent.
A similar expression may be given for climb-controlled creep:

_es ¼ Arn exp� Qc

kT

� �
ð6:63Þ

But in this case, Qc is independent of applied stress [10]. At lower temperatures,
cross-slips made by screw dislocations are the process by which obstacles in the
slip plane may be bypassed.
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Since the study of cross-slip is more informative in single crystals, many
experiments have been performed on single crystals having various structures. For
instance, in order to investigate the glide system in FCC metals, Al single crystals
were deformed by compression parallel to [00I] at temperatures between 225 and
365 �C and at strain rates between 9 9 10-6 and 9 9 l0-4/s (Le Hazif and Poirer
[59]). (Note that Al has high SF energy and readily cross-slips). Their stress–strain
curves exhibit three stages, which have been correlated with observations of slip
lines and dislocation structures. The unique observation was that, after a small
percentage of deformation cross-slips of a

2 h1�10i, screw dislocations from the {111}
to the {110} planes occurred, that might be responsible for the {110}h1�10i slip.
Stage I deformation occurs, as expected in FCC metals, on the {111} planes, but,
after a small deformation, slip on the {110} plane sets in once the stress reaches the
critical value, r110. This stress is thermally activated and decreases with temperature
increase. It is not clear why dislocations cross-slip on the {110} planes, rather than
on the {111} planes (as is usually the case), though several explanations have been
given. An activation energy for the creep rate, _e, of 28 kcal/mol, determined at a
constant stress of r110, is close to the reported cross-slip in Al. It is likely that these
observations are compatible with the mechanism of cross-slip by screw dislocations
from the {111} to the {110} planes and that a SF that is stable at high temperatures
stabilizes slip in the {110} plane. The possibility of a SF in the {110} plane is
explained on geometrical grounds and the dislocation proposed is expressed as:

a

2
½110ffi ¼ a

12
½110ffi þ a

3
½110ffi þ a

12
½110ffi:

SF energy, which determines the separation of the partial dislocations, improves
creep resistance if it is low. Contrary to the high SF energy observed in Al
(in which cross-slip or climb occurs readily), in low-energy SF materials with
large separation, cross-slip by creep or climb is suppressed. This was observed by
Suzuki et al. [82] in their work on Mg-Y alloys with added zinc. The addition of
small amounts of Zn has a beneficial effect on creep resistance, because it widens
the separation between the partials by decreasing the SF energy. The average
separation of partials in this alloy is given as:

dS ¼
Gb1b2

8pc
2� m
1� m

� �
1� 2m cosð2aÞ

2� m

� �
ð6:64Þ

where dS is the separation width between the partials, c is the SF energy, m is the
Poisson ratio and a is the angle between the total Burgers vector and the dislocation
line. A large SF energy drop was calculated, compared with pure magnesium. Mg
alloys are being used for more and more applications in which the components are
subjected to elevated temperatures. Consequently, research is being focused on the
development of alloys able to withstand high stresses at temperatures up to 300 �C,
depending on the application. Thus, for example, in other Mg alloys improved creep
properties are produced by the addition of rare earth alloys [65]. At low tempera-
tures, a climb mechanism for edge dislocations exists, whereas, at higher
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temperatures, the cross-slip mechanism of screw dislocations is believed to operate.
Opinions about the cross-slip mechanism are not unanimous, but a majority of the
researchers support it. Whether the acting mechanism is climb or cross-slip, it is
most likely that the beneficial effect of alloying stems from the fact that they both
widen the separation between the partials.

During the discussion on cross-slip, metals were considered as examples of its
effect on creep. However, it is necessary to emphasize that those examples were
provided to clarify the process that might occur at high temperatures, when creep is
sometimes unavoidable. However, partial dislocations and SFs occur in structures
other than metals (Fig. 6.55). In the following, HREM observations of SFs in b-SiC
are illustrated in Figs. 6.56 and 6.57. In Fig. 6.56, a HREM observation was con-
ducted at or near the h110i zone axis of b-SiC. This direction is perpendicular to
that of the stacking sequence h111i and SFs can be clearly imaged. In this figure,
the SFs are observed at 2000 �C along with their structural models. Note that in (A)
a twin fault is indicated. This twin fault increases with temperature, but, at the lower
sintering temperature of 1750 �C, a heavily-faulted structure with many SFs is
observed, as illustrated in Fig. 6.57. The quality of this image is not that good, due
to the high fault density, preventing sharp HREM imagery.

The activation energy for cross-slip is rendered by Schoeck and Seeger [76] as:

_e ¼ C exp� DH0 � c lnðr=rcÞ
kT

� �
ð6:65Þ

DH0 is the energy for cross-slip, rc is the critical resolved shear stress, r is the
applied stress and C and c are constants. A model of creep controlled by cross-slip
from the {111} to the {100} plane in the temperature range of 530–680 �C over
the stress range of 360–600 MN m-2 was found to be in good agreement with the
experimental results. The energy to form a restriction between the partials, namely
to recombine the Shockley partials, was evaluated on the basis of Dorn’s
expression [8]. (See also Hemker et al. [51] for the creep mechanism at inter-
mediate temperatures in Ni3Al).

The dominant creep mechanism varies from ceramic to ceramic. There is no
universal creep behavior which characterizes all high-temperature structural
ceramics. In the following figures, the high-temperature creep of YSZ is chosen as
an example, because cross-slip and climb mechanisms were seen to act during
deformation. This ceramic is a 9.4 mol% YSZ tested in the 1300–1550 �C range.
Figure 6.58 represents typical creep experiments.

Both T and r were changed incrementally during creep. The corresponding
strain rates, _e, varied between 10-7 and 10-4 s-1. Creep curves were analyzed
according to the usual general constitutive law for high-temperature steady-state
creep, as used by Bretheau et al. [30]:

_e ¼ A
lb

kT

r
l

� �n b

d

� �p pO2

p�O2

" #m

exp � Q

kT

� �
ð6:66Þ
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Fig. 6.55 Low-magnification TEM bright-field images of b-SiC ceramics sintered at a 1750 �C,
b 1900 �C, c 2000 �C and d 2100 �C (bar = 2 lm) [12]. With kind permission of John Wiley
and Sons
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A is a dimensionless constant, b is the Burgers vector of c-ZrO2

(=3.62 9 10-10 m), d is the grain size (relevant for polycrystals), P*O2 is a ref-
erence oxygen partial pressure. Deformation and diffusion mechanisms determine
the parameters n, p, m and Q. Changes in r, T or pO2 (see Fig. 6.58) may be
determined experimentally from the variation of _e. For single crystals, p = 0.

The dislocation substructures were obtained by TEM. Standard g.b analysis was
carried out to determine the Burgers vectors of isolated dislocations. The 3D
nature of the dislocation arrangement was determined using stereo pairs obtained

Fig. 6.56 HREM structural images of the typical stacking faults found in b-SiC ceramics
sintered at 2000 �C: a twin fault and b deformation fault. Structural models based on the stacking
sequence are shown [12]. With kind permission of John Wiley and Sons

6.6 Mechanisms of Creep 473



www.manaraa.com

with g = (220). Dislocation densities in the foils were determined by standard
means. The steady-state creep rate versus 1/T is shown in Fig. 6.59.

The above figure suggests two deformation regimes, namely two operating
mechanisms with a transition in the 1400–1450 �C range. A least square fit for
both these regimes gives: Q = 6.2 ± 0.4 eV and Q = 7.7 ± 0.4 eV at
T B 1400 �C. Figures 6.60 and 6.61 show the dislocation substructures. These
deformed samples exhibit different dislocation substructures at ‘low’ and ‘high’
deformation temperatures. At 1300 �C, the dislocation density, q, was high
(*1013 m-2) and showed substantial dislocation reactions and node formation
(Fig. 6.60). g.b analysis (not shown in the figure) revealed that most of the dis-
locations had a Burgers vector b = �[110] and existed along the (001) primary
slip plane. However, the stereo pair in Fig. 6.60 indicates that some dislocations,
belonging to the primary slip plane, change slip-planes to lie along the ð�111Þ and
ð1�11Þ planes, indicating that a significant amount of cross-slip occurred during that
deformation. In other experiments, cross-slip was also observed in samples
deformed at temperatures as low as 400 �C under hydrostatic confining pressure.

Fig. 6.57 HREM image of
faulted structure and streaks
in and electron diffraction
pattern observed in b-SiC
ceramics sintered at 1750 �C
[12]. With kind permission of
John Wiley and Sons
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At 1500 �C, the dislocation density is lower (q * 5 9 10 l1 m-2). A stereo
pair (Fig. 6.61) shows that many dislocation segments are perpendicular to the
(001) primary slip plane; these segments lie on the (100) and (010) planes. All six
(110) Burgers vectors are present, indicating that numerous slip systems have been
activated; however, the low dislocation density indicates that significant recovery
has occurred and that diffusion must be reasonably rapid at this temperature.

Figure 6.62 shows the polycrystalline data plotted as a log (_e. Tdpexp Q/kT)
versus log r to normalize the temperature and grain-size dependence. Q is taken as
5.7 eV. Data from other experiments are included in the plot, which shows that the
creep resistance of single crystals is better than that of ZrO2 polycrystals having a
similar composition under all stresses \l00 MPa. From the best fit of the data, a
slope of n = 4.1 may be obtained. In single crystals, p = 0. At lower tempera-
tures, n rises to 7.5 and Q is *7.5 eV which is greater than its value at high

Fig. 6.58 Typical creep
experiment in Y2O3-
stabilized ZrO2 at stresses of
84 and 66 MPa and three
temperatures, 1466,
1516–1518, and 1558 �C
[64]. With kind permission of
John Wiley and Sons

Fig. 6.59 Steady-state creep
rate, normalized to a stress of
100 MPa, plotted as a
function of reciprocal
temperature [64]. With kind
permission of John Wiley and
Sons
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temperatures. This large stress exponent is characteristic of deformation at inter-
mediate homologous temperatures, in which dislocation cross-slip may be as
important in controlling creep as is recovery via dislocation climb. In such cases,
power-law creep with higher stress exponents is generally found. A high density of
dislocations and significant cross-slip is characteristic of such cross-slip-controlled
creep, along with stress-dependent activation energy.

Poirier [19] points out that when the cross-slip and climb of dislocations operate
at the same time, _e may be written as:

_e ¼ _ecross�slip þ _eclmb ¼ _e01

r
l

� �n1

exp �Q1

kT

� �
þ _e02

r
l

� �n2

exp �Q2

kT

� �
ð6:67Þ

The subscripts and superscripts 1 and 2 refer to cross-slip and climb, respec-
tively. Dislocation motion must overcome significant structural barriers or must
cross-slip or climb past obstructions. At the lower temperatures, dislocation cross-
slip and climb both occur. At the higher temperatures, dislocation climb becomes a
rate-controlling mechanism and classic values of the stress exponent (n = 4.5) are
obtained. The creep-activation energy is that of cation diffusion.

In general, creep at temperatures below 0.5 TM is not thought to occur by means
of the lattice-diffusion-controlled mechanism.

Seldom does a lone creep mechanism operate at any given time. Creep
mechanisms may operate simultaneously (in parallel) or independently. For the
two mechanisms, one may write:

Fig. 6.60 Stereo pair of transmission electron micrographs of dislocation substructure in
specimen crept at 1300 �C [64]. With kind permission of John Wiley and Sons
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Fig. 6.61 Stereo pair of transmission electron micrographs of dislocation substructure in
specimen crept at 1500 �C [64]. With kind permission of John Wiley and Sons

Fig. 6.62 Literature data for
creep of polycrystalline ZrO2,
normalized by temperature
and grain size, as a function
of stress, and compared with
the single-crystal data [64].
With kind permission of John
Wiley and Sons
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_e ¼
X

i

_ei ð6:68Þ

or

1
_e
¼
X

i

1
_ei

ð6:69Þ

In the case of parallel creep mechanisms, the fastest mechanism will dominate
the overall creep, whereas, when they operate in sequence, the slowest process
controls creep deformation.

6.6.5 Coble Creep, Involving Grain-Boundary Diffusion

Coble creep is also a type of diffusion creep, but involves grain-boundary diffu-
sion. The diffusion of atoms along grain boundaries produces a change in
dimensions, due to the flow of the material. Of the two kinds of self-diffusions in
polycrystalline materials, the one occurring at low temperatures is grain-boundary
dominated, whereas lattice diffusion occurs at high temperatures. Figure 6.63 is an
illustration of ideal grain structure, showing the flow of atoms along the bound-
aries under the influence of a tensile stress. In a polycrystalline matrix, the grain
shape is not as indicated in Fig. 6.63 (for an ideal structure), but varies in orien-
tation, making it difficult to analyze.

Coble, in his original paper, used a spherical grain (apparently following the
Nabarro-Herring approach for lattice-controlled-diffusion creep). In Coble’s [36]
analysis of creep, a spherical grain was used once again. Based on the experi-
mental results for Al2O3, where it was observed that the Al ion-diffusion coeffi-
cient is larger by orders than that of oxygen ions and, since the creep rate in
lattice-controlled diffusion is limited by the least mobile species, it was expected
that the O2- species would determine the rate of creep. Coble [36] suggested that
grain-boundary diffusion, rather than lattice diffusion, might control creep defor-
mation. He proposed that Al diffuses in the lattice and O2- in the grain boundaries,
where its diffusion coefficient is enhanced in comparison with the values in the
lattice. It was assumed that the spherical grain maintains a constant volume and,
thus, the areas of the vacancies at the source and the sink must also be equal (grain
boundaries may act as sources or sinks for vacancies). The average gradient of the
spherical grain, with a radius, R, is given as DC

ðRp=2Þ. The problem is to evaluate the

concentration gradient at the 60� boundary, which, for equal areas of rotational
symmetry, lies at 60� below the pole of a hemisphere.

For steady-state creep, where Fick’s law applies, the flux at the 60� boundary is:

Jvac sec�1 ¼ DVN
DC

Rp=2ð Þ

� �
ðWÞ2pR sin 60 ð6:70Þ
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Here, DV is the diffusion coefficient of the vacancies in the boundary; N is a
proportionality constant relating the average vacancy gradient, DC/(Rp/2) and the
maximum gradient, 1/R(dc/dh)h=60; W is the effective boundary width and;
(2pRsin60) is the length of the zone in which the diffusion flux is at a maximum.
Thus, the cross-sectional area for diffusion is 2pRWsin60. After a detailed and
lengthy evaluation of the relevant parameters, Coble [36] arrives at the final
equation for creep rate, given as:

_e ¼ 148rðDbWÞa3
0

ðGSÞ3kT
ð6:71Þ

where a0
3 (=X) is the atomic volume of a vacancy. For lattice diffusion, the

expression [37] is:

_e ¼ 10rðDLXÞ
ðGSÞ2kT

ð6:72Þ

Other expressions are given for Coble’s creep, the difference being in the
coefficient representing the assumptions in each case (in Coble and Guerard [37] it

is: _e ¼ 150rðDbWÞ
ðGSÞ3kT

).

Thus, by writing the coefficient as a constant, the common expression is:

degb

dt
¼ _e ¼ A

rXDgbd
l3kT

ð6:73Þ

The subscripts refer to the grain boundaries, X is the atomic volume (of a
vacancy), d is the grain-boundary width and l is the grain size. (In Nabarro-
Herring, grain size was denoted by d). The DS in Eqs. (6.47) and (6.48) is replaced,
in Coble’s equation, by Dgbd. Factor 1/l represents the density of the cross-section

σ

σ

Fig. 6.63 Seven grains are
shown in a two-dimensional
hexagonal array before creep
deformation. Following
diffusion, the grains elongate
in one direction and decrease
perpendicularly to the tensile
axis. A void formation
develops between the grains,
but grain-boundary sliding,
which may accompany this
process, removes these voids
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of the grain boundaries per unit area. Hence, d/l is the cross-sectional area of the
grain boundaries per unit area. In a realistic structure, A depends on grain structure
and how the average grain size is determined. Creep by grain-boundary diffusion
has a stronger dependence on grain size than on lattice diffusion. In terms of shear
strain and shear stress [73] the expression is:

_c ¼ 42DS
pdsX
d3kT

ð6:74Þ

Here, d is equivalent to l and DS to Dgb and V to X. When creep deformation is
influenced by both lattice- and grain-boundary diffusion, an expression may be
derived as follows. Equation (6.51) may be written with the same designations
used in Eq. (6.73) as:

_e ¼ 16a
DSrX
pl2kt

ð6:51Þ

By adding Eqs. (6.51) and (6.73), one gets:

2_e ¼ 16aDSrX
pl2kT

1þ Ap
16a

Dgbd
lDS

� �
ð6:75Þ

Designating that 16a/2p = B and Ap/2 9 16a = C gives:

_e ¼ BDSrX
l2kT

1þ CDgbd
DSl

� �
ð6:75aÞ

An expression for creep may be given in terms of shear-strain rate and shear
stress, when both lattice- and grain-boundary diffusion are involved in the
deformation. For most polycrystalline materials, diffusion in grain boundaries is
more rapid than in the lattice.

To summarize this section, it may be stated that in Coble creep the atoms diffuse
along the grain boundaries and elongate the grains along the stress axis. This causes
Coble creep to have stronger grain-size dependence than Nabarro-Herring creep.
Since the grain boundary is the controlling diffusion mechanism in Coble creep, the
process occurs at lower temperatures than Nabarro-Herring creep does. Coble creep
is still temperature dependent and, as the temperature increases, so does the grain-
boundary diffusion. It also exhibits a linear dependence on stress, as does Nabarro-
Herring creep. Coble creep and Nabarro-Herring creep can take place in parallel, so
that actual creep rates may involve both components and both diffusion coefficients.

6.7 Grain-Boundary Sliding

Grains and their sizes are very important variables characterizing the micro-
structure of polycrystalline materials. Grain-boundary movement plays a signifi-
cant role in the characteristic behavior of materials for creep application.
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Basically, grain-boundary sliding [henceforth: GBS] is a process in which grains
slide past each other along their common boundary. It has also been observed that
sliding may occur in a zone immediately adjacent to the grain boundary [87]. As
seen in Chaps. 2 and 5, the role of grain size in the work-hardening mechanism
(strengthening) is crucial, as given by the Hall–Petch relation:

ry ¼ r0 þ
kyffiffiffi

d
p ð2:9Þ

In primary creep, the required stress increases due to work hardening (which
also acts in steady-state creep, but is balanced by various recovery processes).
Decreasing grain size should indicate a stronger material, since higher stress is
crucial for continued deformation. Thus, one may expect materials with small
grain sizes to show better creep resistance, while increasing grain size should
cause an increased secondary-creep rate. This is attributed to the decrease in
boundary barriers with increasing grain size (less strengthening media exists,
because there are less grain-boundary obstacles). However, this is true as long as
no undesirable processes occur at the grain boundaries. For example, large-grained
materials with a small number of grain boundaries are low sources of vacancies
and, therefore, dislocation climb will be reduced compared to small-grained
materials. Thus, one can see that grain size in creep has a dual effect, namely small
grain size strengthens the ceramics, because the large number of grains act as
barrier to dislocation glide. However, in large-grained ceramics, with fewer
boundaries, less vacancies are emitted, which is a prerequisite for climb (creep
deformation) and, therefore, this process will reduce creep. Note that a suitable
choice of grain size in ceramics is critical for achieving the best compromise for
good creep resistance.

Major structural changes occur at the start of tertiary creep. Damage is initiated
by the formation of multi-shaped cavities (in metals, either wedge-shaped or
rounded cavities are seen). Wedge-shaped cavities are primarily seen at grain
boundaries and their coalescence is the unmistakable sign that creep rupture will
occur. It is believed that GBS is a prerequisite for the nucleation of voids and
cavities and that it occurs when a sufficiently high stress concentration develops to
create new surfaces. Cavitations increase with increasing strain at high tempera-
tures. The stresses causing GBS are the shear stresses acting on the boundaries.
Whether void formation is associated with/or a consequence of GBS has not yet
been completely determined, since the experiments found in the literature seem to
support both concepts. In Fig. 6.64, cavities at two grain-boundary junctions may
be seen in ABC-SiC. The term ‘ABC-SiC’ refers to SiC, which has been hot-
pressed with additions of Al, as well as B and C. This material has been shown to
have an ambient-temperature fracture toughness as high as 9 MPa m1/2 with
strengths of *650 MPa (mechanical properties that are among the highest
reported for SiC).

One of these concepts, regarding GBS, is associated with the presence of an
amorphous grain-boundary film along the boundaries between the grains. More
specifically, this film has often been termed a ‘glassy phase’ and considered
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responsible for GBS. In Fig. 6.65, such an amorphous film may be seen (before
creep deformation) in a hot-pressed material, rich in Al, O and C (common SiC
additives).

The term ABC-SiC reflects the mentioned constituents added to SiC. Some
believe that the origin of the glassy film has to do with the presence of sintering
additives, as is the case in SiC. However, due to the nature of this bonding, as well
as vapor pressures and surface and grain-boundary characteristics, densification is
difficult in ceramic systems without such additions. HRTEM imaging indicates
that glassy film may be fully crystallized after heat treatment above 1100 �C for
times in excess of 5 h. Crystallization of the glassy amorphous phase is illustrated
in Fig. 6.66.

Clearly, such crystallization of the grain-boundary phase would minimize
softening and GBS, which would cause an increase in strength. As stated previ-
ously, the microstructure has a major impact on creep properties in ceramics. The
microstructural creep properties of ABC-SiC may be observed in Fig. 6.67. The
low density of dislocations with no apparent slip bands may occasionally be
observed in isolated grains in ABC-SiC. The density of these dislocations
increases with increasing temperature. No evidence of cavitation has yet been
found after creep testing at 1300 �C (and below this temperature). Creep cavita-
tions appear around 1400 �C, where grain-boundary cavities are observed on the
tensile (but not compression) side of the beams (see Fig. 6.53). Cavities form both
at two-grain and multiple-grain junctions. Even at higher temperatures, while the
dislocation density is higher, slip bands are still not a dominant feature. As noted
above, the grain-boundary films become fully crystallized during long durations at
creep temperatures (similar to their behavior during pre-annealing). Additionally,
the concentration of impurities in the boundary film is found to increase slightly
compared with the as-hot-pressed material.

Fig. 6.64 Transmission
electron micrograph of ABC-
SiC showing grain-boundary
cavities at two-grain
junctions on the tensile edge
of a specimen crept at
1400 �C for 840 h under
200 MPa [41]. With kind
permission of Elsevier
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Fig. 6.65 High-resolution
transmission electron
micrograph of as processed
ABC-SiC, showing the
amorphous grain-boundary
film [41]. With kind
permission of Elsevier

Fig. 6.66 High-resolution
transmission electron
micrograph of a grain
boundary in ABC-SiC after
high-temperature annealing
(1400 �C/840 h), showing
that the amorphous layer has
become fully crystallized
[41]. With kind permission of
Elsevier
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Another ceramics, namely alumina with evidence of grain boundary sliding
inducing cavitation when under compression is Al2O3. In Fig. 6.68a comparison is
shown between crept and uncrept Al2O3. Uncrept Al2O3 is characterized by the
relatively featureless grain boundaries and the presence of residual pores *10 lm
in diameter on the grain boundaries. After creep, the typical microstructure, shown
in Fig. 6.68b, exhibited creep damage in the form of multiple, individual cavities,
that formed primarily on two-grain facets. A relatively smaller volume of cavities
is observed at three- and four-grain junctions. Triple-point cavities appeared to be
insignificant to the creep damage process in this material, since they were observed
only occasionally.

The processes of the nucleation, growth and coalescence of multiple cavities is
also visible at three-grain junctions in Lucalox-type alumina, as shown in
Fig. 6.69a and b. Figure 6.69a presents both the top (left arrow) and side (right
arrow) views of similar cavities formed at three-grain junctions. The two views of
the cavities are consistent with the discrete nucleation of individual cavities
coalescing together to form a facet crack. Cavities on three- and four-grain
junctions generally exhibit the classic, ellipsoidal shape, whereas cavities that
form on two-grain facets often appear to exhibit non-ellipsoidal shapes, but
ellipsoidal-shaped cavities are also observed. The non-ellipsoidal or irregularly-
shaped cavities suggest that their morphologies may be governed by the crystal-
lographic orientation of the grain facet and the corresponding surface energies. An
example of this phenomenon is shown in Fig. 6.70a, where the cavities on the
three-grain junctions are individual ellipsoidal cavities, while those on the two-
grain facets are characterized by their sharp, angular shapes.

Figure 6.71 illustrates completely coalesced facet-sized cavities that formed in
the glassy phase of AD99 Al2O3, presumably due to the coalescence of individual
cavities. No crack-like creep cavities were observed in this material. Small-angle

Fig. 6.67 Transmission
electron micrograph of ABC-
SiC showing dislocations,
located in a residual b-SiC
grain, on the tensile edge of a
specimen crept at 1200 �C for
670 h under a stress of up to
175 MPa [41]. With kind
permission of Elsevier

484 6 Time-Dependent Deformation: Creep



www.manaraa.com

neutron scattering [henceforth: SANS] measurements of the two kinds of aluminas
(illustrated in the above examples of cavitation) are given in Fig. 6.72 in terms of
cavity radius as a function of creep time. Though, at present, there is no conclusive
data proving that GBS is the driving force for the nucleation and growth of creep
cavities, a number of studies have concluded that cavity nucleation is, in fact,
induced by GBS.

GBS has been the subject of numerous investigations, in light of the importance
of grain boundaries for many aspects of material applications. Understanding the
physics of the complex behavior of grain boundaries is of great interest in regard
to: grain growth, crystallization and recovery deformation, to mention just a few

Fig. 6.68 a Baseline fracture surface of Lucalox A12O3 obtained by failing the specimen at
1600 �C before creep. Note the presence of residual pores on the grain boundaries. b Typical
cavitated fracture surface of Lucalox AI2O3, after creep testing. Note the majority of creep
cavities nucleated on two-grain facets, while some cavities may be observed at three- and four-
grain junctions [29]. With kind permission of John Wiley and Sons

Fig. 6.69 Creep cavities observed at three-grain junctions in Lucalox: a the arrows point to the
top view (left arrow) and side view (right arrow) of similar cavities providing evidence for the
nucleation and coalescence of multiple cavities; b the arrows point to the nucleation and
coalescence of multiple cavities along the entire length of a three-grain junction. Also, note the
various cavity shapes on the two-grain facets [29]. With kind permission of John Wiley and Sons
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topics. A general review of the properties of grain boundaries may be found, for
example, in the work of Valiev et al. [86]. Here, GBS is of interest in order to gain
better practical and theoretical understanding.

In Fig. 6.73, GBS is illustrated in a UO2 ceramics. Polishing scratches, which
cross grain boundaries, have separated, indicating that GBS has occurred during
creep. The line, which originally passed the boundaries before creep as a con-
tinuous line, has migrated, after creep, as may be seen in the neighboring three
grains.

However, some more illuminating research results of GBS may be observed in
metals. The instructive photo (Fig. 6.74) was taken of a Mg-0. 78 %Al alloy
strained to 2.49 % at a temperature of 473 K and under an applied stress of

Fig. 6.70 Creep cavities, formed in Lucalox on both two-grain facets and three-grain junctions,
exhibit significantly different morphologies: a Cavities at three-grain junctions evolve into the
more classical ellipsoidal shape often used in creep models, where the shape of cavities on two-
grain facets appears to be governed by the crystallographic orientation of the grain facet and
surface energy effects. The fracture surface exhibits ‘‘arrowhead’’-shaped cavities on the right
grain facet and ‘‘dome’’-shaped cavities on the left facet. Also, the arrows point to a series of
grain boundary slip-plane ledges on an uncavitated two-grain facet. b A grain facet exhibiting
‘‘needlelike’’ creep cavities [29]. With kind permission of John Wiley and Sons

Fig. 6.71 Completely
coalesced creep cavity in the
glassy phase of AD99 Al2O3

[29]. With kind permission of
John Wiley and Sons
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17.2 MPa. The evidence of GBS is the displacement of the scratch lines during
creep testing. This figure shows scratch lines displaced across a grain boundary;
transverse markings are inscribed perpendicular to the tensile axis. Clear offsets
may be seen in the transverse marker line in this Mg-0.78 %Al alloy. The tensile
axis in this experiment is horizontal. An alternate method for evaluating GBS is by
means of interferometry. An example of the offsets of the same alloy as revealed
by interferometry is visible in Fig. 6.75.

Chan and Page [33] have developed a model describing creep-induced tran-
sient-cavity growth by assuming cavity growth is governed by the two competing
processes, transient creep and sintering. According to this model, the rate of cavity
growth is described as:

Fig. 6.72 SANS results
showing the individual cavity
radius versus creep time [29].
With kind permission of John
Wiley and Sons

Fig. 6.73 UO2 sample tested
at 1200 �C, 10000 psi;
maximum strain = 1.8 %.
Sample exhibits grain
boundary migration and
sliding. 400x [29]. With kind
permission of Elsevier
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_R ¼ 33RG nð Þ
4p2

_ess t=tcð Þm� 4p
33

cs

gl

� �
1=n� 0:9nð Þ

� �
ð6:75Þ

with

n ¼ R=I ð6:76Þ

G n�ð Þ ¼ 2
ffiffiffi
3
p
� 0:667pn2

0:96n2 � ln n� 0:23n2 � 0:72
ð6:77Þ

where R is the cavity radius, _ess is the steady-state creep rate, t is the creep time, tc
is the characteristic time, m is an exponent ranging from -0.5 to -0.6, c is the
surface energy, g is the viscosity parameter and 2 l is the center-to-center cavity
spacing. Note that the first term within the bracket in Eq. (6.75) is the transient

Fig. 6.74 Grain-boundary
sliding revealed by the
boundary offsets in a
transverse marker line in a
Mg-0.78 %Al alloy tested
under creep conditions at
473 K under a stress of
17.2 MPa. From Bell and
Langdon [2], reproduced
from Langdon [58]. With
kind permission from
Springer Science and the
author

Fig. 6.75 Offset revealed by
interferometry in a Mg-
0.78 %Al alloy pulled to an
elongation of 1.5 % at 473 K
under a stress of 27.6 MPa.
From Langdon [13],
reproduced from Langdon
[58]. With kind permission
from Springer Science and
the author

488 6 Time-Dependent Deformation: Creep



www.manaraa.com

creep rate, _etr, while the second term is the sintering rate, _s. From Eq. (6.75), it is
evident that the transient creep rate,_etr, drives cavity growth, whereas the sintering
rate term, _s, drives cavity shrinkage. In addition, imposing parameters to reach a
state of equilibrium between _etr and _s would result in a condition of zero cavity
growth. Therefore, a critical value of _ess (_ecr) may be determined by setting R = 0
in Eq. (6.75), which defines no-growth behavior as follows:

gl_ecr

cs
¼ 4p

33
1=n� 0:9nð Þ ð6:78Þ

This no-growth boundary is shown in Fig. 6.76 as the solid line. In addition,
cavities exhibit continuous growth in region I, where _scr [ _str and the cavities will
shrink when the opposite is true (region 11).

A quantitative estimate of the contribution of GBS to overall strain, n, used by
Tan and Tan [82] following Langdon’s [13] proposal, is:

n ¼ eGBS

et
ð6:79Þ

et, the total strain at high temperatures, is expressed as:

et ¼ eg þ eGBS þ edc ð6:80Þ

eg is the strain in the grain, due to processes taking place within the grain; eGBS is
the strain due to GBS; and edc is the strain due to diffusion creep. In practice,
experiments are often performed with a negligible contribution of diffusion creep
and, thus, Eq. (6.80) reduces to:

et ¼ eg þ eGBS ð6:81Þ

Fig. 6.76 Comparison of the
predicted (–) and
experimentally observed
conditions for zero cavity
growth: (white square)
Lucalox, 1600 �C; (black
square) AD99, 1300 �C, and
for cavity growth; (white
circle) Lucalox, 1600 �C;
(black circle) AD99,
1150 �C. Region I represents
cavity growth and region II,
cavity shrinkage [29]. With
kind permission of John
Wiley and Sons
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Damage leading to failure, in the form of stress rupture, is initiated by void and
crack formation. The tertiary creep, per se, is a sign that some sort of structural
damage has occurred. Round or wedge-shaped voids, known as ‘r-type cavities’ and
‘w-type cavities’, are seen, at first, along grain boundaries and, when they coalesce,
creep fracture occurs. As indicated above, the mechanism of void formation is
associated with GBS and occurs due to shear stresses acting along the boundaries.

A commonly used illustration of a w-type crack initiation by GBS, its formation
and growth (first presented by Chang and Grant [3] and found in almost every
publication), is shown in Fig. 6.77. Another configuration for the initiation of
intergranular cracks (somewhat more complex) is shown in Fig. 6.78.

A number of w-crack configurations have been experimentally observed at
triple points. Figure 6.79 shows crack nucleation at grain boundaries, formed when
shear stress acts along the boundaries. Here, a wedge-type cavity was formed
under creep in a SiAlON-YAG ceramic in a flexural bar studied at 1170 �C.
Figure 6.80 shows the cavitation strain and the total strain as functions of the
normalized beam height for the applied moments of M = 0.165 N.m and
M = 0.247 N.m (i.e., at the initial, maximum applied stresses of 80 and 120 MPa).
Both tests were carried out at 1170 �C and interrupted before failure. For
M = 0.165 N.m (a = 80 MPa), the maximum cavitation strain is *20 % of the
total strain, whereas for M = 0.247 N.m (b = 120 MPa), the cavitation strain

Fig. 6.77 Schematic representation of a w-type crack formation initiated by GBS [3]
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Fig. 6.78 Schematic views showing a more complex intergranular crack initiation by GBS [3]

Fig. 6.79 Microstructure of deformed specimens: a wedge-shaped cracks formed within a triple
junction and propagated between a two-grain interface [5]. With kind permission of John Wiley
and Sons
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is *60 % of the total strain. These results illustrate that cavitation strain has a
strong functional dependence on the applied stress

Wedge-type crack formation at triple points was initially suggested by Zener
[23] as early as 1948. According to Zener [23], at sufficiently high temperatures,
grain boundaries behave in a viscous manner and, when near triple points under an
applied tensile stress, wedge-type cracks develop due to the high stress concen-
tration. Specifically, Zener [23] was among the first to suggest the concept that
fracturing is a consequence of plastic deformation, which is required for crack
formation. His schematic illustration is shown in Fig. 6.81, where a crack can be
nucleated at the site of an edge dislocation (see: Pelleg [69] Fig. 7.9a and c)). In
Fig. 6.81b and c, the coalescence of two or three dislocations is illustrated, pro-
ducing an increase in the size of the crack. The concept of crack origin at dislocation
sites has been addressed and modified by various researchers. In essence, Zener
suggested that cracks nucleate at pile-ups of dislocations, where sufficient stress
develops for the nucleation of cracks.

Fig. 6.80 Cavitation strain and total strain as a function of normalized beam height for creep:
a M = 0.165 N-m (80 MPa initial maximum stress), 1170 �C, 300 h; b M = 0.247 N-m
(120 MPa initial maximum stress), 1170 �C, 142 h. The ? and - signs in this figure represent
tensile and compressive stresses, respectively [5]. With kind permission of John Wiley and Sons
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Fig. 6.81 A schematic illustration of Zener’s idea, explaining how a crack of atomic dimensions
can nucleate at dislocation sites; here, the growth of a crack is initiated by the coalescence of two
or three dislocations
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A dislocation model for spontaneous microcrack formation was also presented
by Stroh [80], by calculating the elastic energy associated with wedge deforma-
tion. Stroh also determined that the nucleation of a wedge crack was due to the
pile-up of dislocations on a slip plane. In Fig. 6.82, the 2D crack dislocation of a
giant Burgers vector, nb, with length, c, extending to a barrier may be seen.

His expression for the elastic energy associated with wedge deformation is:

We ¼
Gn2b2

4p 1� mð Þ ln
4R

c
ð6:82Þ

in which G is the shear modulus (modulus of rigidity), nb is a giant Burgers vector,
with n being the number of dislocations comprising the giant vector and R is the
bounding radius in the stress field. The surface energy term, 2csc, may be added to
obtain the total energy of the system as:

WS ¼
Gn2b2

4p 1� mð Þ ln
4R

c
þ 2csc ð6:83Þ

Differentiating Eq. (6.83), the critical length, cmin, may be found:

oWs

oc
¼ 0 ð6:83aÞ

cmin ¼ G
n2b2

4p 1� mð Þ
1

2cs
ð6:84Þ

In polycrystalline solids, the typical values of b, G, m and cs are, respectively
[75]: b = 2 9 10-8 cm; G = 1012 dynes/cm2; m = 1/3; and cs = 103 dynes/cm,
which gives for cmin:

cmin ¼ 2:4� 10�8

Fig. 6.82 Nucleation of a
wedge crack due to pile-up
dislocations on a slip plane
[75]. With kind permission of
Elsevier
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According to the theoretical presentation of Wu et al. [96], a wedge crack may
be formed by the insertion extra material to create the head of a crack. An extra
plane, present above a positive-edge dislocation, may serve as the source of a
wedge crack. The idea is Stroh’s [80], based on Zener’s [23] original concept.

GBS may be considered as a deformation mechanism above 0.5 Tm. The strain
rate is important to the type of failure caused by GBS. It has been shown that r-type
cavities transform into w-types with increased strain rate, leading to transgranular
fracture with increasing strain rate [47].

Alloying additions may decrease the tendency for w-type cavity formation.
Both cavity types are the results of GBS (Raj). GBS may produce grain-boundary
(intergranular) cracking when the grain’s interior is stronger than its boundaries.
GBS can be reduced by adding intergranular particles or by serrated grain
boundaries. These serve as obstacles to GBS, apparently due to an increase in
friction between the boundaries. Cavities have been seen to form at grain and
phase boundaries preferentially at interfaces or triple points. The process of cav-
itation, associated with GBS and cavity nucleation, probably occurs at points of
stress concentration in the sliding boundaries or interfaces. Creep failure occurs by
the nucleation, growth and coalescence of creep cavities at the boundaries pre-
dominantly perpendicularly-oriented to the applied stress. An increase in the
number of cavitated boundaries over creep-exposure time supports the mechanism
of continuous cavity nucleation and growth. Some believe, on the basis of
experimental observations, that there are probably pre-existing cavities, voids or
pores, previously introduced by the forming processes that are actually responsible
for creep cavitations in engineering alloys during long-term service at low stresses
and elevated temperatures. Many experiments show that GBS is a necessary
condition for cavity nucleation. GBS is a key factor not only in the growth of pre-
existing voids, but also in nucleating voids for cavity formation.

An electron micrograph of a sample of 19-lm grain size (Fig. 6.83d) shows
r-type cavities, which also preferentially form on boundaries orthogonal to the
stress axis. The orientation-dependence of cavity distribution with respect to the
stress axis has been investigated by many investigators and by Reynolds et al. [72],
in uranium dioxide. It has been proposed that the preferential nucleation of cavities
occurs in second-phase particles. Figure 6.83d shows the presence of second-phase
particles at grain boundaries and triple points, indicating that the nucleation of
r-type cavities preferentially occurs in second-phase particles. In Fig. 6.83, other
cavities are also shown. Either type of cavity developed during GBS leads to creep
failure.

An additional illustration effectively displays the concept of cavitation and its
relation to the condition of creep deformation. This example is of UO2, shown in
Fig. 6.84. Here, the mechanism of creep fracture in uranium dioxide depends on
the deformation rate. At high deformation rates, the creep-crack formation starts at
triple points having an angular appearance and extends across relatively-large
distances. At low rates, rounded cavities grow on boundaries parallel to the
compressive stress axis. Figure 6.84 shows a SEM micrograph of specimens
fractured at RT after being crept at 1628 K. The microstructures in (a) and (b)
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represent high strain rate tests at a stress of 80 MN/m2, while those in (c) and (d)
are low strain rate tests at 10 MN/m2. Clearly, these creep fracture modes are
significantly different. At high rates, typical triple-point cracking is observed with
single wedge cracks extending over large distances, whereas, at low rates,
numerous rounded cavities are seen at the grain boundaries. The rounded cavities
are more clearly seen in Fig. 6.85, where they are located on those boundaries that
are parallel to the compressive stress axis. Actually, they may be considered like
pores created on the growth cavities by a process involving the diffusion of
vacancies into the growing cavities. Cavities are likely to be nucleated in second-
phase particles or at kinks in the grain boundary and are found along the grain
boundaries, as seen in Fig. 6.85.

In many polycrystalline ceramics at elevated temperatures, GBS contributes
significantly to the total strain. GBS can be markedly reduced by introducing
additional phases, which form precipitates (such as nitrides, carbides, borides, etc.)

Fig. 6.83 Transmission electron micrographs of samples subjected to creep deformation
showing the formation of voids. a Tension side of a sample of 1.8-lm grain size with a total
of -3.5 % outer fiber strain. Cavities at triple points can be seen. Arrows indicate stress axes. b A
higher magnification micrograph of the sample in (a) showing typical elongated cavities formed
at triple points. Stress axes are indicated by arrows. c An electron micrograph of the same sample
from the compression side. Note that there are very few cavities in comparison to the tension side.
d A sample of 19-lm grain size showing numerous cavities (tension side, -3 % strain); note that
(1) the cavities form predominantly on boundaries which are nearly orthogonal to the stress axis,
(2) cavities form on second-phase particles [32]. With kind permission of John Wiley and Sons
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Fig. 6.84 Scanning electron micrographs of specimens tested at 1823 K at high strain rate
(*2 9 10-3/s) (a, b) and low strain rate (*10-6/s) (c, d), showing the differing modes of
fracture [72]. With kind permission of Elsevier

Fig. 6.85 Polished
longitudinal section of large
grain size (55 lm) creep
specimen showing
distribution of grain boundary
porosity [72]. With kind
permission of Elsevier
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at the grain boundaries. This strengthening mechanism is used in high-temperature
ceramics to provide safe use when creep deformation is a problem. Another
method for improving creep resistance in materials is by the evolution of serrated
grain boundaries. Serrated grain boundaries are effective in improving creep-
strength properties. Serrated grain boundaries do not permit continued creep by
GBS when stress is applied at high temperatures, unlike the case of non-serrated
polycrystalline ceramics. Serrated boundaries develop in ceramics (as well in other
materials) when grains do not lie on ordered planes. The effect of serration is
equivalent to the ‘self-locking’ of the sliding process resulting from creep defor-
mation. Thus, materials with irregular, serrated grain boundaries have improved
resistance to creep-crack growth when compared to those with smooth grain
boundaries. This is explained as a consequence of the difficulty in GBS and the
increase in the path of grain-boundary diffusion. The strengthening mechanisms of
serrated grain boundaries are principally the result of: (1) the inhibition of GBS;
(2) the retardation of grain-boundary crack initiation, caused by the decrease in
stress concentration at grain-boundary triple points, as a result of the decrease in
sliding grain-boundary length and; (3) dynamic recovery at the serrated bound-
aries. In Fig. 6.86, both smooth and serrated grain boundaries in quartz may be
seen. However, more constructive illustrations of serrated grain boundaries are
shown in alloys in Fig. 6.87. In a recent publication [55], experimental data
concerning the beneficial effect of serrated grain boundaries for reducing GBS
were evaluated in a Nimonic 263 Ni-based alloy and the role of c0 precipitate was
explored. Nimonic 263 is a wrought Ni-based superalloy used in gas-turbine
combustion chambers and potentially applicable to outlet headers and steam lines
of advanced coal-fired power plants.The precipitate, c0, has a volume fraction
of *10 % in the c matrix. Grain-boundary serration occurs prior to the formation
of M23C6 and without interaction with c0 particles, accompanied by the modifi-
cation of its grain-boundary carbide characteristics. This occurs when a specimen
is slow-cooled from the solution treatment temperature. The high-resolution
observation of the lattice image of the serrated grain boundary suggests that the

Fig. 6.86 Optical micrographs (crossed polarizers) showing examples of typical grain boundary
shapes. a Smooth boundary developed between two B-grains. Misorientation angle is 7�.
b Highly serrated grain boundary between W- and B-grains. Misorientation angle is 88�. A–B and
C–D denote boundary segments used for the curvature analysis [68]. With kind permission of
Elsevier
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grain boundaries tend to serrate when specific segments approach a {111} low-
index plane at a boundary, in order to attain lower interfacial free energy. This
finding implies that serration may be related to the local movement of grain
boundaries intended to reduce the interfacial free energy.

The improvement with the serrated grain boundary and the creep life observed
in the serrated sample are associated with a zigzag array of cavity formation in the
serrated grain boundary, making it more difficult for the cavities to interlink and
form an intergranular path for crack propagation than in the non-serrated sample.
A lower rate of crack propagation along grain boundaries is expected in the
serrated sample and, as a consequence, it may be inferred that the serrated sample
is highly resistant to damage by cavity formation.

In addition to grain boundary serrations, GBS can also be reduced by tailoring
the grain size. Figure 6.88 is an illustration of the grain-size effect in reducing
GBS in an alumina-silicon carbide ceramic composite. Two grain sizes appear in
this figure, containing 10 vol% SiC whiskers for the strengthening of the alumina.

In Fig. 6.88, creep strain and the creep-strain rate are shown versus time-quite
similar to Fig. 6.1a and b. Analogous to curves Fig. 6.1a and b, the creep curves in
Fig. 6.88a exhibit a primary stage and a well-developed second-stage creep over

Fig. 6.87 The sequential development of grain boundary serration and subsequent carbide
precipitation: a after solution-treatment (1150 �C/5 min/WQ), the grain boundary is flat
b solution-treatment followed by slow cooling to 1000 �C at 10 �C/min, c solution treatment
followed by slow cooling to 800 �C at 10 �C/min, and d solution-treatment followed by slow-
cooling to 800 �C at 10 �C/min and aged for 8 h [55], pp. 638–642). With permission of Material
Science Forum and the authors
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time. The minimum creep rate was achieved after 140–160 h. From the stress
dependence of the creep rate, a stress exponent of 2 was evaluated and is char-
acteristic of the GBS mechanism. The creep resistance of alumina composites
increases with an increase in matrix grain size and the creep rate (at constant
applied stress) exhibits a grain size exponent of approximately 1. Further obser-
vations show that the prevalent site for creep cavity formation in coarse-grained
alumina-SiC composites is at two-grain junctions, whereas, in the fine-grained
ceramics, cavities form preferentially at three-grain junctions.

It has been indicated that the addition of a second phase distributed within the
grain boundaries strengthens the ceramics and its creep properties (as in metals) by
reducing GBS. This is illustrated in the case of Al2O3 composites with 20 vol% SiC
particles at T = 1260 �C. Improvement in their creep resistance, compared to the
creep behavior of monolithic Al2O3, is due to the pinning effect of the SiC particles
at Al2O3 grain boundaries by reducing GBS during creep. Figure 6.89 shows that
both composites, designated as ASS2 and ASL2, have uniform grain sizes and their
SiC particles are not entrapped in the Al2O3 matrix. (In the SiC designation, S and
L refer to grain sizes of 0.6 and 2.7 lm, respectively; the number 1 and 2 indicate
10 and 20 vol%, respectively). TEM micrographs of (a) ASL1 and (b) ASL2 in
Fig. 6.90 shows the pinning effects of irregular and elongated SiC particles on
Al2O3 grain boundaries (indicated by arrows). Figure 6.91 shows the stress
dependencies of steady-state or minimum creep rates for monolithic Al2O3 and the
composites with 20 vol% SiC particles at T = 1200 �C.

Linear fitting indicates that the stress exponent of monolithic Al2O3 is 1.45 and
the stress exponents of ASS2 and ASL2 are 6.38 and 4.18, respectively. From
Fig. 6.91, one may see that the strain rates of ASS2 and ASL2 are lower than those
of monolithic Al2O3 in the low stress region. The ASL2 ceramic has a strain
rate *4–8 times lower than that of monolithic Al2O3. Since no dislocation motion
was found in the crept specimens of the monolithic Al2O3 and its composites, the
boundary creep mechanisms are predominant and the grain-size exponent, p,
should vary from 1 to 3.

Fig. 6.88 a Strain and b strain rate versus time curves for alumina-SiC composites tested at
1200 �C and at 150 MPa [60]. With kind permission of John Wiley and Sons
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GBS, facilitated by boundary diffusion, is the predominant creep deforma-
tion mechanism in polycrystalline Al2O3 at temperatures below 1400 �C. TEM
observations indicate that there are some cavities at triple-grain junctions or
grain boundaries on the tensile sides of crept monolithic Al2O3 and its com-
posite specimens. The shape of the Al2O3 matrix grain experienced no apparent
change during the creep tests. Therefore, GBS, accommodated mainly by
diffusion (though some remain unaccommodated), is the principal creep
mechanism in the Al2O3 ceramics illustrated. The improvement in creep
resistance seems to be due to the pinning of the SiC particles, which inhibit
Al2O3 GBS during creep.

To summarize this section, note that GBS may account for 10–65 % of the total
creep strain, depending on the alloy and the conditions of its use in service
(temperature, load, etc.). In alumina, for example, experimental measurements of
the offsets in marker lines at the grain boundaries reveal that the contribution of
GBS to creep strain is 70 ± 6.2 % Chokshi [6]. Its contribution to creep strain
increases with rising temperature and stress and with reduced grain size.

Fig. 6.89 TEM micrographs of a ASS2 and b ASL2, showing the equiaxed grain morphology of
the composites with 20 vol% SiC particles [42]. With kind permission of Elsevier

Fig. 6.90 TEM micrographs of a ASL1 and b ASL2, showing the pinning effect of irregular and
elongated shaped SiC particles on Al2O3 grain boundaries (indicated by arrows) [42]. With kind
permission of Elsevier
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Above *0.6 Tm, the grain-boundary region is thought to have lower shear
strength than the grains themselves, probably due to the looser atomic packing at
the grain boundaries. GBS may be reduced by introducing precipitates or grain-
boundary serrations, which resist GBS and significantly reduce cavity formation of
the types indicated above (which is a major factor in creep failure).

6.8 Creep Rupture in Ceramics

Creep rupture is actually related to creep deformation. Creep is a time-dependent
deformation of a material while under an applied load that is below its yield
strength. It most often occurs at elevated temperatures, but some materials creep at
RT. Creep terminates in rupture, if steps are not taken to bring it to a halt. In
essence, creep rupture tests are used to determine the elapsed time-to-failure.
Generally, higher stresses are used for creep-rupture testing than in conventional
creep tests and these tests are carried out until the specimen fractures. The
objectives of the respective tests are to determine the minimum creep rate at stage
II creep, on one hand, and to evaluate the time at which failure sets in, on the other.
Such information is essential so that the proper ceramics will be selected to
eliminate failure during service and to evaluate the time-period of safe use for
high-temperature applications in which structural stability is essential. Various
ceramic components operate at high temperatures and may experience creep. As in
creep testing, stress-rupture testing involves the same testing elements (for
example, a tensile specimen) and is performed under a constant load (or stress) at a
constant temperature. Not surprisingly, creep failures may appear ductile or brittle,
due to the nature of ceramics, but they are temperature dependent. Cavities,
believed to be responsible for cracking by cavity coalescence, can be either r-type
or w-type and either transgranular or intragranular. Figure 6.92 is a schematic
illustration (based on Fig. 6.1a), showing where creep damage starts.

Fig. 6.91 Stress
dependencies of steady-state
or minimum creep rate for
monolithic Al2O3 and the
composites at T = 1200 �C.
The stress exponent for strain
rate is 1.45 for monolithic
Al2O3, 6.38 and 4.18 for
ASS2 and ASL2, respectively
[42]. With kind permission of
Elsevier
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The location of creep damage coincides with the place where tertiary creep sets
in and represents the minimum creep rate (also seen in Fig. 6.1b). This is one of
the concepts regarding the time at which cavitation (either as microcavities or
voids) develops. However, there are experimental indications (density measure-
ments) that intergranular cavities may be observed before tertiary creep and are
well-developed at the end of second-stage creep. Creep data for general design use
are usually obtained under conditions of constant uniaxial loading and constant
temperature. The results of tests are usually plotted as strain versus time-to-rup-
ture. The experimental data indicate that, of the great variety of creep curves
described by various laws, their shape is near-linear when the data are presented on
a log-strain versus log-time basis. Time is expressed in hours. Very often, instead
of using the rupture time, the time until reaching a steady-state or minimum creep
is preferred, because then a much shorter period of testing time is needed to collect
the creep data. The following discussion on creep structure will be exemplified by
three ceramics of great technological interest: Al2O3, SiC and Si3N4.

6.8.1 Alumina

For high-temperature applications, major research efforts continue to be directed
towards the development of a ceramic with improved toughness and damage
tolerance, seeking to overcome the engineering design constraints imposed by the
inherently brittle nature of monolithic ceramics. To that end, most of the mono-
lithic ceramics are improved by various additives, among them ceramics, such as:
ZrO2, SiC, Si3N4, etc. Alumina is no exception. First, Fig. 6.93 illustrates the case
of Al2O3 without any additives. The figure presents stress rupture data on a log–log
plot, as is customary. (ARCO and AVCO are two manufacturers of alumina). Two
distinct linear regions may be seen, indicating two mechanisms. At the two highest
stresses, the data fit the known power relation, in which tr * r-m with m at about
2.5. At the lower stress, below 55 MPa, m is about 1.8. A transition region exists
between these two regions, in which there is increased time-to-failure at decreased
stress. Two types of tests were performed on the ARCO alumina, for flexural and
tensile creep.

In Fig. 6.94, a combination of flexural and tensile tests was used; thus, two
transitions in creep failure behavior are observed. At high stress (above about
175 MPa in flexure, performed by 4-point test), failure occurs very rapidly (52 h)
and at low strain (51 %, not shown). Thus, failure occurs before steady-state creep
is established. For a given stress, the scatter in time-to-failure is large (2 orders of
magnitude). Thus, it is difficult to determine a stress exponent for stress rupture.
However, it is quite high, about 40. At stresses below 175 MPa in flexure a
transition occurs. The failure strain is much greater (12–16 % for AVCO; [18 %
for ARCO) and the stress exponent is between 2 and 3.

The failure of ceramic polycrystals may generally be related to preexisting
flaws (or in cases of high-temperature failure, to flaws generated during service).
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Fig. 6.92 A schematic creep
curve (see Fig. 6.1a); ef and tf
are the strain and time to
creep failure

Fig. 6.93 Time to failure as
a function of applied stress
for ARCO alumina tested in
tension. (ARCO is the
manufacturer) [74]. With
kind permission of John
Wiley and Sons

Fig. 6.94 Stress rupture data
of Fig. 6.79 replotted
including the high stress
flexure data for ARCO
alumina [74]. With kind
permission of John Wiley and
Sons
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In Fig. 6.95, the relatively very low porosity of each of the as-received materials is
shown by TEM at a level of *0.01 %, however their distribution is different. The
AVCO alumina almost exclusively contains intergranular pores at three-grain
junctions with a mean radius of 0.12 lm. The ARC0 alumina contains mostly
intragranular porosity, typically in the form of clusters of very fine pores. Ther-
mally etched, polished sections of as-received material do not reveal many
microstructural defects. However, subsequent creep testing exposes defects in the
form of porous regions, regions having large grain size and regions of chemical
inhomogeneity. The defects are more numerous and more severe in the ARCO
materials. Below a certain threshold, failure occurs because of the development of
several microcracks, that grow simultaneously until one of them becomes critical.
This has been evaluated by both tensile and flexure testing. In ARCO alumina in
flexure, the samples develop relatively few microcracks. These are mostly
nucleated at chemical inhomogeneities or are processing flaws (Fig. 6.96). They
do not propagate easily through the material, but rather blunt or branch after
propagating some distance (Fig. 6.96a). Other microcrack origins include large
grains, either isolated (Fig. 6.96b) or in clusters (Fig. 6.96c).

For the maximum strains available in the bend rig (about 18 %), the larger
cracks which develop never propagate to the point of failure. Figure 6.97 further
illustrates the cracks in both types of alumina. These microcracks remain sharp as
they grow (Fig. 6.97a), while cavities are flat or crack-like and cover a single-grain
facet, in most cases (Fig. 6.97b). Failure occurs by the competitive growth of
several microcracks, until one becomes critical.

The main difference between the two aluminas in this regime is the amount of
microcracking and cavitation observed, which is much more extensive in the
AVCO material. The higher density of microcracks in the AVCO alumina leads to
the development of ‘‘shear’’ bands, which occur via microcrack coalescence during
flexure deformation. High-magnification imaging of polished internal surfaces
reveals a large density of cavities (Fig. 6.85) which, after coalescence, leads to the
development of microcracks. These cavities are intergranular, having crack-like or

Fig. 6.95 Transmission electron micrograph of the as-received microstructure for the (a) AVCO
and (b) ARCO materials [93]. With kind permission of John Wiley and Sons
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Fig. 6.96 Origins of microcracks include a chemical deposits sometimes leading to crack
bifurcation (ARCO, 1250 �C, 140 MPa, flexure), b isolated large grains (ARCO, 1200 �C,
125 MPa, flexure), and c large grain clusters (ARCO 1250 �C, 170 MPa, flexure). Bars = 10 lm
[93]. With kind permission of John Wiley and Sons
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angular shapes, likely to be associated with surface diffusion and a GBS-induced
cavity growth mechanism (Figs. 6.98 and 6.99).

Creep life is limited by the rate of crack propagation. Critical crack size
development depends on the stress dependence of the failure time. The time-to-
failure at stresses under tension below a certain limit (82 MPa for alumina) is a
consequence of an increase in failure strain at the crack tip. Basically, failure is

Fig. 6.97 High-magnification view of creep damage in an internal section of a tensile sample
fractured of ARC0 at 82 MPa and 1250 �C: a near a microcrack and b typical general cavitation
damage. Bars = 10 lm [93]. With kind permission of John Wiley and Sons
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related to the presence of flaws, which, therefore, should be controlled by manu-
facturing in order to reduce creep rupture during high-temperature applications.

Developing appropriate ceramic–matrix composites [henceforth: CMCs] for
possible aero-engine applications started more than a decade ago. CMCs continue
to be developed for improved toughness, to overcome the inherently brittle nature
of most of the monolithic ceramics. Many experiments have shown that long-term
loading of CMCs (for thousands of hours) produce improved high-temperature
properties in monolithic ceramics by causing the dispersion of ceramic whiskers or

Fig. 6.98 Microcracking at
low stresses: a on the side of
a tensile specimen and b an
enlarged view showing the
coalescence process. Tensile
axis is vertical. ARCO,
40 MPa, 1250 �C [93]. With
kind permission of John
Wiley and Sons
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particles. Alumina, among others, has been strengthened by 10–33 vol% SiC
whiskers, resulting in substantial improvements in toughness and strength, as well
as significant increases in high-temperature creep and creep-fracture resistance.
These improvements, following the dispersion of ceramic whiskers, rely on
toughening mechanisms, including whisker bridging or pull-out and crack
deflection. In Fig. 6.100, the minimum creep rate versus time-to-fracture is
indicated at several temperature applications.

Creep and creep-rupture data may be presented as curves in different ways. One
way is in terms of stress versus rupture time. Very often, instead of using the
rupture time, the time until reaching a steady-state or minimum creep is preferred,
because a much shorter period of time is required to collect creep-test data. Fig-
ure 6.100 is such a curve. Stress-rupture tests are used to determine the failure
time, as mentioned above. The data are plotted as log–log curves. A straight line is

Fig. 6.99 General cavitation
damage and the generation of
a microcrack by cavity
coalescence, in a tensile
specimen of ARCO deformed
at 40 MPa and 1250 �C.
Tensile axis is vertical.
Bars = 10 lm [93]. With
kind permission of John
Wiley and Sons

Fig. 6.100 The dependence
of the time to fracture (tf) on
the minimum creep rate (_e)
for the 0/90� SiC/Al2O3

composite from 1473 to
1673 K, with data also
included for a SiC/Al2O3

composite tested in tension at
1473 and 1573 K [94]. With
kind permission of Elsevier
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usually obtained for each temperature, if no structural changes occur. This
information can then be used to extrapolate the time-to-failure for longer times.
However, with increased temperature, structural changes are likely to occur,
changing the creep resistance until rupture. It is important to be aware of such
changes in material behavior. If structural changes do occur, then it is not safe to
extrapolate the data of such curves to longer times. A schematic illustration
(shown in Fig. 6.101) indicates a change in slope due to structural changes
(Fig. 6.99).

The minimum rate x of time-to-failure versus strain-to-failure may be seen in
Fig. 6.102, which is based on the relation:

tf / ef =_em ð6:85Þ

The microstructures of these ceramics are illustrated in Figs. 6.103 and 6.104.
The longitudinal fibers transfer stress to the matrix, causing intergranular crack
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Fig. 6.101 A schematic
illustration of logr versus
logtr curves at three
temperatures. At the higher
temperatures, a change in
slope occurs, indicating
possible structural changes

Fig. 6.102 The variation of
the product of the minimum
creep rate and the time to
fracture (_em	tf) with the total
creep strain to failure (ef) for
the 0/90� SiCw/Al2O3

composite from 1473 to
1673 K, with data also
included for a SiCw/Al2O3

ceramic tested in tension at
1473 and 1573 K [94]. With
kind permission of Elsevier
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development (see Fig. 6.103). Cracking reduces matrix stiffness, reloading the fibers
and inducing further creep. As crack growth occurs, the developing cracks become
bridged by the longitudinal fibers; however, oxygen penetrates during the tests in air
causing oxidation. Oxidation promotes failure of the crack-bridging fibers.

The regions showing oxidized fibers extend over substantial areas of the final
fracture surfaces before the cracks grow to the length required to cause the sudden
failures of the test-pieces by fiber pull-out (Fig. 6.104).

There is no difference in the high-temperature tension creep results between
SiC-fiber- or SiC-whisker-reinforced alumina. However, the mechanism of creep
seems to be different. In the case of SiCw/Al2O3, creep occurs by GBS, resulting in
cavitation leading to crack development and eventual failure. Yet, in SiCf/Al2O3,
tensile creep and creep fracture properties are determined by the strength of the
fiber (Nicalon). In a case of fiber-reinforcement creep, cracking occurs in the
porous matrix, developing to cavitation, which is dependent on the bridging by the
fibers. This process, as expected, is time dependent. The use of continuous-fiber-

Fig. 6.104 Scanning
electron micrograph showing
the zone characterized by
oxidized fibres (marked A)
and the final fibre pull-out
zone on the creep fracture
surface of a 0/90� SiCf/Al2O3

crept to failure in air under a
tensile stress of 79 MPa at
1573 K [94]. With kind
permission of Elsevier

Fig. 6.103 Scanning
electron micrograph showing
crack development in the
alumina matrix of the 0/90�
SiCf/Al2O3 composite [94].
With kind permission of
Elsevier

510 6 Time-Dependent Deformation: Creep



www.manaraa.com

reinforced composites for advanced CMC applications has great potential for long-
term exposure at elevated temperatures.

6.8.2 SiC

An understanding of the creep behavior of ceramic materials is necessary in order
to determine lifetime limits in applications where resistance to high temperatures
is needed. Silicon carbide is one of the commercial ceramics that is used for
various high-temperature structural applications.

To improve the performance of SiC and to increase its resistance against creep
failure, generally various constituents are added to monolithic SiC ceramics.
Additives in various shapes and sizes are usually added to SiC to achieve a better
material for structural use and to extend its service lifetime. An evaluation of creep
failure, commonly referred to as ‘creep rupture’ or ‘stress rupture’, is a critical step
in evaluating the suitability of a certain ceramic for use in the desired application.
The stress rupture and creep properties of a SiC matrix reinforced with SiC fiber
(i.e., a SiC/SiC composite) has been evaluated by tests conducted in order to assess
the propensity of SiC/SiC for high-temperature applications over an extended
lifetime. In Fig. 6.105, plots of stress versus time-to-rupture are shown for several
temperatures. As commonly done, these plots are on a log–log scale. Each curve
can be fitted by means of an empirical relation, similar to the earlier exponential
equation expressing the time-to-rupture, tr, to a stress exponent for stress rupture as:

tr ¼ BrN ð6:86Þ

B is a constant and N is a stress exponent for stress rupture.
According to Eq. (6.86), N is 5.8 at 1000 �C, 4.1 at 1100 �C, 8.1 at 1200 �C

and 4.2 at 1300 �C. Most of these results are similar to the stress exponents for

Fig. 6.105 Tensile stress
versus time to rupture in
argon at 1000, 1100, 1200
and 1300 �C [99]. With kind
permission of Elsevier
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creep at high stresses. The value at 1200 �C is unusually higher than others, since
the data at 75 MPa are offset from others. Figure 6.106 illustrates the minimum
creep-strain rate as a function of time-to-rupture at the same temperatures indi-
cated in Fig. 6.105. Various reinforced SiCs were also tested by stress-rupture tests
as illustrated in Figs. 6.107 and 6.108. In the illustrations, enhanced SiC/SiC refers
to carbon-coated fiber reinforcement. There is some difference between these
various fiber-reinforced SiCs, but both the Hi-Nicalon/SiC and the enhanced SiC/
SiC are better than the standard SiC/SiC.

Note that in the ceramics community, flexural-creep testing using three- or four-
point bending is common, since it provides an easy means for collecting creep
data; this type of loading avoids the alignment and gripping problems of the test
specimens often encountered in tensional-creep experiments.

Fig. 6.106 Tensile minimum
creep strain rate versus time
to rupture at different stresses
in argon at 1000, 1100, 1200
and 1300 �C [99]. With kind
permission of Elsevier

Fig. 6.107 Time to rupture
versus stress in Hi-
NicalonTM/SiC in air,
enhanced SiC/SiC in air, and
standard SiC/SiC in air and
argon at 1300 �C [99]. With
kind permission of Elsevier
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6.8.3 Si3N4

The utilization of silicon nitride ceramics as components in advanced automotive,
gas and turbine engines, among other potential applications, has received con-
siderable attention over the last decade. Great advances have been made in the
improvement of their mechanical properties at elevated temperatures, leading to
their use as structural material for many engineering applications. It became
necessary to also improve the reliability of monolithic and reinforced silicon
nitrides by means of creep and creep-rupture testing. Below, some examples of
monolithic Si3N4 are considered, followed by a comparison to Si3N4 reinforced by
SiC whiskers. The addition of a reinforcing agent is one of the common methods
for improving the performance of monolithic ceramics. Figure 6.109 is an illus-
tration of creep rupture in Si3N4. As indicated in Fig. 6.101, a straight line is
usually obtained for each temperature, if no structural changes occur. The
dependence of creep-rupture lifetime on stress is shown in this figure. The dra-
matic change in the slope of the stress versus failure-time curves indicates that the
kinetics of the growth mechanism change as stress decreases. The change in slope
reflects a transition from stress-controlled to creep (strain)-controlled failure. Such
behavior has been observed in other cases involving both polycrystalline alumina
and silicon nitride. In the creep regime, the time-dependent evolution of damage in
the form of cavities is thought to control failure. In this case, failure occurs when
the strain related to the creep damage reaches a critical value. NT154 ceramic is a
commercial material obtained by HIPing with low levels of yttria. A reasonable
compromise in properties may be obtained via the fabrication of silicon nitride
with an excellent combination of fracture strength and toughness. Engine com-
ponents fabricated from this material have been successfully operated in gas-
turbine engines at 1150 �C in a nitrogen atmosphere for 222 h. However, during

Fig. 6.108 Minimum creep
strain rate as a function of
stress in Hi-NicalonTM/SiC
in air, enhanced SiC/SiC in
air, and standard SiC/SiC in
air and argon at 1300 �C [99].
With kind permission of
Elsevier
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long-term performance, cavities do develop. The performance of the newly-
developed ceramic, NT164 silicon nitride, is compared in Fig. 6.109. Figure 6.110
shows the cavities observed through the gage section in both Si3N4 ceramics. TEM
studies also indicate that the numbers of the multigrain-junction cavities in both
the NT154 and NT164 were relatively low above the transition stress (170 MPa).
However, for stresses less than 170 MPa, cavities are observed throughout the
gage section in both materials (Fig. 6.96a–c). Consequently, as stress decreases
below 170 MPa, the evolution of creep damage, in the form of cavities, controls
specimen failure. An examination of re-fractured surfaces of the NT154 speci-
mens, tested at stresses exceeding 170 MPa, revealed no evidence of grain-facet
cavities. Thus, the creep-rupture data, for both the NT154 and NT164 Si3N4

ceramics, reveal a transition from stress-controlled to strain (creep)-controlled
failure as the stress decreases below 170 MPa. This transition correlates well with
the appearance of cavities at the lower stresses.

As mentioned earlier, the experimental data indicate that, of the great variety of
creep curves described by various laws, their shapes are close to those of linear
relations, when presented on a log-strain versus log-time basis. Time is expressed
in hours. The best results are obtained for single-crystal components. Indeed, the
usual practice in the industry is to fabricate single-crystal parts for certain elevated
temperature applications. This is especially true in the high-pressure region in
turbine engines, where the actual surface temperatures of the turbine blades can
exceed *940 �C; such high, homologous temperatures make creep and stress-
rupture properties very important variables in the overall service lifetime of the

Fig. 6.109 Creep life dependence of stress. NT 154 has a transition from creep controlled failure
to slow crack growth at 170 MPa. The vertical arrows indicate specimen failure [46]. With kind
permission of John Wiley and Sons
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blades. Nonetheless, the use of directionally-solidified ceramics is the next-best
alternative for high-temperature use and is the present trend, mainly due to cost
considerations. For example, directionally-solidified eutectic [henceforth: DSE]
oxides present excellent resistance to oxidation at elevated temperatures, owing to

Fig. 6.110 The presence of lenticular cavities along two-grain junctions in the 00 was confirmed
by a SEM of secondary fracture surface and b TEM of longitudinal section. c TEM also revealed
extensive multigrain junction cavitation in the NT164. d The absence of two-grain junction
cavitation in the NT164 was attributed to the nearly complete elimination of the intergranular
phase [46]. With kind permission of John Wiley and Sons
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the inherent stability of the eutectic oxides and to the absence of impurities at the
interfaces. For instance, no changes in weight or volume were detected in 6 9 6
9 6 mm3 prismatic bars of Al2O3-YAG after 1000 h at 1700 �C in a laboratory
atmosphere, whereas the shapes of Si3N4 and SiC specimens collapsed after
10–20 h under the same conditions due to oxidation [61].

Numerous experiments were performed on DSE ceramics for creep-resistant
applications and the reader is referred to the technical literature on DSE ceramics
and their high-temperature applications.

One of the relations used to express creep-rupture time, tr, as a function of the
activation energy of creep, Qc, is:

tr ¼ t0r
�n expðQc

RT
Þ ð6:87Þ

where t0 is a material constant and n is the stress exponent. As mentioned earlier,
long-term creep-rupture time is predicted by extrapolation from short-term creep
data. This is reasonably safe when no structural changes occur. This is not likely to
be a meaningful method for curves, as in the case of Fig. 6.95 for Si3N4. A similar
relation to Eq. 6.87 was used in the case of Si3N4 in the form of:

tf ¼ B0
r
r0

� ��N

exp
Qf

Rt

� �
ð6:87aÞ

where tf 
 tr is the creep rupture life and N, Qf, and B determine the stress
and temperature dependencies of the dominant creep-rupture mechanism. Note
that B0/r0

M is equivalent to t0 (N = n; Qc = Qf).
The schematic curves, illustrated in Fig. 6.111 for various temperatures may be

used to evaluate the predetermined design lifetime of a material to prevent creep
failure when no change in slope occurs.

Fig. 6.111 A schematic
extrapolation of creep-test
data from the time indicated
to the desired service
lifetime; extrapolations for
three temperatures at the
desired, applied stresses
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6.8.4 Remarks on Creep Rupture: The Norton-Bailey
Concept

Note the possible tests results from the schematic illustration in Fig. 6.111. First of
all, no change in slope occurred, thus, allowing extrapolation from the test time to
longer times. Secondly, the schematic illustration shows the test lines for three
temperatures. At the highest temperature, the stress of the creep test is lowest and
changes over time. Finally, the extrapolation of the test lines to some desired
service lifetime indicates the stress that a material can sustain at the temperatures
indicated (the point of intersection). Such creep tests help to predict the actual creep
life of a material without failure throughout its designed lifetime. These tests are
performed using the same creep strain, e, for each temperature and the temperature
level of the test is set higher than the highest anticipated service temperature.

Most creep analyses for long-term applications involve the determination of a
steady-state or minimum creep rate and its examination as a function of applied
stress and temperature. The steady-state or minimum, compressive creep rate (de/
dtmin) may be related to the applied stress and temperature by an empirical
Arrhenius power law or the familiar ‘Norton-Bailey creep equation’. Often in
creep testing, a minimal 1 % (of the expected lifetime) criterion is used. However,
a 10 % criterion is preferable in order to obtain a meaningful prediction of the
usable lifetime for creep applications. In critical applications, such as for turbine
components, an *25 % criterion is recommended, even preferred, so as to avoid
failure by creep rupture.

Considering Eq. (6.87) and the graphs based on such equations, one may
immediately recall the well-known ‘Norton-Bailey relation’, originally suggested
for second-stage creep (or minimum creep rate) and used by many to predict the
creep lifetime for engineering materials intended for high-temperature applica-
tions. A brief summary of the essence of the Norton-Bailey approach follows. The
steady-state or minimum creep rate (de/dtmin) relates to applied stress and tem-
perature by an empirical Arrhenius power law, given as:

ðde
dt
Þmin ¼ Arn exp � Q

RT

� �
ð6:88Þ

Multilinear regression may then be performed to determine the constants A, n
and Q for each material of interest. Such an analysis implies that the same creep
mechanism is acting as the dominant, rate-controlling mechanism at all the tem-
peratures and stresses.

The constant thermal-creep behavior, ec, is a function of:

ec ¼ fðr;T and tÞ ð6:89Þ

It is usually assumed that this function may be separated into:

ec ¼ f1ðrÞf1ðtÞf1ðT ð6:89aÞ
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Norton used what is called the ‘power law’ to describe stress dependence over
time under constant stress (but many other expressions are also available). This
power law function is given as:

f1ðrÞ ¼ Arn ð6:90Þ

The parameters, A and n, are material constants. Bailey suggested a time
function, given as:

f2ðtÞ ¼ Dtm ð6:91Þ

(usually 1/3 B m B 1/2) and:

f3ðTÞ ¼ C exp �DH

RT

� �
ð6:92Þ

DH is activation energy in an Arrhenius-type relation. By combining these
relations, Eq. (6.93) is obtained (which is about the same as Eq. 6.88):

ec ¼ Brntm exp �DH

RT

� �
ð6:93Þ

At isothermal conditions, Eq. (6.93) is given as:

ec ¼ Brntm ð6:94Þ

which is the ‘Norton-Bailey law’. Equation (6.94) was developed for constant
stress and is useful in describing all creep stages. Differentiating Eq. (6.94) for
n � 1 and m B 1 yields the creep rate for varying stresses. Here, the strain rate is
expressed as a function of stress and time (known as the ‘time-hardening rule’).
Another form (known as the ‘strain-hardening rule’) may be obtained by differ-
entiating according to t; thus, Eq. (6.94) becomes:

de
dt
¼ _e ¼ Bmrntðm�1Þ ð6:95Þ

It is possible to extract t from Eq. (6.94) as:

t ¼ ec

Brn

ffi 
1=m
ð6:96Þ

and to insert it into Eq. (6.95) resulting in:

_e ¼ Bmrn e
Arn

ffi 
ðm�1Þ
m ð6:95aÞ

which may also be written as:

_e ¼ B
1
mmðrÞ

n
mðeÞ

ðm�1Þ
m ð6:97Þ
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The parameters B, n and m depend on the material and the temperature, which
can be determined by means of a uniaxial test.

Norton‘s power law and an Arrhenius-type equation are the most common
expressions describing the stress and temperature dependence of the steady-state
creep rate. Of the many relations suggested to describe creep-rupture life, the
steady-state strain-rate relation was extended for the calculation of rupture strength
and is used to predict service lifetimes. The Norton Bailey concept is used in
regard to many solids, including ceramics (e.g., see Headrick et al. [50]).

To summarize this section, note that: (a) stress-rupture tests are used to
determine the time necessary to produce failure; thus, this testing is always done
until failure occurs; (b) the data are plotted as log–log plots (Figs. 6.100–6.109);
(c) a straight line or the best fit curve is usually obtained for each temperature of
interest; (d) this information may then be used to extrapolate time-to-failure for
longer durations (a typical set of stress-rupture curves appear above) and;
(e) changes in the slope of a stress-rupture line are due to structural changes in the
material, which are significant changes in material behavior, because they may
produce large errors.

6.9 The Prediction of LifeTime (Parametric Method)

There are parametric methods for determining the creep lifetime of materials. Such
methods are based on evaluating the stress-rupture behavior. In essence, the results
of short-duration, high-temperature tests are correlated with the performance of
long-term tests at lower temperatures. The most popular parametric methods are:
(a) Larson-Miller; (b) Manson-Haferd; (c) Orr-Sherby-Dorn and, (d) Monkman–
Grant. Of these methods, the following is a discussion on the Larson-Miller and
the Monkman–Grant methods to the evaluation of ceramic-material lifetimes.

6.9.1 The Larson-Miller Method

The Larson-Miller method is applicable to a variety of materials, including
ceramics, and is most commonly used because of its simplicity. This relation is
given as:

T Cþ log tð Þ ¼ P ð6:98Þ

T is given in degrees Rankin (i.e., �F ? 460), t in hours and the constant
C & 20. The value of C seems to be applicable to many cases and materials, but
deviation from this value has been observed and its value may be in the range of
15–30, depending on the material. Selecting the proper C value, which may be
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determined for a material of interest, can narrow the scatter by reducing the scatter
problem, which is very common in ceramics experiments. Equation (6.98) is a
stress-dependent, temperature-compensated rupture-life function. The Larson-
Miller relation may be obtained as follows. Suppose that creep rate is adequately
described by an Arrhenius-type equation, since creep is a thermally- activated
process and that the minimum secondary-creep rate may be described by an
Arrhenius equation (see Eqs. (6.3) or (6.4)). Thus:

_e ¼ A exp�ðQ

kT
Þ ð6:99Þ

ln _e ¼ ln A� Q

kT
ð6:99aÞ

by rearranging Eq. (6.99a) as:

ln A� ln _e ¼ Q

kT
ð6:99bÞ

Assuming that the creep-strain-to-rupture, er, is a constant over the temperature
range of interest and, if the strain is predominantly in the steady-state creep
regime, then the average creep rate for the specimen lifetime to rupture, namely, tr,
is given by:

_e ¼ er

tr
ð6:100Þ

and Eq. (6.99b) may be written as:

ln A� ln
er

tr
¼ ln A� ln er þ ln tr ¼

Q

kT
ð6:101Þ

Write lnA - lner = C and rearrange Eq. (6.101) to get:

TðC þ ln trÞ ¼
Q

k
¼ P ð6:102Þ

P = T(C ? lntr) is the Larson-Miller parameter [henceforth: LMP] and is f(r).
Under the assumption that activation energy is independent of applied stress, this
equation may be used to relate the difference in rupture life to differences in
temperature for a given stress. In many cases, C is indeed *20, which is obtained
from the intercept with the logtr axis of a logtr versus 1/T plott (Fig. 6.111). The
slope of such a plot, namely Q/k (=P), is a function of stress, as seen in the
schematic Fig. 6.111. For a graphic presentation, Eq. (6.102) may be written as:

log tr ¼ 0:434
Q

kT
� log C ð6:102aÞ

As shown in Fig. 6.112, the intercept on logtr is -C.
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The parametric method is commonly used to predict creep-rupture strength at
longer times (often up to 105 h or even longer) based on tests performed for much
shorter times. The relation between stress and the LMP is used to predict a
probable time for the onset of creep-rupture failure. If one knows the temperature
and stress at which a material is operating, the predicted time to creep-rupture
failure for that set of conditions may be determined from a plot of LMP versus
stress. The procedure using the LMP method requires a family of stress-rupture
curves representing different test temperatures for a given material, which are then
re-plotted on a revised temperature-compensated time axis, i.e., the LMP. The
family of curves chosen is superimposed on a single master curve. Such a curve is
illustrated in Fig. 6.113 for SiC-fiber/SiC composite.

Fig. 6.112 A schematic plot
according to Eq. (6.101) for
various stresses

Fig. 6.113 Tensile stress
versus Larson-Miller
parameter at different stresses
in argon at 1000, 1100, 1200
and 1300 �C [100]. With kind
permission of Elsevier
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The Larson-Miller parameter, P, in Eq. (6.102), is one of the useful parameters
used for predicting creep life in metallic materials, but it is useful for ceramics as
well. The LMP may be used to describe the stress-temperature-life relation in a
SiC/SiC composite by means of the following expression:

P = T Cþ log trð Þ ð6:102aÞ

which is Eq. 6.102 explicitly expressing P. It was found that data at different
temperatures fall on the same line with the best fit when the constant C is between
5 and 10, when curves of log tr versus 1/T are drawn. Figure 6.113 shows the
relation of stress to the LMP with a C value of 7. Note that this value is different
than the commonly-assumed one of *20, which was found for various materials,
particularly metallic.

6.9.2 The Monkman-Grant Method

The Monkman-Grant [henceforth: MG] relation between minimum creep rate (or
steady-state strain rate) and time-to-fracture, tf, is given as:

_em
mertf ¼ C ð6:103Þ

log tf ¼ �m log _eþ log C ð6:103aÞ

where m and C are material constants. This relation holds for alloys and also for
ceramics. Such a curve for Si3N4 NT154 and NT164 ceramics is indicated in
Fig. 6.114. In addition, Fig. 6.106 above is actually a MG relation for the SiC
fiber.

This relation is useful for industrial applications, when one knows the constants,
m and C, of a material, since the above expression evaluates the fracture time on

Fig. 6.114 Monkman-Grant
plot shows that NT154 and
NT164 follow the same linear
relationship, indicating that
the same mechanism is
controlling creep rupture life
for both materials [46]. With
kind permission of John
Wiley and Sons
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the basis of the minimum creep-rate data. There is no need for the long-term creep
testing of high-temperature materials; generally, the time required to reach steady-
state creep is much shorter than the time-to-fracture. This is particularly important
regarding newly-developed materials for high-temperature applications. Fig-
ure 6.13 is a logarithmic plot of Eq. (6.103) for the nitrides (Si3N4) NT154 and
NT164.

Originally, the MG relation was developed for alloys, but it also has the ability
to predict the rupture life of ceramic materials. This MG relation was experi-
mentally applied to various ceramics at various temperatures and stresses and an
example of its use to predict their creep lifetime is shown for advanced silicon
nitrides. Certain departures from the uniqueness of the MG relation, in both metals
and ceramics, have been noted by previous investigators. Consequently, some
improvements were suggested by Mamballykalathil et al. [62]. in order to achieve
a modified MG relation for ceramics:

tf ¼ K _esð Þb1 ð6:104Þ

Here, K and b, are constants. Note that this relation is equivalent to Eq. (6.103).
The time-to-fracture (rupture), tf, may be expressed as:

ln tf

� �
¼ b0 þ b1 ln _eð Þ þ b2=T ð6:105Þ

In this relation, b0 and b2 are constants and T is the absolute temperature.
Comparing this to Eq. (6.104), the first and the last terms of Eq. (6.105) would
equal lnK in Eq. (6.104). The plot of this modified relation is illustrated in
Fig. 6.115. The experimental observations relating to the creep testing of NT154
silicon nitride are presented in Fig. 6.115. The data at different temperatures sit
reasonably well on one single line. In this figure, both the average line and the data
had to be normalized to a particular temperature (1533 K) for all to be shown in
one plot. Figure 6.116 shows the prediction from the above equation for the

Fig. 6.115 Temperature
dependence of the Monkman-
Grant lines correlated with an
additional temperature term
Eq. (6.105) [62]. With kind
permission of John Wiley and
Sons
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individual temperatures along with the unmodified data. The values of b0, b1 and
b2 were determined to be 15.87, -1.53 and -4.21 9 104, respectively. The
negative sign of b2 means that rupture life increases with increasing temperature
for the same value of the creep rate. Furthermore, including the stress, r which is
related to 1/T at constant, _e, and expressing this in Eq. (6.106) as:

ln _eð Þ ¼ ln Að Þ þ n ln r=Eð Þ � Q=Rð Þ 1=Tð Þ ð6:106Þ

where, A, n, r, E, Q, R are, respectively, a constant, stress exponent, applied stress,
Young’s modulus, activation energy and the universal gas constant. The stress-
rupture data may be correlated with a stress term also which is seen in Eq. (6.107)
and the curve plotted on the basis of this equation: (Fig. 6.117).

ln tf
� �
¼ c0 þ c1 ln esð Þ þ c2 ln r=Eð Þ ð6:107Þ

This revised approach improved the scatter in both Eqs. (6.100) and (6.102), as
seen in the illustrations Fig. 6.116. Various parameters were also suggested for the
extrapolation of time-to-rupture with varying success; certain ones have been used
to predict the in-service lifetime of a component operating at high temperatures. Of
these methods, the two most popular ones have been discussed in this section. The
reader may turn to the professional literature in order to choose the most appro-
priate method for a given specific application.

Fig. 6.116 Comparison of the average lines predicted by Eq. (6.105) with the unmodified data
[62]. With kind permission of John Wiley and Sons
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6.10 Concepts of Designing (Selecting) Creep-Resistant
Ceramics

In this section, the presented design considerations and suggestions are general ones,
applicable to all materials, regardless if they are ceramics, metals or even polymers;
thus, no specific references are made to particular materials. General designs for
universal, creep-resistant purposes, based on theoretical considerations, do not exist,
despite the vast quantity of experimental results and the deep understanding of creep
behavior in materials under various conditions. Primary design problems are com-
plex, due to the many material parameters, the various stages of creep and the
varying service conditions. Today, the decision to select appropriate materials for
use or to design and develop new materials relies heavily on dependable, experi-
mental observations and their interpretations according to physical principles. The
following may be stated regarding creep, as a high-temperature deformation—it is
associated with: (a) the presence of dislocations in materials and dislocation motion
under stress; (b) temperature; (c) stress; (d) time; and (e) structure. Points (b)–(d)
may be considered as environmental conditions, but, to these environmental factors,
one should add the ambient atmosphere prevailing during the intended service. Each
of these factors will now be discussed briefly.

Fig. 6.117 Stratification of the Monkman-Grant lines can be correlated with an additional stress
term (Eq. (6.107)) [62]. With kind permission of John Wiley and Sons
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(a) The role of dislocations. Dislocation slip is hindered by obstacles, such as: grain
boundaries (in polycrystalline materials), precipitates or impurity particles,
stress fields around solute atoms in solid solutions, strain fields of other dislo-
cations and pile-ups. Various interpretations of dislocation motion under stress
have been considered by a number of researchers in the field, based on the
different stages of creep and the perceived contribution of dislocations to creep
strain. It has been determined that dislocations can: (i) glide, leading to slip in
their slip planes; (ii) climb, leading to subgrain formation; (iii) cross-slip; or (iv)
slide at grain boundaries, considered by many as being induced by slip to satisfy
strain compatibility at those grain boundaries. Actions (ii) and (iii) are ways of
overcoming resistance by obstacles and allowing further strain to occur.

(b) The temperature. The creep resistance of a material depends on its melting point,
Tm, and, at a given temperature, the higher the Tm of a material, the longer its
lifetime will be. This is simply related to the rate of self-diffusion, which is
slower in high-Tm materials. A specimen may be exposed to levels above or
below 0.5Tm, respectively. Low-temperature creep, at or below 0.5 Tm, is
believed to be governed by non-diffusion-controlled mechanisms, whereas
high-temperature creep (above 0.5 Tm) is diffusion-controlled. At and above 0.3
Tm, creep becomes a significant factor in materials, to be considered when
designing creep-resistant materials. Creep resistance is an important material
property in high-temperature design, but it is difficult to suggest a function for
calculating this property. Therefore, parametric methods are used to achieve the
desired long-term creep resistance of specific materials. Since climb is one of the
mechanisms for overcoming obstacle resistance and produces creep strain in
high-Tm materials, climb will not readily occur below 0.5 Tm.

(c) Stress. The role of stress is obvious, since it is responsible for creep defor-
mation. However, one may talk about low-stress creep and high-stress creep.
The effect of stress at constant temperatures depends on its level. Accordingly,
when increasing stress from a low level to higher values, the creep curves pass
through all the stages, from transient to tertiary creep. At a specific stress, all
three stages of creep may be obtained.

(d) Time. Creep is a time-dependent deformation. Unlike brittle fracture, creep
deformation does not occur suddenly upon the application of stress, since
ceramics at high temperatures (usually at the creep temperature) are ductile.
Instead, strain develops as a result of the application of long-term stress. At a
given stress and temperature, the resulting creep strain depends on the length
of time. The other parameters (r, T) determine the rate of creep. Given the
aforementioned parameters (r, T and t), one may state that the rate of
deformation is a material property.

(e) Structure. Generally, microstructural changes may occur in materials as a
consequence of thermal effects in the absence of stress. Such changes are
augmented when stress operates at high temperatures (creep conditions).
Microstructural changes that may occur in a material under the combined
long-term effects of acting stress and temperature are of prime concern when
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designing creep-resistant materials. Designers must be familiar with the
structural properties and the possible changes that may occur in the wake of
long-term exposure to the combined effects of stress and temperature.

Intentional structural changes are often induced in order to improve the duration
of material lifetimes. Solid solutions have a dual effect, namely they strengthen
materials (solid-solution strengthening) and the stress field around solute atoms
acts as an obstacle blocking dislocation motion. Furthermore, precipitates obtained
in material, as by precipitation hardening, also have a dual effect with regard to
solid solutions. The size of these precipitates is significant: (a) for preventing
dislocation bowing between the precipitates and (b) because, if they are very
small, they may dissolve into the matrix, being unstable at the service temperature.
Dispersion-hardened precipitates, such as oxides, nitrides, etc., are stable at high
temperatures, generally insoluble in a matrix and are also stable at high temper-
atures; they are more effective material strengtheners for creep resistance.

Additional structural aspects to be considered are: (i) the crystallinity of
materials; (ii) orientation, in the case of single crystals; (iii) the SF energy; and (iv)
grain size. Concerning crystallinity: (i) The material may be single -crystal or
polycrystalline. Single crystals, although not as strong as polycrystalline materials,
due to the absence of boundaries, have been widely used for high-temperature
applications (turbine blades, etc.), but cost considerations are an important factor
in industry. Polycrystalline materials obtained by directional solidification are
almost as good for creep resistance as single crystals. There is a tendency to
replace single crystals, wherever possible, by directionally-solidified material. (ii)
From a design point of view, it is desirable to use an orientation in which single-
crystalline material has the best strength properties. (iii) High-SF-energy materials
are inferior to those with low-SF-energy for creep-resistant applications. The
uniting of partials is performed more readily in high-SF-energy materials, enabling
climb and cross-slip and, thus, avoiding creep-resisting obstacles. Note that it is
advantageous to use solutes for solution strengthening, which can also simulta-
neously reduce the SF energy. (iv) Grain size has a dual effect. On one hand,
small-grained materials are stronger than large-grained materials, but, on the other
hand, larger grains improve creep resistance. This is a consequence of vacancy
formation and flow. In fine-grained materials with a large number of grain
boundaries, climb may be rapid, because the grains are sources (not only sinks) of
vacancies. For climb to occur readily, vacancies must be available. In large-
grained materials with fewer boundaries, the number of vacancies (that might
induce climb) is lower and, therefore, climb is slower with the consequent lower
creep rate. As such, the effect of grain size on creep rests on the diffusion rate of
the vacancies in polycrystalline materials. A compromise must be made between
the strengthening effect of small grains and the reduction of the number of
vacancies required for climb by the use of coarser grains.

Summing up the accepted rules for producing creep-resistant materials, the
approach should be such that: (i) high-melting materials are preferential;
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(ii) if one-phase materials are required, the matrix should be strengthened by
effective solutes; (iii) low SF energy should be chosen (sometimes a solute which
reduces the SF energy may also be used for solution strengthening; (iv) dispersed
stable, non-soluble particles may be added to achieve a specific creep application;
and (v) stable structures should be chosen for certain high-temperature applica-
tions, thus, short-duration tests can be extrapolated for long-term use in service.
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85. Uchic MD, Chrzan DC, Nix WD (2001) Intermetallics 9:963
86. Valiev RZ, Yu Gertsman V, Kaibyshev OA (1986) Phys State Solid (a) 97:11
87. Wadsworth J, Ruano OA, Sherby O (2002) Met and Mater Trans 33A:219
88. Wang Z, Karato SI, Fujino K (1993) Phys Earth Planet Inter 79:299
89. Weertman J (1955) J Appl Phys 26:1213
90. Weertman J (1957) J Appl Phys 28(196):1185
91. Weertman J (1957) J Appl Phys 28(196):362
92. Weertman J (1968) Trans ASM 61:680
93. Wilkinson DS, Cácerest CH, Robertson AG (1991) J Am Ceram Soc 74:922
94. Wilshire B, Carreño F (1999) Mater Sci Eng A272:38
95. Wu X, Holmes JW (1993) Com Am Ceram Soc 76:2695
96. Wu MS, Zhou H (1996) Inter J Fract 78:165
97. da C. Andrade AN ASM, creep and recovery. American Society of Metals, p 176
98. Yoo HI, Wuensch BJ, Petuskey WT (2002) Solid State Ion 150:207
99. Zhu S, Mizuno M, Nagano Y, Kagawa Y, Kaya H (1997) Compos Sci Technol 57:1629

100. Zhu S, Mizuno M, Kagawac Y, Mutoh Y (1999) Compos Sci Technol. 59:833

530 6 Time-Dependent Deformation: Creep



www.manaraa.com

Chapter 7
Cyclic Stress: Fatigue

Abstract Components in engineering applications operating under cyclic loads,
commonly known as fatigue, may become unstable and cause catastrophic failure to
occur unexpectedly because of structural instability. It is generally thought that over
80 % of all service failures are associated with fatigue. Therefore, operation of
machines or their components under cyclic loads are of prime concern. To overcome
the difficulty in predicting fatigue failure—because of a large spread of statistical
results—it is essential to use many test specimens to reach a meaningful average
value below which the probability for fatigue fracture is quite low. Fatigue-resistance
evaluation is done by plotting applied stress against the number of cycles, usually
referred to as the S–N (curve) relation. In some cases a horizontal line is observed in
the plot known as the ‘‘knee’’ representing the endurance limit. At this level of stress
or below it, ceramics have the ability to endure a large number of stress-cycles
without failure. A favored location of failure initiation is the surface; therefore good
surface finish (often by polishing) is recommended which significantly improves
fatigue resistance. Introducing compressive stress by any of the following methods,
namely, laser treatments, sand blasting or shot peening improve greatly the fatigue
resistance. Regardless of the origin of stress when cycling is applied, fatigue damage
may result. Thus stress cycling associated with temperature changes is of great
concern because it can induce fatigue damage known as thermal fatigue with pre-
mature failure in components operating at elevated temperatures. Design to over-
come fatigue failure and to increase resistance to cyclic deformation is essential.
Environmental effects, among them corrosion, are important in design consider-
ations. Corrosive environments may accelerate the growth of fatigue cracks, which
initiate at the surface and, therefore, reduce overall fatigue performance.

7.1 Introduction

When materials are used for high temperature engineering applications under
cyclic loads (fatigue), their structures become unstable and catastrophic failure
usually occurs unexpectedly, which limits their use under those circumstances.

J. Pelleg, Mechanical Properties of Ceramics, Solid Mechanics
and Its Applications 213, DOI: 10.1007/978-3-319-04492-7_7,
� Springer International Publishing Switzerland 2014
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Note that the integrity of any machine element is, therefore, often limited by its
response to the mechanical load; thus, its performance under cyclic loads is of
prime concern when applying materials not only at high temperatures, but also at
RT. In fact, it is generally thought that over 80 % of all service failures are
associated with fatigue. As such, it is insufficient to consider ceramics merely for
their toughness, which is usually of common interest to designers of ceramic parts,
but it is mandatory to consider their eventual response during cyclic-load appli-
cations as well.

This subject has been discussed widely in the past mainly in regard to metallic
materials, in which plastic deformation before failure is a key factor leading to
fracture. Ceramics, which are mostly brittle at RT, fail almost completely without
deformation, but are, nevertheless, exposed to fatigue fracture. It is useful to first
consider this concept in metals in general before focusing our attention on
ceramics.

The most common failure that occurs in materials, such as metals, happens due to
fatigue. The simplest way of looking at fatigue is by considering a specimen which is
being repeatedly stressed under tension and compression. It is not only repeatedly-
applied tensile stresses that may cause. Fatigue failure, but any force which is acting
in a reverse direction may ultimately produce such failure. fatigue failure may be
induced by repeatedly loading a test piece and applying a force acting axially,
torsionally or flexurally. The danger in fatigue failure is that it may occur without any
warning at stress levels considerably below the yield stress. Over the years, much
experience has been accumulated by exploring the possible reasons for this occur-
rence and tests have been suggested to evaluate the propensity for failure of machine
elements which are exposed to pulsating or vibrational stresses. Nonetheless, the
difficulty in predicting fatigue failure produces a wide spread of statistical results and
often a deviation of *50 % from the average value is observed. In contrast, other
mechanical tests, such as for yield stress, do not deviate from an average value by
more than *2–3 %. This explains why many test specimens are used in fatigue
experiments to reach a meaningful average value, below which the probability for
fatigue fracture is quite low. Below, in this chapter, there are commonly-used tests
having repeated stress with reverse loading as against the number of cycles in order to
evaluate the endurance of a specimen. The results of such tests are plotted on S–N
curves (stress vs. number of cycles). It is not only alternating stress that may cause
failure, but also the duration of exposure, as in materials such as glass, that may
fracture after long-term exposure to stress without undergoing any plastic defor-
mation. The term for such behavior is ‘static fatigue’. ‘Thermal fatigue’ is the term
assigned to material failure caused by repeated changes in stress due to the rise and
fall of thermal gradients for various reasons, involving restrictions in thermal
expansion or contraction. In the following sections, various aspects related to fatigue
are considered for the case of ceramics.

Recalling that most ceramics are brittle at RT and become ductile at elevated
temperatures, one must consider the fatigue of both types. First, here is an intro-
duction on the concept of S–N curves.
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7.2 S–N Curves; Endurance Limit

One of the most frequently used tests for fatigue-resistance evaluation is the well-
known plotting of stress versus the number of cycles, usually referred to as the
‘S–N (curve) relation’. Various wave forms of cyclic stresses may be applied to a
specimen to test its suitability to withstand prolonged strain. Machine elements are
assessed to determine their practical endurance of industrial applications to which
they may be exposed. Such tests focus on the nominal stress required to cause
fatigue failure at some number of cycles. A logarithmic scale is almost always
used for N, the number of cycles to failure. A schematic S–N plot is shown in
Fig. 7.1. Note the horizontal line in plot (a), known as ‘a knee’, which represents
‘the endurance limit’. As implied by its name, at this level of stress, the specimen
is characterized by its ability to endure a large number of stress-cycles at the stress
level of the horizontal line and below it without failure. In plot (b), no such
horizontal line is observed and the curve continues to decrease, indicating that the
stress must be reduced for the test specimen to be able to withstand a certain
number of cycles.

Some materials, mostly metallic, indeed show a knee when tested under fatigue.
The best known examples are alloys of steel and Ti. As illustrated, some ceramics
may show a definite knee, signifying an endurance limit. Various wave forms of
cyclic stresses may be applied to a specimen exposed to fatigue testing in order to
evaluate S–N plots (see Fig. 7.1). The wave forms used for cyclic stress may be
regular or irregular. The first of these (excluding c) is usually sinusoidal or
repeated waves. On airplane wings, for example, the stress type is irregular and,
therefore, difficult to analyze. Figure 7.2 shows the various wave forms of the
cyclic stresses that may be applied to a specimen during fatigue testing. Some of
the figures represent sinusoidal-type cycles and the last one is a repeated cycle,
possibly representing a specimen exposed to repeated stress (Fig. 7.2).

Fig. 7.1 S–N curves: a with
a well-defined endurance
limit, b without a definite
fatigue limit
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7.2.1 Brittle Ceramics

It has been thought for some time that ceramics are not candidates for fatigue
failure, since they lack plasticity, especially in the vicinity of a crack tip, namely
no crack blunting is likely. However, plenty of experimental data indicate that test
specimens have failed under cyclic stress applications compared to static tensile
testing. It was customary to compare cyclic test performance to tensile results.
Here, S–N curves of several technically important ceramics are illustrated. In
Figs. 7.3 and 7.4, the static and cyclic fatigue results are compared for poly-
crystalline alumina. Recall that the failure of a part under an ongoing static load is
termed ‘static fatigue’.

Figure 7.4 shows the cumulative probability plots as a function of cycles and
time to failure. These results are from the sinusoidal tension-tension cyclic loading
of specimens with controlled indentation flaws in biaxial flexure in water. The
controlled Vickers indentation flaws at a load of 30 N were placed at the centers of
the tensile faces of each specimen. These cyclic load tests were conducted under
sinusoidal-tension tension on a servo-hydraulic fatigue testing machine. The
minimum tensile stress in each series of tests was maintained at 20 MPa, but the
maximum stress was adjusted to coincide with the constant stress levels applied in
the static loading tests. At least five specimens were tested at each selected peak
stress, at frequencies of 1 and 50 Hz, in water. In all the tests, the broken speci-
mens were examined to verify that failure was initiated at the indentation site.
Note that the purpose of indentation flaws is to act as notched fatigue tests.
Observe in Fig. 7.3b that a knee exists in the plot, similar to the known fatigue
tests of steel or Ti. Not all materials have a fatigue threshold and, for these
unlimited materials, the test is usually terminated.

Fig. 7.2 Various forms of cyclic stresses: a, b and d are sinusoidally varying cycles e represents
a repeating cycle, c a square cycle and f a trapezoid cycle
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The time to failure may be computed numerically for any time-dependent
applied stress function:

ra ¼ raðtÞ ra ¼ const static caseð Þ ð7:1Þ

ra ¼ rM þ r0sin ð2pvtÞ cyclicð Þ ð7:2Þ

with v representing cyclic frequency and rM and r0, the mean and half-amplitude
stresses, respectively.

In another illustration (Fig. 7.5), an S–N type curve is illustrated for Si3N4.
Here, as in Fig. 7.3, static and cyclic fatigue are compared. Typical fractographs
for cyclic and static fatigue specimens are shown in Fig. 7.6a, b, respectively. In

Fig. 7.3 a Static fatigue plot for polycrystalline alumina in water, for Vickers indentations at
P = 30 N. Data points are results of individual tests. Arrows at right designate interrupted tests;
at left breakages during ramp loading to maximum applied stress. Solid curve is theoretical
prediction. b Cyclic fatigue plot for polycrystalline alumina in water, for Vickers indentations at
P = 30 N. Data points are results of individual tests: open symbols are for 1 Hz, closed symbols,
50 Hz. Solid curve is prediction assuming only slow crack growth. Static fatigue curve from (a) is
included for comparison [15]. With kind permission of John Wiley and sons

Fig. 7.4 Cumulative probability plots for a cycles and b time to failure for data in Fig. 7.3. Open
symbols are for 1 Hz, closed symbols, 50 Hz [15]. With kind permission of John Wiley and sons
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the case of cyclic fatigue specimens, several semicircular markings are observed,
as well as many vague bow-like marks on the static fatigue specimens. The
fracture surfaces of the flexural-strength specimens are similar to those of the
cyclic fatigue specimens.

A high-magnification SEM fractograph of the portion between the two semi-
circular marks in the cyclic fatigue specimen is shown in Fig. 7.6c, after

Fig. 7.5 a Static fatigue life of sintered silicon nitride at room temperature. b Cyclic fatigue life
of sintered silicon nitride at room temperature [12]. With kind permission of John Wiley and sons
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immersion in a solution of hydrochloric and hydrofluoric acids. Predominantly
intergranular cracking, accompanied by partial transgranular cracking, are
observed. The sintered silicon nitride shows considerable cyclic and static fatigue
susceptibility in RT air.

7.2.2 Ductile Ceramics (RT and High Temperature)

Due to its excellent mechanical properties (i.e., bending strength and toughness)
Y-TZP, is of special interest for acquiring fatigue information. In Fig. 7.7, fatigue
information, in the form of S–N curves, is presented. Table 7.1 indicates the
materials used for these fatigue tests. Cumulative survival plots (Kaplan–Meier)
for all four materials for 1 million cycle data ‘‘as received’’ and ‘‘CoJet sand-
blasted’’ are displayed in Fig. 7.8. The beneficial effect of CoJet sandblasting is
clearly shown for all four materials with a statistical significance of 95 % CI
(confidence interval) for all zirconia materials except for the Zeno (ZW) (Wieland)
(p = 0.295).

The microstructures of the ceramics used for the fatigue tests to evaluate the
S–N plots are shown in Fig. 7.9.

Fig. 7.6 SEM fractographs of fatigue specimen: a cyclic fatigue, b static fatigue, and c cyclic
fatigue at high magnification [12]. With kind permission of John Wiley and sons
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Fig. 7.7 a and b S–N fatigue data for Lava (LV) (3 M Espe), Lava colored (LVB) (3 M Espe),
Everest ZS (KV) (KaVo), Zeno (ZW) (Wieland) ‘‘as received’’ and ‘‘after CoJet sandblasting’’.
Fatigue limits at 106 cycles at 10 Hz in water were determined from trend lines using a least square
linear regression fit. The fatigue limits ‘‘as received’’ were: LV = 720 MPa, LVB = 600 MPa,
KV = 560 MPa, ZW = 470 MPa. The fatigue limits of ‘‘CoJet sandblasted’’ were:
LV = 840 MPa, LVB = 788 MPa, KV = 645 MPa, ZW = 540 MPa. The initial strength for
the ‘‘as received’’ was: LV = 854 ± 94 MPa, LVB = 749 ± 209 MPa (one outliner with major
grinding flaw was responsible for dropping the mean initial strength), KV = 776 ± 31 MPa,
ZW = 742 ± 39 MPa. The initial strength for the ‘‘after CoJet sandblasting’’ was:
LVs = 1282 ± 119 MPa, LVBs = 1077 ± 102 MPa, KVs = 836 ± 135 MPa, ZWs = 787
± 100 MPa [26]. With kind permission of Elsevier
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Surface properties affect the fatigue behavior of materials exposed to cyclic
tests. In the case of ceramics, an accepted method for providing good surface
properties for fatigue resistance is sandblasting. In Fig. 7.10, S–N curves of Lava
zirconia are compared with and without sandblasting. On the right side, the curve
representing the Kaplan–Meier survival plot from the same material at 1 million
cycles indicates the significant improvement of the CoJet sandblasting treatment
on its survival probability. A * 17 % increase in the fatigue limit (endurance) is

Table 7.1 Y-TZP materials
selected for fatigue testing
[26] (with kind permission of
Elsevier)

Brand Materials Manufacturer

LAVA(LV) 3Y-TZP 3M Espe, Seefeld, D
LAVA colored(LVB) 3Y-TZP 3M Espe, Seefeld, D
EVEREST ZS(KV) 3Y-TZP KaVo Dental GmbH,

Biberach, D
ZENO Zr(ZW) 3Y-TZP Wieland, dental,

Pforzheim, D

Fig. 7.8 Cumulative probability of survival at 1 million cycles for all four zirconia materials.
Dashed lines denote the sandblasted groups. All four materials demonstrated a definite shift to the
right as sandblasting improved their probability of survival. The median (50 % at 106 cycles)
survival values for the ‘‘as received’’ and ‘‘CoJet sandblasted’’ groups were as follows:
LV = 743 MPa, LVs = 908 MPa, LVB = 635 MPa, LVBs = 809 MPa, KV = 593 MPa,
KVs = 676 MPa, ZW = 549 MPa, ZWs = 587 MPa. The increase for Zeno (ZW) (green—far
left) was not statistically significant (p = 0.295) [26]. With kind permission of Elsevier
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Fig. 7.9 Microstructure of the four Y-TZP ceramics (20,0009). The average grain size
according to the ‘Linear interceptive count method’ was as follows: Zeno (ZW) (383 ± 47 nm);
Everest (KV) (383 ± 47 nm); Lava (LV) 537 nm (±47); Lava colored (LVB) 643 nm (±61)
[26]. With kind permission of Elsevier

Fig. 7.10 On the left, S–N fatigue data (left) for Lava (LV) ‘‘as received’’ (black, bottom) and
‘‘CoJet sandblasted’’ (LVs) (red, top). Fatigue limits at 106 cycles at 10 Hz in water were
720 MPa ‘‘as received’’ and 840 MPa for ‘‘CoJet sandblasted’’ which represented an increase of
17 %. On the right, Kaplan–Meier cumulative probability of survival plot at 1 million cycles for
Lava ‘‘as received’’(left) and ‘‘CoJet sandblasted’’ (right). A clear shift to the right is seen when
sandblasting, thus improving the survival probability [26]. With kind permission of Elsevier
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seen in the figure. This proves the importance of surface finish. It is known that
fatigue failure often starts at the surface, as may be seen also in Fig. 7.11.

The microstructures of the fractured test specimens were analyzed to determine
the points of origin and means of initiation of each fatigue failure. Figure 7.11
shows two halves of a broken test piece which was fatigued. Processing flaws
(fabrication, sintering and grinding) associated with fatigue failure are observed by
SEM in Fig. 7.12. These flaws, which are the points of origin of the fatigue failure,
act as stress raisers.

The above tests were performed under water (see, for example, Fig. 7.7), in
order to more closely duplicate intraoral conditions. Recall that various zirconia
ceramics are used for biomedical purposes (dental applications, etc.). Zirconia
indeed suffers from low-temperature degradation in a humid environment due to
alterations in its crystalline structure. Micrographs of a surface crack, initiated by a
Vickers indent and grown under a cyclic fatigue load, are shown in Figs. 7.13 and
7.14. Under fatigue loading, the crack grew stably until it reached the size marked
‘‘f’’; subsequent crack propagation was unstable, leading to catastrophic fracture.
Note the striations seen clearly in Fig. 7.14.

Striations are known in the fatigue literature as ‘beach marks’ and are indicative
of failure by crack growth, showing distinct crack-nucleation sites. In these figures,
note the sites where fatigue-crack growth started, showing definite flows.
R symbolizes the ratio, which is defined below in Sect. 7.3. Here, the possibility of
the accelerated testing of specimens is considered by way of high-frequency,
cyclic loading. Various results seem to indicate that materials with definite
endurance limits do not necessarily show infinite-fatigue life when tested at cycles
above 107. Pyttel [76] claims that: ‘‘The fatigue limit cannot be a general material
property. The term ‘fatigue limit’ should not be used and it is better to substitute it
by ‘fatigue strength’ at a definite number of cycles.’’ As mentioned above and

Fig. 7.11 Stereomicroscope views (32x and 57x magnification) of two broken halves of a Lava
(3 M Espe) fatigue-failed zirconia specimen. a The mirrors (smooth surfaces) and b the radiating
hackle lines surround the failure origin located on the tensile surface of this specimen [26]. With
kind permission of Elsevier
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Fig. 7.12 Processing flaws for Zeno (ZW, Wieland) located at—or near the tensile surface,
which acted as stress concentrators during fatigue testing. These flaws were incorporated into the
ceramic during cold pressing of the blanks. The number of cycles and stress level for each image
were as follows: a ‘‘sandblasted’’, 501, 550 cycles at 581 MPa; b ‘‘as received’’, 900 cycles at
635 MPa; c ‘‘as received’’, 51 cycles at 658 MPa; d ‘‘as received’’, 1577 cycles at 548 MPa [26].
With kind permission of Elsevier

Fig. 7.13 Fatigue fracture surface of 3Y-TZP. Note the shape change, from initial indent crack
indicated by ‘‘i’’ to the final fatigue crack indicated by ‘‘f’’ [18]. With kind permission of John
Wiley and sons
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indicated in Fig. 7.1, in many cases, no definite endurance limit exists and the
curve continues to decrease with the number of cycles.

One of the lessons to be learned from the exemplary zirconia fatigue tests is that
proper surface finish significantly improves the fatigue resistance of ceramics;
thus, it is a recommended means of preparing specimens for exposure to cyclic
stresses.

The following presents some definitions which are often used in fatigue testing.

7.3 Definitions

It is customary to use certain terms and concepts in fatigue studies and when
analyzing fatigue tests, as follows. The safety factor, FS, is the ratio between
allowed (ral) and applied (rap) stress given as:

FS ¼ ral

rap
ð7:3Þ

The mean stress is:

rmean ¼
rmax þ rmin

2
ð7:4Þ

Fig. 7.14 Fatigue fracture surface of 3Y-TZP for a R = 0.8 and b, c R = 0.01. In both cases,
fatigue striations appear during the last scores of cycles before catastrophic failure. d Schematic
of fatigue striations in terms of two growth steps [18]. With kind permission of John Wiley and
sons
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The ratio of load or stress is:

R ¼ rmin

rmax

ð7:5Þ

and the stress range is given by:

rr ¼ rmax � rmin ¼ Dr ð7:6Þ

If rmax = -rmin, then the stress cycle is reversed. In such cases, the mean stress
is zero.

The stress amplitude, ra, is one half the stress range and is given as:

ra ¼
Dr
2
¼ rmax � rmin

2
ð7:7Þ

In the above illustrations, the number of cycles does not exceed 107. In con-
ventional fatigue tests, seldom more than 107 cycles are applied to check fatigue
lives. However, in some industries, the required design lifetime of many compo-
nents often exceeds 108 cycles. Note that materials with well-defined endurance
limits do not necessarily show infinite fatigue lives when tested at cycles above 107.
Time constraints usually prevent the performance of such extended tests.

7.4 The Stress Cycles

Cyclic loads may be applied in various forms, as mentioned earlier. These applied
loads may be tensional, torsional or flexural. Any of them may induce fatigue
failure. Rather than focusing on these various loading possibilities, this section will
deal with the range of the cycles. A machine element may be exposed either to a
large number of cycles or, often, to a small number of low cycle, inducing failure.
The purpose of a designer is to obtain a long lifetime in service; therefore, testing
must be aimed at obtaining information on the propensity of a material to endure a
large number of cycles without failure.

7.4.1 Low-Cycle Fatigue Tests

Specimens may be tested during a relatively small number of cycles by repeated
stress or strain until failure sets in. The number of cycles, determined arbitrarily, is in
the range of 104–105 cycles, which may be considered the upper limit for low-cycle
testing. Experience has taught an important lesson that structural materials may fail
due to low-cycle fatigue, which imposes a serious structural problem. Performing
tests at high cycles incurs time- and cost-related problems; therefore, low-cycle tests
are often performed at high stresses. Low-cycle fatigue is strain-controlled and,
frequently, the number of cycles does not exceed 103. The purpose is to evaluate
fatigue life more precisely and to identify when fatigue cracks form.

544 7 Cyclic Stress: Fatigue



www.manaraa.com

In Fig. 7.15, an experimental investigation of damage and fracture in fiber-
reinforced ceramic composites (CMC) under low-cycle fatigue is shown. Several
different composites are indicated, each reinforced with ceramic-grade Nicalon2
fibers, but with varying fiber architectures and matrix materials.

The test specimens undergoing fatigue valuation at low cycles are: magnesium
aluminosilicate [henceforth: MAS] glass–ceramic matrix; calcium aluminosilicate
[henceforth: CAS] matrix and SiC matrix produced by chemical-vapor infiltration
[henceforth: CVI]. In these experiments, it seems that the CMCs exhibit fatigue
fracture at ambient temperature. Generally, fracture occurs only under conditions
in which the peak stress is well above the matrix cracking limit. In this regime,
multiple matrix cracks form during the first loading cycle, with attendant de-
bonding and sliding occurring along the fiber/matrix interfaces. Additional sliding
occurs during subsequent cycling, with the direction of slide reversing with each
load reversal. The inference is that the mechanism giving rise to fatigue involves
cyclic sliding and is not necessarily intrinsic to either the fibers or the matrix alone.

An interesting comparison exists between static and cyclic fatigues for Ce-TZP,
in which, as is known, a t ? m transformation takes place. Figure 7.16 shows a
comparison of the measured results of static and cyclic fatigue tests for three
Ce-TZP materials. The time-to-failure of the statically-loaded specimens is longer

Fig. 7.15 Fatigue life of a the glass–ceramic-matrix composites and, b and c, the SiC-matrix
composites. The horizontal arrows in a indicate run-out. In b and c, the vertical arrows indicate
run-out to 105 cycles and subsequent cycling at the next highest stress amplitude and the dashed
horizontal lines represent the apparent threshold [20]. With kind permission of Elsevier
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by 2–3 orders of magnitude at the same stress level than under cyclic loading
(R = 0.2). The shorter time-to-failure is more pronounced under cyclic loading
with increasing grain size. In addition, the fatigue limits with R = -1 are much
lower than under static and cyclic loading with R = 0.2. Recall that R is the ratio
given as R ¼ rmin

rmax
(relation 7.5). These fatigue experiments and static fatigue tests

were performed by four-point bending in air at 20 �C. The maximum duration of
loading was fixed at 200 h. In these cyclic tests, the stress ratio is R = 0.2 for
pulsating tests and R = -1 for reversed-bending tests. (For these types of cycles
see Fig. 7.2). The test frequencies were 180 and 70 Hz for R = 0.2 and R = -1,
respectively. The limited number of cycles was fixed at 107. The specimens and
other data are listed in Table 7.2.

Ce-TZP ceramics are characterized by relatively low critical stresses for the
stress-induced t–m transformation (rc;t ! rf). Pronounced transformation plas-
ticity is observed, due to which the Ce-TZP ceramics are relatively flaw-tolerant
and their strength is not controlled by the initial flaw size, but rather by the critical
transformation stress, the zone size and the strain-hardening effect.

Fig. 7.16 Fatigue of Ce-TZP ceramics in static and cyclic (pulsating and reversed bending) tests:
a Ce-TZP-11, b Ce-TZP-IV, and c Ce-TZP-V. The applied stress values are given as static stress
ss and maximum stress smax for R = 0.2 and stress amplitude sA for R = -1; rf and rc, t?m refer,
to the average bending strength and the critical transformation stress, respectively. Data points in
combination with figures indicate numbers of survivor specimens under identical loading
conditions [8]
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7.4.2 High-Cycle Fatigue Tests

Today, various machines are available for high-cycle fatigue testing. A load-
controlled servo-hydraulic test rig is one such machine commonly used in these
tests, with frequencies of around 20–50 Hz. Resonant, magnetic machines are also
in use as are rotating, bending machines. In such fatigue tests, a constant bending
stress is applied to a round specimen, combined with the rotation of the sample
around the bending-stress axis until its failure. The cycle range of these tests is
103–108. High-cycle fatigue strength may be described by stress-based parame-
ters. High-cycle tests are usually performed until failure. The common procedure
during these tests is to start testing specimens at high stress until their failure,
which usually sets in after a relatively small number of cycles. Then, in tests done
to the next specimens, the stress level is successively decreased to the point at
which the test samples do not fail. When a few specimens do not fail under applied
stress throughout all the cycles of the test, the data are noted and it is said that
‘runout’ has occurred. In most cases, this runout refers to at least 107 cycles. Thus,
runout represents the highest stress of non-failure at the specified cycles. The point
at which runout occurs is termed the ‘endurance limit’ (as mentioned earlier),
which is not observed in all materials (also above). Therefore, these tests are
usually terminated at *108 cycles, and the materials are considered to be safe for
practical use. Figure 7.17 illustrates a high-cycle test for M80 (80 % mullite/20 %
alumina) and FGC (mullite/Al2O3 functionally graded ceramics).

7.5 Fatigue Lifetime

Many factors, in addition to stress, strain, amplitude, etc., influence the fatigue life
of materials. Here, the effects of (a) stress-based and (b) strain-based evaluations
of fatigue life will be considered for low- and high-cycle cases. In the past and
even now, the stress-based approach is quite common.

(a) The stress-based approach. The stress-based evaluation of fatigue life
clearly relates to the S–N curves observed in various metals. The applied-stress

Table 7.2 Sintering parameters, average grain size, relative densities, Young’s modulus and
Vickers hardness of Ce-TZP materials [8]

Materials Sintering
parameters

Average
grain size (lm)

Relative
density (%TD)

Young’s
modulus (GPa)

Vickers
hardness

Ce-TZP-I 1400 �C, 0.2 h 0.5 97.57 201 836
Ce-TZP-II 1400 �C, 2 h 1.0 99.83 202 849
Ce-TZP-III 1500 �C, 0.5 h 1.4 99.55 190 816
Ce-TZP-IV 1500 �C, 1 h 1.5 99.73 202 854
Ce-TZP-V 1600 �C, 1 h 2.7 99.36 199 780
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range or rather the stress amplitude, ra, of the S–N curves is the significant factor
determining a material’s lifetime. Figure 7.18 is an illustration of the results of
cyclic fatigue in alumina with different loading wave forms (see Fig. 7.2) at
1200 oC, where the maximum stress is plotted versus the number of cycles to
failure. The arrow indicates that failure did not occur when the test was terminated.
Each point represents a single specimen tested to failure. In Fig. 7.19a comparison
is made between static and cyclic fatigues for the various wave forms used.

Fatigue lives were observed to increase with the decrease in applied stress, as
expected for each cyclic wave form. No significant differences in cycle lifetimes
between sine and square-wave forms under the same maximum applied load were
observed. Note, however, that, when loading by a trapezoid cycle (trapezoid I), the
number of cycles-to-failure is smaller than when loading by the other forms of
waves. The number of cycles to failure is reduced by more than one order of
magnitude. This comparison suggests that cyclic fatigue lifetimes are cycle shape
or time-dependent. Static fatigue failure may be described by a power law and the
correlation coefficient of the linear regression analysis is relatively high, having a
value of R2 = 0.941. The slope of the best-fitting curve is then used to draw the
upper and lower limits of static fatigue life, which are shown as dashed lines in
Fig. 7.19. Such data scatter is often observed in fatigue tests.

Many empirical relations have been suggested to predict fatigue lifetimes, one
of which is the Manson-Coffin equation. This and other relations have been widely
used for metals and alloys (J. Pelleg). The Manson-Coffin relation for lifetime
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Fig. 7.17 Peak applied stress against the number of cycles to failure for monolithic mullite 80 %
alumina, 20 % composites (M80) and FGC specimens [2]. With kind permission of John Wiley
and Sons
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prediction has also been used for ceramic materials, to predict lifetimes by using
low-cycle fatigue experiments [38]; for example, in SiC fiber reinforced SiC
matrix (SiC/SiC). The Manson-Coffin relation is given as:

Dep ffi Nn
f ¼ C ð7:8Þ

Here Dep is the plastic-strain range, Nf is the number of cycles-to-failure, n and
C are constants. However, when no plastic deformation occurs, such as in SiC/SiC
at RT, only the total strain range is relevant for controlling lifetimes. Thus, the
total strain range should replace the plastic strain in Eq. (7.8). A log–log plot of
Eq. (7.8), in terms of the strain range versus the number of cycle, allows for the
evaluation of the exponent, n. The derived value of this exponent is 0.09, which is
much smaller than the one characterizing metals. Figure 7.20 is a log–log plot of
Eq. (7.8) in terms of the total strain range. The curve shows stress and strain
controlled data. The cycles-to-failure during a low-cycle test at two ratios obtained
under stress is shown in Fig. 7.21.

Almost no effect of the ratio is observed in SiC/SiC, as seen in the above figure,
and the entire damage is caused by the applied tensile stress. In Fig. 7.22, cyclic
softening may be observed where the strain amplitude, De=2, is plotted against the

Fig. 7.18 Comparison of cyclic fatigue lifetime under various kinds of loading wave forms.
(Arrow indicates that failure of specimen did not occur when the test was terminated) [14]. With
kind permission of John Wiley and Sons
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number of cycles for various values of Dr/2. Note that in Eq. (7.7) the applied half
stress Dr/2 equals (rmax - rmin)/2, just as the strain amplitude equals De/2.

The reason for the occurrence of strain softening seems to be associated with
the initiation and propagation of cracks in the SiC matrix. The effect of frequency
in stress-controlled fatigue in SiC/SiC, at a ratio of R = 0.1 is indicated in
Fig. 7.23.

Fig. 7.19 Comparison of static and all cyclic fatigue lifetimes. (The dashed lines are the upper
and lower bound of the static fatigue data) [14]. With kind permission of John Wiley and Sons

Fig. 7.20 Strain range as a
function of cycles to failure
for low-cycle fatigue [39].
With kind permission of
Elsevier
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A typical fracture surface of fibers with a mirror and hackle feature in SiC/SiC
ceramics is shown in Fig. 7.24. The cyclic softening observed in SiC/SiC occurs
either under stress control or strain control. Since this observation is crack
initiation- and propagation-related, it is possible that similar phenomena may be
more frequent after softening during fatigue deformation. The Manson-Coffin

Fig 7.21 Maximum stress
versus cycles to failure at
different stress ratios [39].
With kind permission of
Elsevier

Fig. 7.22 Strain amplitude
versus number of cycles for
stress-controlled low cycle
fatigue [39]. With kind
permission of Elsevier

Fig. 7.23 Maximum stress
versus cycles to failure at
different frequencies [39].
With kind permission of
Elsevier
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equation is also applicable to the lifetime prediction of low-cycle fatigue in
ceramic matrices, though this must be further empirically explored.

7.6 The Effect of Cracks: The Law of Paris

Most ceramics, being brittle at low temperatures and lacking crack-tip plasticity,
cannot be blunt, thereby arresting fast crack propagation. The Paris Law describes
crack growth from its subcritical dimension during fatigue stress to the stress
intensity range, DK. The crack growth increment during fatigue, da/dN, is basi-
cally a function of the stress-intensity range and may be written as:

da

dN
¼ CDKm ð7:9Þ

Here, ‘‘a’’ is the crack length, N, is the number of load cycles, C and m are
experimentally determined scaling constants. DK is the difference between
the maximum and minimum stress intensities for each cycle, namely DK =
Kmax-Kmin. Unlike metals, for which the exponent m of DK is in the range 2–4,
for ceramics it can have values as high as *15 – 50 (Dauskardt et al. [5]).
Expressing Eq. (7.9) as a log–log plot of the crack-growth increment versus the
difference in the stress intensities as:

log da=dN ¼ log C þ mDK ð7:9aÞ

should give a straight line, as shown schematically in Fig. 7.25, with the slope
providing m.

The crack intensity factor may be expressed in terms of stress, r, as:

K ¼ rY
ffiffiffiffiffiffi
pa
p

ð7:10Þ

The uniform tensile stress, r, is perpendicular to the crack plane and Y is a
dimensionless parameter, depending on the geometry and the range of the stress-

Fig. 7.24 Fracture surface of
a fiber showing mirror and
hackle zones [39]. With kind
permission of Elsevier
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intensity factor. Thus, in terms of DK, Eq. (7.10) takes the form of:

DK ¼ DrY
ffiffiffiffiffiffi
pa
p

ð7:10aÞ
Dr is the range of the cyclic-stress amplitude. Expressing da/dN in terms of
Eqs. (7.9), (7.10a) may be rewritten as:

da

dN
¼ CDKm ¼ C DrY

ffiffiffiffiffiffi
pa
p� �m ð7:11Þ

If it is assumed that Y is independent of the crack size (approximately good for
small or short cracks) and taking the reciprocal value for the integration of
Eq. (7.11), one can integrate the limits of the initial crack size, ai, and the critical
size, ac, as follows:

dN

da
¼ 1

CðDrY
ffiffiffiffiffiffi
pa
p
Þm ð7:11aÞ

Z Nf

0
dN ¼

Z ac

ai

da

C DrY
ffiffiffiffiffiffi
pa
p

ð Þm
¼ 1

C DrY
ffiffiffi
p
p

ð Þm
Z ac

ai

a�m=2da ð7:12Þ

Integrating between the limits gives:

Nf ¼
2 a

2�m
2

c � a
2�m

2
i

� �

2� mð ÞC DrY
ffiffiffi
p
p

ð Þm
ð7:13Þ

The fatigue lifetime may be predicted by evaluating the respective parameters.
C and m are experimentally measured. da/dN may be determined over a range of
cycles and may be described in terms of a power-law function of the applied-stress
intensity range, by choosing a value for m stated to be in the range of 15–50 for
ceramics. These results potentially provide a means of analyzing experimental
fatigue data and of obtaining some mechanisms of the fatigue process in materials.

Cyclic crack-growth experiments were performed in SiC whisker-reinforced
Al2O3-SiC ceramic composites. The fatigue-crack propagation rate, da/dN, of long
cracks (in excess of 3 mm) has indicated a power law-dependent function of the
applied-stress intensity according to the Paris Law Eq. (7.9). The values of C and

Lo
gd

a/
dN

log ΔK

Fig. 7.25 Schematic plot of
relation (7.9a). The slope is m
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m are evaluated as above. The crack-growth rate versus the stress-intensity range,
DK, is shown in Fig. 7.26.

The experimental technique is shown in Fig. 7.27. The value of KIC is calcu-
lated from the highest load, where the elastic unloading compliance line deviates
from linearity (Fig. 7.27a). The form of the cycle is also shown.

The crack-growth rates, da/dN, were determined for the range of -10-11 to 10-5

m/cycle under computer-controlled decreasing and increasing K conditions. The
data arc presented in terms of the applied stress-intensity range (DK = Kmax-Kmin)
in the fatigue cycle. A series of microindentations (made using a 2-kg-load pyra-
midal indenter) were placed along the longitudinal axes of the surface to initiate
multiple small cracks along the specimen’s length (Fig. 7.28b).

Table 7.3 lists the relevant parameters determined for some ceramic materials.
In the table DKTH is the fatigue threshold, defined as the maximum value of DK at
which growth rates did not exceed 10–10 m/cycle (ASTM E 647 procedure).
Fig. 7.28 shows micrographs where a comparison is made between monotonic
(monotonically increasing loads) and fatigue fractures. The lengths of selected
microcracks, obtained by monitoring the top surface of the cantilever-beam
specimens (Fig. 7.27b) at various maximum applied stress levels and plotted as a
function of the number of stress cycles, are shown in Fig. 7.28a, b at load ratios R
of 0.05 and -1, respectively (Fig. 7.29).

The morphology of a single microcrack after tension–compression cycling
(maximum stress, rmax = 450 MPa) is shown in the sequence in Fig. 7.30. Crack
growth is predominantly intergranular. Evidence of crack bridging by both
uncracked matrix ligaments (Fig. 7.30b) and SiC whiskers (Fig. 7.30c, d) in the
wake of the crack tip is clearly apparent.

Fig. 7.26 a Cyclic fatigue-
crack propagation rates,
da/dN as a function of the
applied stress-intensity range
DK for SiC,-reinforced
alumina. Data obtained for
long cracks on C(T) samples
in a room-air environment at
50 Hz with a constant load
ratio (R = Kmin/Kmax) of 0.1
[5]. With kind permission of
John Wiley and Sons
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Available data show that, in many ceramics, reduced lifetimes during cyclic
fatigue stress/life (S/N) testing and significant cyclic-crack propagation occur at
loads less than those required for environmentally-enhanced (static fatigue) crack
growth during fracture mechanics testing.

Fatigue-crack growth in Al2O3-SiC ceramics is a mechanically-induced cyclic
process. Growth rates (da/dN) may be described in terms of a Paris power-law
function of the applied stress intensity range, DK with an exponent, m, on the order
of 15. It was found that under constant amplitude loading, cyclic-crack growth
shows evidence of crack closure, in addition to other crack-tip shielding mecha-
nisms (crack deflection, uncracked ligament and whisker bridging).

7.7 Hysteresis

Various definitions are used for ‘hysteresis’, depending on the subject being
considered. Thus, hysteresis may occur in ferromagnetic materials (magnetism),
ferroelectric materials (ferroelectricity) or in materials under deformation
(mechanical hysteresis). Considering mechanical properties, in general, and fati-
gue, in particular, for our purposes, one may define ‘hysteresis’ as being ‘the
directionality of strain when reversing an applied load. For example, in Fig. 7.31,
hysteresis is illustrated for a metal, indicating a loading process from -rmax to
+rmax, forming a closed loop, known as an ‘hysteresis loop’. In the illustration
below, the hysteresis loop defines one single fatigue cycle. The area within the
loop is the energy-per-unit-volume dissipated during a cycle.

In Fig. 7.32, a stress–strain response, appearing as hysteresis loops, is shown
under the indicated conditions, namely for the steady states of: an homogeneous

Fig. 7.27 Experimental techniques used to measure cyclic fatigue-crack growth rates showing
a compact C(T) specimen and procedures used to monitor crack length and the stress intensity,
KCl, at crack closure for long cracks, and b cantilever-beam specimen and semi-elliptical surface
crack configuration for corresponding tests on small cracks [5]. With kind permission of John
Wiley and Sons
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material, a cracked material under constant-strain control and a cracked material
under steady-stress control.

In zirconia, two kinds of hysteresis loops develop. As mentioned previously, a
tetragonal-to-monoclinic transformation takes place under the influence of stress,

Fig. 7.28 SEM micrographs at increasing magnification of a–c monotonic fracture and d–f cyclic
fatigue fracture in Al2O3-SiC, composite, showing the predominately transgranular nature of crack
paths and regions of cleavage-like steps (indicated by letter C) formed under monotonic loading,
compared to the rougher more intergranular fracture surfaces induced by cyclic loading. Horizontal
arrow indicates direction of crack growth [5]. With kind permission of John Wiley and Sons
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accompanied by microcracking. In Fig. 7.33, a transformation-induced hysteresis
loop is illustrated.

When a material is subjected to cyclic loading, its stress–strain response may
change with the number of applied cycles. If the maximum stress increases with
the number of cycles, the material is said to ‘cyclically harden’. If maximum stress
decreases over the number of cycles, the material is said to ‘cyclically soften’. If
the maximum-stress level does not change, the material is said to be ‘cyclically
stable’. As seen in Fig. 7.33, the nature of these transformation-induced hysteresis
loops is cyclically stable when the stress level is considered. However, the strain of
these cycles upon unloading and under compression are different, possibly due to
the asymmetric stress characteristic of phase transformation (the peak strain at
compression point E is less than that at tension point B).

Microcracking-induced hysteresis may be seen in Fig. 7.34, where surface-
crack friction and sliding occur. A comparison is made between such a case and
one without crack friction and sliding.

Direct micrographic evidence for microcracking was observed by TEM for
3Y-TZP. Figure 7.35 is a TEM micrograph after fatigue. This microcrack is
0.1 lm. Calculations made on the basis of the estimated volume (10 lm3)
provided a crack density of 10-4.

A tendency to strain softening with increased strain range has been observed
and is illustrated in Fig. 7.36 by the fact that the hysteresis loop tilts progressively
toward the strain axis as cycling proceeds. Also, the increase in the width of the
loop is a sign of softening; in the case of Mg-PSZ, a relatively small loop width
increase may be observed.

In the work of Liu and Chen [19], a series of hysteresis phenomena is described
for 3YTZP and Mg-PSZ ceramics, as are the mechanisms controlling the evolved
loop characteristics and the concept of cyclic softening. For more details on
hysteresis please refer to the original work.

Table 7.3 Values of C and m (in Eq. (7.1)) and the threshold, DKTH, for some ceramic materials
[5] (with kind permission of John Wiley and Sons)

Kc (MPa m1/2) C (m/cycle
(MPa m1/2)-m)

m DKTM (MPa m1/2) Ref.

Al2O3-SiCw 4.5 1.12 9 10-17 15 2.7 Present
study

Alumina *4.0 27–33 2.5–2.7 18, 20
Mg-PSZ (TS

grade)
16.0 1.70 9 10-48 42 7.7 4

(MS grade) 11.5 5.70 9 10-28 24 5.2 4
(AF grade) 5.5 4.89 9 10-22 24 3.0 1.4
(overaged) 2.9 2.00 9 10-14 21 1.6 4

Silicon nitride 6.0 1.01 9 10-21 12-18 2.0-4.3 21
3Y TZP 5.3 4.06 9 10-58 21 2.4 10
Graphite/

pyrolytic C
*1.6 1.86 9 10-22 19 *0.7 12
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No discussion on hysteresis in ceramics is complete without an illustration of
the case of fiber-reinforced ceramics. Most ceramics are strengthened by various
means to induce certain improved mechanical (or physical) properties. Here, SiC is
considered, after entering the spotlight thanks to its possible uses in aerospace
structures, such as space shuttles, high-speed aircraft and in hot engines. Such
ceramic composites, being resistance to both mechanical loads and thermal
aggression, might potentially serve in many new high-technology applications.
The expected improvement in mechanical load-bearing capacity is clearly related
to the achievement of better toughness, basically because this property is not as
good in bulk ceramics. The purpose of toughening the matrix is for crack-tip

Fig. 7.29 Small-crack data
in Al2O3-SiC, showing
variation in surface crack
length (2c) with number of
cycles at a R = 0.05 and
b R = -1.0 [5]. With kind
permission of John Wiley and
Sons
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shielding by bridging fibers to decrease fiber pull-out, which occurs when the
specimen is broken. In aeronautic applications, fatigue behavior is extremely
important. The illustrative figure (Fig. 7.37) represents a composite SiC matrix, in
which bundles of Nicalon (SiC) fibers are embedded. Note that 2D refers to the
bidirectional composite, while 1D refers to unidirectional loading.

Tests were carried out under tension–tension sinusoidal cycling, between zero
and a controlled maximum stress, S (= r), at a frequency of 1 Hz. The Nicalon itself
has a failure strain of *0.2–0.3 %. Figure 7.37 is based on a lifetime diagram (S–N
relations) which is depicted in Fig. 7.38. Depending on the maximum stress, three
stages may be observed: (a) samples broken during the first loading–scatter in
ultimate tensile strength (O) is observed; (b) fracture occurred after a limited number

Fig. 7.30 Detailed SEM micrographs showing morphology of a single microcrack of surface
length 167 lm in Al2O3-SiCw showing a general morphology, b evidence of crack bridging by
uncracked matrix ligaments, and c, d crack bridging by SiC [5]. With kind permission of John
Wiley and Sons

Fig. 7.31 A hysteresis loop with the Masing calculation of the curve [34]. With kind permission
of Elsevier
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of cycles from 5 to 12000, in relation to the maximum fatigue stress (open square)
and no fracture occurs after a given number of cycles, typically 106 (filled square),
namely fatigue runout describes this case. One may see from Fig. 7.37a that the first
stress/strain loading curve has a shape similar to that of a monotonic tensile test.

Furthermore, the maximum stress is beyond the linear line, which terminates
at *100 Mpa. Moreover, Fig. 7.37 shows that the areas of the hysteresis loops
increase, which means that their main slope decreases. Figure 7.37b represents a
theoretical hysteresis loop. Stress and strain measurements determine the changes
in stiffness characteristics (tangent modulus) of the loop, namely ESL at the start of

Fig. 7.32 Stress–strain
response of a a dense, elastic-
homogeneous plastic
material, b a cracked material
under constant strain-
controlled condition, and c a
cracked material under
constant stress-controlled
condition [19]. With kind
permission of John Wiley and
Sons

Fig. 7.33 Evolution of the
transformation-induced
hysteresis loops during stress
cycling [19]. With kind
permission of John Wiley and
Sons
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Fig. 7.34 Evolution of the microcracking-induced hysteresis loops during stress cycling
a without crack surface friction and sliding, and b with crack surface friction and sliding [19].
With kind permission of John Wiley and Sons

Fig. 7.35 TEM micrograph
of 3Y-TZP after fatigue
shows a lenticular microcrack
along the grain boundary (as
indicated by arrows) [19].
With kind permission of John
Wiley and Sons
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loading, EEL at the end of loading, ESU at the start of unloading and EEU at the end
of unloading. Typical changes in these stiffnesses are shown in Fig. 7.39. ESL and
EEU (at the bottom of the loop in Fig. 7.37b) are higher than the other two, owing
to debris affecting normal crack closure. Thus, only EEL and Esu (at the top of
loop) are significant with respect to fatigue behavior.

Ceramics reinforced with continuous fibers exhibit delayed failure under a
pulsating load (see Fig. 7.2c). Note that already during the first load cycle, the
material exhibits multiple matrix cracks and also some fiber breaks. The higher the
applied load, the higher the initial damage during the first cycle and the faster
the instability condition sets in. The apparent fatigue limit is situated well beyond
the proportional limit observed during tensile tests. For more mathematical analysis
of the strengthening effect of fiber-reinforced ceramics and on decreased interfacial

Fig. 7.36 1st and 51st
hysteresis loops of Mg-PSZ at
0.25 Hz [19]. With kind
permission of John Wiley and
Sons

Fig. 7.37 2D SiC/SiC:
fatigue in tension/tension.
a Example of recorded stress/
strain loops; b example of
theoretical loop, definition of
the tangent moduli [24]. With
kind permission of Elsevier
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stress and the critical instability, which determines failure as a consequence of the
increase in broken fibers, one may consult the work of Rouby and Reynaud [24].

7.8 Cyclic Hardening (Softening)

The hardening (‘work hardening’) of ceramics occurs in a manner similar to
monotonic (static) testing during deformation. Under cyclic stress, in addition to
work hardening, the softening of materials (‘work softening’) is often also
observed. It has been and is still customary to compare dynamic and static
deformation results. There have also been attempts to present the fatigue behavior
of materials in terms of ratios of dynamic-to-static test data, mainly the ratio of the

Fig. 7.38 Lifetime diagram
for 2D SiC/SiC: fatigue in
tension/tension. (O, failure at
first backing; Open square
fatigue failure; Filled square
fatigue run-out) [24]. With
kind permission of Elsevier

Fig. 7.39 2D SiC/SiC:
fatigue in tension/tension
(S = 135 MPa). Evolution of
the tangent moduli as a
function of number of cycles
(no failure at 250000 cycles)
[24]. With kind permission of
Elsevier

7.7 Hysteresis 563



www.manaraa.com

fatigue limit to the tensile strength. K. J. Miller [65] states that attempting such a
correlation is understandable, since the ability to predict fatigue behavior from a
single monotonic test is highly desirable. However, he claims that correlating
static and dynamic test results is dangerous and unwise and that static data should
not be used by designers to assess fatigue behavior in materials, since cyclic
softening, cyclic hardening or both may occur to some extent, depending on the
strain range, strain rate, temperature, material composition, etc. Figure 7.40a
indicates work hardening in a 3Y-TZP ceramic. In this case, this ceramic has
submicron dimensions. The figure compares cyclic (fatigue) and monotonic
tensile stress versus strain. One observes that the cyclic curve lies above the
monotonic one, indicating that the hardening in cyclic deformation is greater than
in monotonic straining. In the nanosized 3Y-TZP ceramic (100 nm), cyclic
softening may be observed (see Fig. 7.40b). As expected in this ceramic, a t ? m
transformation may occur, just as a monoclinic phase has been observed by TEM
in many micro-localities (illustrated in Fig. 7.41).

It is, therefore, reasonable to assume that the contribution of a cyclic-stress-
induced phase transformation is associated with cyclic hardening. This cyclic
hardening is an accumulative process, compared with hardening from static stress at
the same stress level and so the strengthening is greater, as seen from the location of
the curve representing cyclic hardening. The softening in the nanocrystalline 3Y-
TZP (Fig. 7.40b) is associated with a large number of microcracks along the
tetragonal grain boundaries. The formation of these microcracks is attributed to very
large residual stresses resulting from martensitic transformations. Moreover, in the
case of microcracking without transformation, the microcracks form along the
tetragonal, rather than the monoclinic, grain boundaries. These microcracks coa-
lesce and propagate to form a dominant crack under cyclic stress (see Fig. 7.41b).

SEM observations of the fatigue-fracture zone reveal that plastic deformation
has occurred in some micro-areas after cyclic deformation at RT in the nano-
crystalline (100 nm) 3Y-TZP, as seen in Fig. 7.42. This was affirmed by AFM, as

Fig. 7.40 Tensile stress–strain behavior, the cyclic curves are for a stress ratio, R of 0.1 and a
frequency of 0.1 Hz at room temperature. a The submicron sized 3Y-TZP ceramics (0.35 lm)
showing cyclic hardening, b the nanocrystalline 3Y-TZP ceramics (100 nm) showing cyclic
softening [37]. With kind permission of John Wiley and Sons
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shown in Fig. 7.43. The isoaxial grains became banana-shaped, such that the long
radius of the grains is 3–5 times longer than the short-grain dimension. This plastic
deformation exceeded 100 %, which may be considered a superplastic deforma-
tion in the nanocrystalline 3Y-TZP (100 nm). The shapes of the isoaxial grains
were not affected by fatigue after cyclic tension at RT in the submicron 3Y-TZP
ceramic (0.35 lm).

It is interesting to observe the curved slip lines on the fractured surface of the
nanocrystalline 3Y-TZP ceramic, where the role played by the dislocations in the
plastic deformation is evident. Also note the appearance of the curved slip lines
that resemble the microstructures observed in metals (the ‘beach markings’;
see, for example, Polakowski and Ripling). These lines represent hiatuses between
working and rest periods during fatigue in metals (see Fig. 7.44).

Fig. 7.42 A SEM micrograph showing the plastic deformation characteristics of a fatigue
fracture at room temperature for the nanocrystalline 3Y-TZP ceramics (100 nm). The size of the
micrograph is approximately 10 9 6 microns [37]. With kind permission of John Wiley and Sons

Fig. 7.41 TEM micrographs of microstructure a for the submicron material after cyclic
hardening up to fracture (N [ 500 cycles) showing that transformation occurred in many micro-
localities without microcracking; b the nanocrystalline material after cyclic softening up to
fracture (N [ 500 cycles). The microcracks had coalesced and propagated into a main crack
along the tetragonal grain boundary [37]. With kind permission of John Wiley and Sons
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The accumulated plastic strains during the cycles were continuously recorded
after unloading for the nanocrystalline and the submicron-sized 3Y-TZP ceramics
(see Fig. 7.45). This accumulated plastic strain saturated after 100 cycles or so, but
was obviously different in nature and extent than that of metal. Such strain
accumulation would eventually lead to failure. Under a 50 MPa maximum cyclic-
tensile stress, very little strain accumulation was found under fully-cyclic loading

Fig. 7.43 An AFM
micrograph illustrating
superplastic deformation at
room temperature for the
nanocrystalline 3Y-TZP
ceramic (100 nm). The grains
have been tensioned into
‘‘banana’’ shapes, as viewed
on the fatigue fracture
surface. The size of the
micrograph is approximately
600 9 600 nm [37]. With
kind permission of John
Wiley and Sons

Fig. 7.44 An AFM
micrograph of the curved slip
lines and possibly a ‘‘young’’
extrusion (denoted by arrows)
at room temperature for a
nanocrystalline 3Y-TZP
ceramic; a view of the side
edge of the fatigue fracture.
The size of the micrograph is
approximately
350 9 350 nm [37]. With
kind permission of John
Wiley and Sons
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conditions for the submicron material (0.35 lm); but plastic strain was rapidly
accumulated for the nanocrystalline material (100 nm) (see Fig. 7.45b). For the
latter, the maximum accumulated plastic strain was close to 8.5 9 10-4 (after 230
cycles). The submicron material showed considerable accumulation until the stress

Fig. 7.45 Accumulated plastic strain versus cyclic number at the stress ratio, R of 0.1, and a
frequency of 0.1 Hz (sinusoidal), and room temperature: a compared under different maximum
tensile stresses for 0.35 lm sized 3Y-TZP ceramics; b under a tensile stress of 50 MPa, compared
between 120 nm and 0.35 lm sized 3Y-TZP ceramics [37]. With kind permission of John Wiley
and Sons
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increased to 150 MPa (see Fig. 7.45a). Even so, the maximum value of accumu-
lated plastic strain for the submicron material under a 150 MPa stress was only
22 % of that of the nanocrystalline (100 nm) under a 50 MPa stress. Therefore, the
nanocrystalline 3Y-TZP ceramic shows lower strength and a larger ability to
accommodate plastic strain than the submicron material.

Thus, as indicated above, in the submicron-sized 3Y-TZP ceramic, the stress-
induced cyclic hardening, due to transformation taking place, was higher than
under static deformation. Nanocrystalline 3Y-TZP softened cyclically, due to the
formation of a large number of microcracks. In the submicron structures, this
observation basically reflects the effects of dislocations and dislocation–disloca-
tion interactions. In the nanocrystalline 3Y-TZP ceramic, this greater ability to
accommodate plastic strain is probably due to grain-boundary sliding, since in
nanocrystalline structures dislocations cannot move, because slip distances are on
an atomic scale (like the dimensions of dislocations themselves).

7.9 The Mean Stress and the Goodman Diagram

In Sect. 7.3 on definitions, the mean stress was defined in Eq. (7.4) as:

rmean ¼
rmax þ rmin

2

A large number of experiments on fatigue were performed with completely
reversed cycles (indicated in Fig. 7.2a), where the mean stress is zero
ðrmax ¼ rminÞ. Often in components exposed to fatigue, a pattern (as shown in
Fig. 7.2b) is observed, resulting from the superposition of a static preload during
the reversed cycle (see 7.2a); also note that the names of the cycle-patterns shown
in Fig. 7.2 may have different nomenclature in the literature. This is also often
stated differently, namely that the mean stress is rmð¼ rmeanÞ, represents a steady-
state stress and the alternating stress is a variable stress. This stress cycle is
asymmetrical, since the sum of rmax and rmin 6¼ 0. Clearly, machine parts in
service exposed to cyclic stresses may experience particular conditions in which
rmin� 0 or rmax� 0.

To obtain an S–N curve, a very large number of tests are essential. In deter-
mining fatigue-stress levels using standard testing equipment, the test specimens
are subject to alternating and reversed stress levels, as indicated in Fig. 7.2. Cyclic
stress varies from ra (tensile) to ra (compressive). The mean stress equals 0. To
overcome the difficulty posed by the large number of experiments, methods have
been suggested, one of them by Goodman, known as the ‘Goodman diagram’, in
which the alternate stress is plotted against the mean stress. The Goodman diagram
is widely used for metallic materials, but its use has also been attempted for
ceramics. Figure 7.46 is an illustration of a Goodman diagram for 3Y-TZP.

In the Fig. (7.46), the stress amplitude is plotted against the mean stress. The
ratios (R) are indicated on the graph. The numerals appearing next to the symbols
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indicate the number of specimens tested. The data fall into three categories: (a) all
failed after 104 cycles; (b) all survived; and (c) some survived. With these data, a
failure locus is drawn on the diagram (in Fig. 7.46) by means of the solid line
having a negative slope, also expressed as:

ra ¼ re 1� rm

ru

� �ffi 

ð7:14Þ

where ra is the stress amplitude, re is the fatigue strength at R = -1, rm is the
mean stress and ru is the tensile strength. R = 1 corresponds to a fully reversed
cycle. Note that if fatigue life is controlled only by rmax, then the failure locus
should be a straight line with a slope of -1 (namely rmax = rm + ra. For this
equality, see the definitions in Sect. 7.4. However, when the stress amplitude is
controlled, then the fatigue failure locus should be a horizontal line. These
experimental results show that the slope is - 0.8, i.e., failure is mostly controlled
by the maximum stress. Various combinations of stresses (such as mean stress or
stress amplitude) are plotted against Nf or ra versus mean stress to get various
values of Nf. In the above figure, stress amplitude (rather than alternating stress)

Fig. 7.46 Goodman diagram
of 3Y-TZP for specimens
tested for 104 cycles.
Numbers next to the symbols
indicate the number of
specimens tested [17]. With
kind permission of John
Wiley and Sons

Fig. 7.47 A schematic plot
of fatigue strength
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versus mean stress is shown. The input data for constructing a Goodman diagram
may be an S–N curve.

One of the key limitations of the S–N curve is its inability to predict lifetimes at
stress ratios different from those under which the curve was developed. To predict
the lifetime of a certain component, a more useful presentation of fatigue life test
data is the modified Goodman diagram.

It is worth restoring the Goodman diagram concept to appreciate its use.
Essentially, the emphasis of Goodman’s work was on tensile-mean stress with
respect to fatigue life. The stress required to produce failures during a specified
number of cycles is directly related to tensile strength, as indicated schematically
in Fig. 7.47.

Tensile mean stresses reduce the fatigue life compared to the length observed in
reversed loading. The original Goodman diagram is a graphic expression of this
concept, shown schematically in Figs. 7.48 during two cycles.

The area below the curve (Figs. 7.46 and 7.48) indicates that the material
should not fail at a given stress. The area above the curve represents the likelihood
that fatigue failure will occur. The alternating stress is plotted on the ordinate and
the mean stress on the abscissa. The allowable alternating stress, with no mean
stress (0 mean stress), is the fatigue limit. The maximum mean stress, with zero
alternating stress, is the ultimate tensile strength. A straight line is then drawn
between the two points. Any combination of mean and alternating stress on this
line will have the same fatigue life. Mathematically (in terms of the designation in
the figure), this may be expressed as:

Sa

SFL
þ Smean

Su
¼ 1 ð7:15Þ

where SFL is the fatigue strength. (In our earlier designation of Eq. (7.15), S : r).
Equation (7.15) is the same as Eq. (7.14). The curves show the results of having
compared the relationship of the tensile strength and the fatigue strength at the
cycles indicated schematically. The stress required to produce failures in a spec-
ified number of cycles is directly related to the strength of the material.

Fatigue is a problem that may affect any movable part or component. Auto-
mobiles on roads, aircraft wings and fuselages, ships at sea, nuclear reactors, jet

Fig. 7.48 A schematic plot
of the alternating stress
versus the mean stress during
two cycles. Su at R = 1 is the
ultimate tensile strength
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engines and land-based turbines are all subject to fatigue failure. There are three
crucial factors that cause fatigue: (1) a maximum tensile stress of sufficiently high
value; (2) a large enough variation or fluctuation in the applied stress; and (3) a
sufficiently large number of cycles of applied stress. There are many types of
fluctuating stresses as indicated in Fig. 7.2.

7.10 Load and Amplitude Effects on Crack in Fatigue

7.10.1 Introduction

Structural ceramic components, often working under cyclic conditions, may
experience variations (overstressing or understressing) under common loading
conditions. For example, metallic structures, such as airplane wings, are typical
cases, in which common cyclic loading may be influenced by the absence of load
constancy. Even ceramics which are increasingly used in a wide range of indus-
tries, including mining, aerospace, automotive, etc. are affected by the loading
conditions. Therefore, designers should be concerned about the loading conditions
when deciding to apply a ceramic component for some specific use. The aim of
this section is to consider the possibilities of load variation, whether accidental or
uncontrollable; it is important to understanding the consequences for fatigue life
and crack propagation. Either compressive or tensile stress may be applied, but
many researchers emphasize the importance of compressive stress on fatigue
cracking. Cyclic loading may be performed under various conditions. Figure 7.2
illustrates some cycles and Eqs. (7.3)–(7.7) define certain important parameters
that may be relevant to loading conditions. Of the various reports on loading
conditions, this section discusses some principal, experimental results.

7.10.2 Loading Conditions and Effects

Here, examples of ceramics exposed to variable loading conditions will be
illustrated. This test involves monitoring crack-growth rates at constant Kmax,
with: (i) the load cycled between Kmax and Kmin (R = 0.1) compared to being held
constant at Kmax (Fig. 7.49a) and; (ii) the value of Kmin being varied (Fig. 7.49b).
The specimens are of a MgO-PSZ ceramic, heat-treated to vary the fracture
toughness, K, from *3 to 16 MPa m1/2 and tested both in inert and moist envi-
ronments. Recall that cyclic fatigue-crack propagation, da/dN, is a function of the
stress-intensity range, DK, and resembles metallic materials (where the growth
rates may be fitted to a conventional Paris Law; see Sect. 7.6), namely:

da=dN ¼ CðDKÞm ð7:9Þ
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However, the exponent, m, in ceramics is considerably larger than reported for
metals, i.e., in the 21–42 range (as opposed to 2–4 for metals) and having constant C
scales inverse to the fracture toughness. DK is the stress-intensity range of the applied
stress with a cyclic frequency varying between 1–50 Hz using a sinusoidal wave:

DK ¼ Kmax � Kmin ð7:10Þ
where Kmax and Kmin are the maximum and minimum stress intensities, respec-
tively, in the fatigue cycle. Often, the stress-intensity factor related to the crack-
opening stage and its blunting is expressed in terms of the following relations. The
effective stress ratio is:

U ¼ Smax � Sop

Smax � Smin

ð7:11Þ

S is the stress and the subscript, op, stands for the crack-opening stress. Another
factor to consider is that of stress-intensity, DK, which is given as:

DKth ¼ DKin þ DKop ð7:12Þ

DKin¼ Kmax � Kop and DKop ¼ Kop � Kmin ð7:13Þ

or

DKth ¼ Kmax � Kmin ð7:12aÞ
DKth is the threshold-intensity factor, DKin is the intrinsic or basic stress intensity
required for the extension of a crack opening and DKop is an additional crack-
opening stress intensity required to resist crack closure and maintain a fully opened

Fig. 7.49 Effect in low-toughness Mg-PSZ (AF) microstructure of a sustained and cyclic
loading conditions on the crack velocity, da/dt, at constant Kmax(= 3.8 MPa m1/2), and b varying
applied stress-intensity range DK on crack velocity at constant Kmax (=4.2 MPa m1/2) [17]. With
kind permission of John Wiley and Sons
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crack. The increased opening-stress intensity, caused by tensile load (overload) is
an important factor in crack-growth retardation. Figure 7.49 above relates to con-
stant-amplitude cyclic loading. To attain variable-cyclic loading, single and block
overload sequences were applied during steady-state fatigue cracking (illustrated in
Fig. 7.50). One may observe in Fig. 7.50a that crack advance, the crack-growth
rate, remains approximately constant at DK (=5.48 MPa m1/2). On reducing the
cyclic loads, so that DK = 5.30 MPa m1/2 (high–low block overload), transient
retardation is seen, followed by a gradual increase in growth rates, until a new
steady-state is achieved. By subsequently increasing the cyclic loads, so that
DK = 5.60 MPa m1/2 (low–high block overload), the growth rates show transient
acceleration before decaying to the steady-state velocity. For more on overloads,
under-loads and variable amplitude loads, one may read the Mechanical Properties
of Metals (Pelleg). Similar crack-growth retardation, following a high–low block
overload (DK = 9.5–8.5 MPa m1/2) is shown for peak-toughness Mg-PSZ in
Fig. 7.50b. In addition, significant retardation may be seen following a single
tensile overload to a Kmax of 12.3 MPa m1/2. Such results may be rationalized in
terms of changes in crack-tip shielding from the transformation zone. Recall that
zirconia undergoes a phase transformation. The tetragonal phase undergoes a stress-
induced martensitic transformation to a monoclinic phase in the presence of a high-
stress field near a crack-tip. The resulting dilatant transformation zone, in the wake
of the crack, exerts compressive tractions on the crack surfaces and, hence, shields
the crack-tip from the applied (far-field) stresses [51].

In Fig. 7.51a, fractographs are illustrated showing the transgranular nature of
the crack path as observed via optical microscopy. The transgranular nature of
crack paths is clearly evident. The grain boundaries are decorated by monoclinic
zirconia phases. Frequent crack deflection is also seen. The degree of deflection
appears to decrease progressively with decreasing toughness, as indicated by the
reasonably flat crack path in Fig. 7.51b for an over-aged specimen also tested.
SEM micrographs compare the appearance of the fracture surfaces in cyclic and
monotonic (static) loading, which seem to be identical. Unlike metals, in the
zirconia, fractured surface fatigue striations or crack arrest markings are not
observed ( Fig. 7.52) .

b Fig. 7.50 Transient fatigue-crack growth behavior in a mid-toughness (MS) and b peak-toughness
(TS) Mg-PSZ due to variable-amplitude cyclic loads, showing immediate crack-growth
retardations following high–low block overloads, immediate accelerations following low–high
block overloads, and delayed retardation following a single tensile overload [6]. With kind
permission of John Wiley and Sons
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Fig. 7.51 Optical micrographs of the morphology of cyclic fatigue crack paths in Mg-PSZ,
showing (a) an increasingly deflected crack path in the mid-toughened (MS) microstructure at
DK * 6 MPa m1/2 compared to (b) an essentially linear crack path in an over-aged material at
DK * 2 MPa m1/2. Note the transgranular fracture morphology and evidence of crack branching
in the MS microstructure. Arrow indicates general direction of crack growth [6]. With kind
permission of John Wiley and Sons

Fig. 7.52 Representative scanning electron micrographs of the nominally identical fracture-
surface morphologies obtained in Mg-PSZ (MS grade) for a overload fracture under monotonic
loads at DJ * 11.5 MPa m1/2, and (b) fatigue fracture under cyclic loads at DJ * 6 MPa m1/2.
Note, in contrast to metals, the absence of striations or crack-arrest markings on the fatigue
fracture surface. Arrow indicates general direction of crack growth [6]. With kind permission of
John Wiley and Sons
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In the Mg-PSZ, the transformation from the metastable tetragonal phase to the
monoclinic phase absorbs part of the energy required for crack propagation with
consequent increase in fracture toughness, manifested as crack-tip shielding.

7.11 Structural Observations in Fatigued Specimens

7.11.1 Striations

Common markings, found on the fractured surfaces of metals undergoing fatigue
deformation, are the curved markings known as ‘striations’. The striations char-
acteristic of fatigue deformation in metals are crack-front markings, believed to be
associated with the cycle applied during fatigue. Thus, it is thought that each
striation (observed by examining fractured specimen surfaces after fatigue) is
produced by one stress cycle. HRTEM and high-resolution SEM studies show that
striations often have a saw-tooth profile, in which one side of the saw-tooth has a
more jagged appearance, exhibiting more slip traces than the other side. The
appearances and profiles of striations vary widely, depending on the metallic
material. These structural features (striations ), observed in fatigued machine parts,
represent fatigue-progression marks, also known as ‘beach marks’. Such fatigue
striations have not, thus far, been widely reported in the ceramics literature,
though they have been mentioned in some recent works. In Sect. 7.2.2, Fig. 7.13 is
characterized by striations in 3Y-TZP and may also be seen in Sect. 7.3, Fig. 7.13
and, particularly, in Fig. 7.14b. Striations are considered in the work of Liu and
Chen [18]. They state that fatigue striations result from alternate-overload frac-
ture. The appearance of striations varies with the R ratio and is very sensitive to

Fig. 7.53 Maximum stress
intensity factor (Kmax) and
crack resistance (Kr) versus
crack length: I growth due to
overload, II growth due to
fatigue, III growth due to
overload and fatigue [18].
With kind permission of John
Wiley and sons
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Fig. 7.54 Cross-section morphologies of the fibers in 3D SiC/SiC composite after: a monotonic
tension test; b tension–tension fatigue test [31]. With kind permission of Elsevier

Fig. 7.55 Transmission
electron micrograph showing
unusually long pairs and
elongated loops [27]. With
kind permission of John
Wiley and Sons

Fig. 7.56 Transmission
electron micrograph showing
unusually long dipoles in
cyclically stressed MgO [27].
With kind permission of John
Wiley and Sons
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Fig. 7.57 Transmission
electron micrograph showing
long dipoles, elongated
prismatic loops, and screw
dislocations [27]. With kind
permission of John Wiley and
Sons

Fig. 7.58 Transmission
electron micrograph showing
inter-connected pairs.
Dislocation pairs A are nearly
in screw orientation [27].
With kind permission of John
Wiley and Sons

Fig. 7.59 Dislocation
substructure in a specimen
subjected to 1 9 106 cycles
in fatigue [27]. With kind
permission of John Wiley and
Sons
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the loading condition and the crack geometry. They also claim that the fatigue
striations observed in 3Y-TZP have a different origin than those commonly
observed in metals and polymers; they are actually the demarcations between
fatigue fracture and overload fracture, which appear as alternating light and dark
damage bands. When crack growth is entirely within the fatigue regime (as in
regime II of Fig. 7.53), no striations should appear.

Additional striations were also observed in 3D SiC/SiC composite deformed by
tension–tension fatigue, as shown in Fig. 7.54. Here, the fractured surface of
monotonic tension and tension–tension fatigue results are compared. Note that the
whole cross-section surface of the monotonic tension-tested specimens is coarse.
On the cross-section surface of the tension–tension fatigue tested specimens, two
different areas may be seen: one area composed of ringed striations, taking up
about half of the whole section, while the other area is smooth.

7.11.2 Dislocation Structure in Fatigue

Examples of dislocation structures after fatigue deformation appear in a series of
microstructures (Figs. 7.55–7.59) obtained by TEM. Subramanian [27] claims that
these dislocation substructures are similar to that of unidirectionally-stressed MgO.
The micrographs presented below are of single-crystal magnesia which underwent
a large number of cycles (in the millions) of low strain amplitude. The maximum
strain was about 0.1 % per cycle. The characteristics of the dislocation structure in
MgO, having a rock-salt structure, is as follows:

(a) the dislocations are unusually long plus–minus pairs;
(b) there are elongated dislocation loops, wider than those observed in other types

of RT tests, such as in the unidirectional straining;

Fig. 7.60 Dislocation
substructure in a specimen
subjected to 4 9 106 cycles
in fatigue [27]. With kind
permission of John Wiley and
Sons
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(c) there are dislocation interactions leading to star-shaped pairs and intercon-
nected pairs are formed;

(d) long jogs are observed in some dislocations;
(e) a large number of screw dislocations and a lower density of long edge-dis-

location pairs and loops are visible.

It was further claimed, based on Figs. 7.59 and 7.60, that the dislocation sub-
structure in fatigued single-crystal MgO specimens is independent of the number
of cycles of repeated stress. Thus, in Fig. 7.59, the number of cycles is 1 9 106

and, in Fig. 7.60, the number of cycles is 4 9 106, but the dislocation substruc-
tures are similar in both these micrographs. The TEM data further indicate that the
dislocation density in specimens after fatigue should be less than in unidirec-
tionally-strained specimens and, thus, the dislocation density is independent of the
cycles after a few initial testing cycles.

The existence of very long pairs after fatiguing is an outcome of screw dislo-
cations that get pinned by long jogs at various points and then continue to bow out.
The dislocation loops observed in these specimens are often quite wide and, in
some loops, the separation between the edge components is as large as 280 Ǻ.
These pairs of dislocations are at 45o planes. From the observed separation
between the glide planes, the maximum shear stress that might have been present
in these regions, without driving the two dislocations past each other, was cal-
culated to be on the order of G/1000 (G is the shear modulus).

Since MgO has a structure similar to that of NaCl crystal, its slip systems are
also of the type {110} h110i. There are six such planes in a cubic structure.
In a cubic structure, four of the six {110} slip-plane projections onto the (001) slip
planes leave traces along the h100i direction and lie at 45o to the surface; these are
known as ‘45o slip planes’. Two have traces along the h110i direction, lie at 90o to
the surface and are referred to as ‘90o slip planes’. The shortest Burgers vector for
a perfect dislocation in the NaCl structure is a/2 h110i. This is the operative slip
direction. There is only one h110i slip direction in each {110} slip plane.
Therefore, there can be only one kind of mobile dislocation in each slip plane. The
secondary slip systems are of the type {001} h1�10i. Since the primary and sec-
ondary slip planes have a common Burgers vector, this is the cross-slip plane. No
two primary slip planes have the same Burgers vector.

Experiments in rock-salt structure (among them MgO) indicate a correlation
between fatigue failure and cross slip. Cyclic-stressing experiments of crystals that
exhibit easy cross-slip and of those that do not show easy cross-slip suggest that
the absence of easy cross-slip is the probable reason for the absence of fatigue
failure. If the hypothesis that cross-slip is essential for fatigue failure is correct, a
possibility for improving strength of certain materials exists, since crystals without
mobile dislocations are very strong.
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7.12 Notch Effect

This section is of particular interest as a consequence of the fact that almost all
ceramics have flaws, many in form of microcracks or even cracks on a larger scale.
These are outcomes of the fabrication techniques; however, reducing such pores or
cracks to a viable, minimal level is very costly. Many such cracks end at surfaces,
where they act as stress raisers. Notches may also be considered as cracks, though
the difference between notches and cracks is only a matter of size, not kind. Thus,
the study of notched specimens has practical significance, because, in engineering
components, fatigue starts mostly at the surface, at those places where stress-

Fig. 7.61 S–N Curves [10].
(Ref. 12 is Headinger)

Fig. 7.62 S–N curves for un-
notched and notched adjusted
with damage area [10].
(Ref. 12 is Headinger)
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raisers are present in the form of ‘micronotches’ (i.e., traces of machining; arti-
ficial defects). In actual applications, such components are never perfectly smooth.
Corners, fillets, holes, etc. all act as stress-raisers. Such geometries cause stress
concentrations in the component and reduce the fatigue strength and life of a
structure. The straightforward way to perceive the notch effect in fatigued speci-
mens is by looking at the S–N curves. Figures 7.61 and 7.62 show experimental
curves of 2D woven fabric-reinforced ceramic matrix composite (SiC/SiC),
obtained in a tension–tension mode at 1100 oC.

Here, the load was applied as a 1.0 Hz triangular wave. (A triangular wave is
clearly a non-sinusoidal wave form, but it is a periodic function). The minimum-to-
maximum load ratio in all the cases was 0.1. The maximum applied-stress level is
the reference for tests in which stress is defined as the applied tensile load per unit
area. The area used in determining the stress level is the cross-sectional area at the
gauge length and, in the case of the notched specimens, is reduced by the area of the
hole. The notch is in the form of a central 3.06 mm diameter hole, D, in a 9.31 mm
wide specimen, W, for a D/W ratio of 0.33. The S–N curves of the notched and
un-notched fatigue tests are presented on a logarithmic scale of the x axis (fatigue
cycles). Fatigue life is clearly a function of the stress level. In Fig. 7.61, a clear
difference between the fatigue behavior of the notched and un-notched specimens is
evident. The stress level of the notched specimens in the S–N curves is lower than
that of the smooth specimens with a reduced endurance limit. The fatigue life of the
un-notched specimens is longer by about a factor of four than that of the notched
specimens. Due to the difference in applied-stress levels at a given fatigue life of the
notched and un-notched specimens, a more appropriate comparison is fatigue
(namely the applied-stress level) strength between these two. For this purpose, a
fatigue-notch factor, b, is used as a ratio of the fatigue strength of the notched
specimen (rn) to that of the un-notched specimen (run) at a given fatigue life:

b ¼ rn

run
ð7:16Þ

In Fig. 7.62, the adjusted notch-fatigue life fits within the scatter band of the
S–N curve. In this case, the fatigue-stress level in the notched specimens was
adjusted by using the damaged area, which extends about 0.4 mm into the spec-
imen, and using the undamaged area beyond it. (The stress level is the load divided
by the area and, to this end, an adjustment had to be made).

Equation (7.16) is often represented by a different symbol, Kf, the notch factor,
relating the strength of smooth specimens to that of notched specimens, but having
the same meaning as:

Kf ¼
fatigue strength of smooth specimen
fatigue strength of notched specimen

Numerous experimental observations indicate that notches are among the key
factors that determine the fatigue strength of structures and play an important role
in the estimation of fatigue life and the strength of some structures exposed to
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fatigue deformation. Based on the definition of Kf, many expressions for the notch
factor have been developed over the years, differing on the basis of their various
assumptions regarding: notch geometry (e.g., sharpness); notch location (edge or
centered); crack length and location; and material properties, such as tensile stress,
etc. Traditional fatigue analysis of notched specimens is done using empirical
approaches, though various models have been developed to consider the notch
effect in regard to the strength and fatigue life of structures.

7.13 Failure Resulting from Cyclic Deformation
(Fracture by Fatigue)

In almost all the sections discussed in this chapter, crack initiation and propagation
are considered to be essential steps leading to failure. Again, fatigue cracks usually
start from the surface of a component, while fatigue damage in ductile ceramics
begins as shear cracks on crystallographic slip planes. Surfaces show slip planes as
intrusions and extrusions. This is stage I of crack growth. After a transient period,
stage II crack growth takes place in a direction normal to the applied stress.
Finally, the crack becomes unstable and fracture occurs.

A separate portion of Chap. 8 (devoted to fracture) will consider this aspect of
fatigue. Fracture by fatigue is a major part of all failures encountered in service,
where components of structural systems are operating.

7.14 Effect of Some Process Variables

7.14.1 Surface Effects on Fatigue

Fatigue cracks generally initiate on specimen surfaces; therefore, their surface
conditions are critical for good fatigue resistance of the materials. The surface
roughness of a specimen has a great effect on its fatigue strength, since it is an
effective stress-raiser. Surface roughness may originate from machining (very
critical in metals); in order to reduce or eliminate its undesirable effect, surface-
finishing or modifications of various kinds are usually a step in the manufacturing
process. Surface roughness, such as scratches of various sizes, acts like micro-
notches, producing similar effects on fatigue-strength properties as notches.
Grinding must be such that those surface irregularities, introduced by machining,
are removed to produce a smooth surface. The most effective surface-smoothing
operation is polishing. Introducing compressive-residual stress on the specimen
surface increases fatigue life. Sandblasting is also among the well-known tech-
niques. There are certain factors that must be considered in order to ensure the best
fatigue performance. Important material properties to be considered are: grain size,
grain boundaries, temperature, size, etc.
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Many methods are available for the surface treatment of metals, such as the
deposition of relatively thick coatings by one of the deposition techniques (e.g.,
chemical vapor deposition [henceforth: CVD], ion implantation, etc.). The tech-
niques for modifying ceramic surfaces are more limited, due to their relative
chemical inertness, the very strong bonds between the constituents comprising the
ceramics and, last but not least, because of their high melting temperatures. The
high melting temperature of ceramics means that surface modification processes
involving the bulk diffusion of some desired constituent is an unlikely method for
engineering ceramics, which require a chemical reaction or diffusion. However,
non-equilibrium processes, involving surface bombardment by energetic atoms,
are potentially viable methods for ceramic surface modification, such as treatments
by plasma, ion beam or laser beam bombardment. Then, there are the other
aforementioned physical methods, such as sandblasting, grinding and polishing.
The examples provided below mostly relate to dental ceramics, where various
surface treatments are necessary in order to obtain the most promising results for
practical applications.

Fig. 7.63 Schematic of the
coordinate system adopted in
stress field evaluations [25].
With kind permission of
Dr. Dahotre

Fig. 7.64 Local surface
cracks [25]. With kind
permission of Dr. Dahotre
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7.14.2 Laser Treatments

The introduction of compressive stresses at the surface is known to improve
material properties. Thus, compressive stresses improve the fatigue limit and wear
resistance, while tensile stresses decrease fatigue strength and destroy the wear
potential of surfaces. Laser applications for surface modification have become
important processing tools for generating residual stresses after the cooling down
following heating. These residual stresses form due to the great difference in
temperature between the surface and the bulk of the laser-treated specimen. The
high thermal stresses that are produced may modify the surface, but if the laser is
applied incorrectly, surface cracks may develop, which (as stated above) may be
the source of fatigue failure (when tensile-residual stress, rather than compressive-
residual stress develops).

Here, laser fluences in the range of 459–611 J cm-2 were applied to modify
alumina surfaces. The SEM micrographs show the surface features of the laser-
treated alumina specimens. Finite-element simulations were carried out to predict

Fig. 7.65 Variation of macro
stress with laser fluence [25].
With kind permission of
Dr. Dahotre

Fig. 7.66 Macro stress
variation as a function of
grain size and porosity [25].
With kind permission of
Dr. Dahotre
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the residual-stress state. In Fig. 7.63, a schematic illustration is shown, indicating
the coordinate system used to evaluate the stress field.

The conventional signs in Fig. 7.63 are: the x axis is along the direction of the
laser beam; the y axis is perpendicular to it; and both are along the surface; while
the z axis is located along the depth of the specimen and perpendicular to the
surface. The corresponding stresses acting along these directions are axial stress,
rxx, lateral stress, ryy, normal stress, rzz, and shear stress, rxy. Isolated, localized
stresses may be causing the local surface cracking, visible in the microstructure
shown in Fig. 7.64.

The shear stress, rxy, values corresponding to all the laser fluences are negli-
gible and also marginally vary as a function of laser fluence, indicating no sig-
nificant plastic deformation within the area of analysis, as may be inferred from
Fig. 7.65.

Note that the low laser fluence induces tensile stress, while high fluence stress
promotes the favored compressive stress. Porosity and grain size are functions of
laser fluence and the cooling rate and influence the macro stress. The influence of
grain size and porosity on the variation in macro stress may be seen in Fig. 7.66.

Microscopic features, like grain size and porosity, are affected by laser fluence.
Changing fluence will also affect the state of the stress. As observed in Fig. 7.66,
stress values fall within the compressive regime for increased grain sizes, which is
associated with decreasing cooling rates due to increasing laser fluences. In con-
trast, tensile stresses are favored by the generation of smaller grains, associated
with high cooling rates as a consequence of decreasing laser fluences. Thus, laser
fluence changes grain (crystallite) size and, consequently, the associated micro
stresses will also vary. This may be seen in Fig. 7.67, where the variations in
crystallite size and micro stress relative to fluence are indicated. For any particular
stress regime, an increase in laser fluence, corresponding to lower cooling rates,
leads to the formation of larger crystallites.

Fig. 7.67 Variation of
crystallite size and micro
stress with laser fluence [25].
With kind permission of
Dr. Dahotre
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Thus, in alumina ceramics, the surface residual stress sign (i.e., compressive or
tensile) may be modified by laser, more specifically by the fluence applied, which
changes the microstructure as a consequence of the cooling rate. Briefly, the macro
stress values are in the compressive regime for increased grain size associated with
the lower cooling rate due to increased fluence. Tensile macro stresses are generated
with the formation of small grains, associated with high cooling rates, resulting
from lower laser fluences. With systematic control of the laser processing condi-
tions, control of grain size and porosity may be obtained for the generation of the
stress pattern required for particular applications. The fatigue performance of a
ceramic may be improved by inducing a compressive-stress pattern on the surface.

Fig. 7.68 Microstructures of a alumina (Al2O3) and b yttria-stabilized zirconia (Y-TZP). SEM
images. Surfaces are thermally etched [35]. With kind permission of Elsevier

Fig. 7.69 Micrograph showing partial top and cross-section view of sandblast damage (by
50 lm Al2O3 particles) in Y-TZP [35]. With kind permission of Elsevier
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7.14.3 Sandblasting

Y-TZP and alumina are attractive candidates for dental and other implant
applications due to their good mechanical properties (for example, Kosmač et al.
[59], Zhang et al. [35]). Their excellent mechanical properties, compared with
others, is a consequence of a transformation mechanism, ZrO2(t) ? ZrO2(m),
which occurs as a diffusionless shear process. In dental clinical practice, an
essential criterion for the selection of crown materials, besides aesthetics, is the
resistance to fracture and deformation under long-term cyclic conditions. Surface
conditions are important and their preparation may involve, grinding, sandblasting,
polishing or any combination of these.

Fig. 7.70 Maximum tensile
stress S in ceramic layer
versus effective time to radial
fracture tR for as-polished
Y-TZP and alumina plates
bonded to polycarbonate
substrates. Data represent
individual tests at constant
monotonic stressing rates
(unfilled symbols) and in
cyclic loading at 10 Hz (filled
symbols). Solid lines are data
fits in accordance with slow
crack growth relations.
Arrows indicate runouts [35].
With kind permission of
Elsevier

Fig. 7.71 Same as Fig. 7.69,
but for sandblasted Y-TZP
and alumina plates. Solid
lines are fits from Fig. 7.69
for as-polished surfaces [35].
With kind permission of
Elsevier
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The interior ceramic surface is an important factor governing the ultimate lifetime
of ceramic-based prosthetic systems. Sandblasting of the interior surface is a com-
mon practice in all-ceramic crown restorations; the roughened surface enables a
strong mechanical bond with resin-based dental cements. However, sandblasting
introduces surface flaws and defects that may have an adverse effect on the strength
of the crown. Therefore, the introduction of a compressive stress into the damaged
layer (damage previously caused by the transformation in the zirconia) counteracts
the probability of further damage. This countermeasure is dependent on the micro-
structure and the degree of the sandblast treatment. The effect of Hertzian contact
with the spherical indenters stimulates the load experienced by a denture (i.e., the
biting force). The experimental results below are based on monolithic ceramic layers,
but are about the same as found in the ceramic cores of porcelain-veneered bilayers.
Figure 7.68 illustrates the microstructures of alumina and Y-TZP. A cross-section
SEM view of the sandblast damage in a bonded-interface specimen is shown for Y-
TZP in Fig. 7.69. This figure reveals severe sandblasting damage extending*4 lm
below the surface. XRD analysis of the Y-TZP, before and after sandblasting,
indicates only a small monoclinic phase content of *4 vol% relative to a near-zero
percent on as-polished surfaces. Furthermore, the Young modulus of the sandblasted
surface is lower than in the as-polished specimens. Figure 7.70 plots the maximum
stress, S, versus the effective time-to-radial-fracture, tR, from dynamic fatigue and
cyclic fatigue tests for polished Y-TZP and alumina bilayers (Fig. 7.71) are shown.

In Fig. 7.72, the critical load, rather than the stress, is plotted versus the test-
duration time. Here, the cyclic-fatigue data from Fig. 7.71, for sandblasted alumina
and Y-ZTP, have been converted to equivalent critical-load data. The relations used
for this purpose are given by:

Fig. 7.72 Plots corresponding to cyclic fatigue data in Fig. 7.71 for sandblasted alumina and
Y-TZP of thickness 1.5 mm, but in terms of critical loads instead of stress and for dentin-like
substrate with intervening dental cement of thickness 100 lm, using Eqs. (7.17), (7.18), and
(7.19) to convert the data. Ninety-five percent confidence bounds are used to evaluate
uncertainties in sustainable loads at long lifetimes, tR = 10 years. Shaded band indicates nominal
oral function range [35]. With kind permission of Elsevier
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In the above relations (see, for example, Zhang et al. [35], Kim et al. [58],
Miranda et al. [66]), Ec and Es are moduli of the ceramic plate and substrate, d is
plate thickness and B = 1.35 is a dimensionless constant. In Eq. (7.18), Es has been
replaced by Ei, the cement modulus, h is the thickness between crown and dentin,
and Es, the actual substrate modulus, is replaced by an effective substrate modulus,.
L = L(h/d) is an empirical Weibull function and a = 1.18, b = 0.33, and c = 3.13
were taken from Kim et al. [58]. The values used are d = 1.5 mm on thick dentin
substrates with Es = 16 cement interlayers of thickness h = 100 lm and modulus
Ei = 5 GPa. The plots include 95 % confidence bounds to facilitate extrapolations
to lifetimes at tR = 10 years. Normal oral biting force (nominal range) is
PR = 0–400 N, as indicated in the shaded area in Fig. 7.72. These figures show
that, for polished surfaces, no difference is observed between dynamic (constant
load rate) and cyclic (sinusoidal loading) data. Sandblast damage introduced into
ceramic undersurfaces causes a reduction in strength levels—10 % in single-cycle
loading, but substantially more, 20–30 %, in cyclic loading at 10 Hz.

Sandblast treatment may generate superposed surface-compressive stresses by
introducing open microcracks and inducing tetragonal to monoclinic phase
transformations. Such stresses only serve to enhance strength. Kosmač et al. [59]
was comparing the effects of various grinding processes, sandblasting or a com-
bination of both on the surface conditions of Y-TZP ceramics by considering

Fig. 7.73 Fracture
probability of polished and
shot peened samples
(N3208), respectively,
determined in static and
cyclic ball-on-plate tests.
Note that in case of the static
tests of the shot peened
samples the capacity of the
test equipment was exceeded
[23]. With kind permission of
Elsevier
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flexural strength. In their Table 3, the mean flexural strength is listed and it is
indicated that sandblasting provides the best results for both FG and CG Y-TZP.
Wet and dry grinding yielded a lower flexural strength than the as-sintered value
for both FG and CG ceramics. When a combination of grinding and sandblasting is
such that the grinding precedes the sandblasting, flexural strength is much
improved, but it is still somewhat lower than the outcome attained via a process of
surface finishing by sandblasting alone. Sandblasting introduces a compressive-
surface layer, which compensates for grinding-induced surface cracks. The highest
amount of stress-induced monoclinic phase is observed in the sandblasted speci-
mens (providing the stress needed for the transformation in zirconia).

In general, it is beneficial to attain the proper surface state for each particular
application. The correct surface preparation of bio-materials is particularly important
for orthodontic and other biomedical implant applications or their reconstructions.

Fig. 7.74 Fracture load
versus residual stress of
silicon nitride (N3208) and
alumina samples in polished
and different shot peened
condition [23]. With kind
permission of Elsevier

Fig. 7.75 Depth distribution
of residual stresses of
differently shot peened
silicon nitride (N3208) and
alumina samples [23]. With
kind permission of Elsevier
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7.14.4 Shot Peening

Commonly, shot peening [henceforth: SP] is not considered useful for the intro-
duction of residual stress in ceramics, despite its wide use in modifying metal
surfaces, due to its propensity for inducing non-healing cracks on ceramic surfaces
or worse. However, in recent years, several reports have appeared in the literature
indicating some beneficial effects of SP–if performed in the proper manner—for
the introduction of the desirable compressive-residual stress crucial to fatigue
resistance. The following two examples consider: (a) alumina and Si3N4 ceramics,
and (b) Al2O3/SiC composites.

Fig. 7.76 Vickers
indentation (9.81 N) in a
polished silicon nitride
sample [23]. With kind
permission of Elsevier

Fig. 7.77 Vickers
indentation (9.81 N) in a shot
peened (0.3 MPa pressure)
silicon nitride sample. The
sample was slightly
repolished after shot peening
to better show indentation-
induced cracks [23]. With
kind permission of Elsevier
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(a) Al2O3 and Si3N4

SP is a procedure commonly utilized in metals and alloys to increase the static
and fatigue strengths. This strengthening effect is a result of the compressive-
residual stress generated by SP, which prevents fatigue-crack propagation. Basi-
cally localized plastic deformation occurs in the near-surface regions, which
strain-hardens (despite the fact that the bulk ceramic is brittle) with the associated
increase in dislocation density and the consequent macroscopic compressive-
residual stress generation. In the ceramics considered here, SP was applied by
tungsten-carbide beads of 610–690 lm diameters at pressures of 0.2 up to
0.4 MPa. The peening time ranged from 280–840 s. The residual stresses and

Fig. 7.78 Optical
micrograph of a raceway after
55,000 cycles and a stepwise
increase of the pressure up to
4.0 GPa. Interacting cracks
and large-scale pitting in the
polished sample [23]. With
kind permission of Elsevier

Fig. 7.79 Optical
micrograph of a shot peened
raceway after 55,000 cycles
and a stepwise increase of the
pressure up to 4.0 GPa. First
small cracks are visible [23].
With kind permission of
Elsevier
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dislocation densities were determined by XRD. The full width at half maximum
[henceforth: FWHM] was determined to characterize the dislocation density. The
macroscopic residual stresses were derived from the peak shift using the sin2w-
method [67]. Figure 7.73 shows the influence of SP on the cyclic-load capacity for
silicon nitride N3208 using cyclic ball-on-plate tests. This figure shows the frac-
ture probability as a function of the load for the SP and polished reference
surfaces.

Observe in Fig. 7.73 that the static-load capacity of the polished reference
samples is *4 kN at a 50 % fracture probability, whereas the cyclic-load capacity
of the SP silicon nitride samples is *10.4 kN. The SP treatment increased the
static-load capacity to more than 16 kN. Thus, the static load capacity is about 4
times higher. The capacity of the testing device was not high enough to introduce
any cracks into the SP surfaces. From the no failure results of the static load up to

Fig. 7.80 Decline of shot
peening induced residual
stresses in silicon nitride
N3208 at 800 �C [23]. With
kind permission of Elsevier

Fig. 7.81 Relationship
between residual stress and
depth from the surface [22].
Open access article
permitting unrestricted use
and reproduction
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16 kN at least an increase by a factor of 4 may be seen. Figure 7.74 correlates the
near-surface stress states and the load capacities of polished and differently SP
alumina and silicon nitride samples.

SP enabled the creation of up to 1.3 GPa compressive-residual stresses near the
surface. The depth distribution of this residual stress is shown in Fig. 7.75. The
effect of high compressive-residual stresses may be seen from the indentation
results made by the Vickers indenter in Figs. 7.76 and 7.77. Compare the two
figures. The polished reference sample developed a typical crack formation at the
edges of the indentation (Fig. 7.76), whereas, on the surface of the SP sample, only
very small cracks may be detected (Fig. 7.77). Further indications of surface
improvement (i.e., of increased fatigue resistance) may be obtained from a com-
parison of the following optical micrographs (Figs. 7.78 and 7.79).

Here, the damage in the polished reference sample, in the form of pitting and
chipping after 45,000 cycles at a pressure of *3 GPa (load 76 N), is compared
with the damage pattern of the SP raceways after 55,000 cycles and up to 4.0 GPa
pressure. The severe damage in the raceway of the reference sample, with
numerous interacting cracks and large pitting areas, may be contrasted with the
small, sporadic cracks in the SP raceway. This illustrates the strengthening effect
of the SP process. The effect of SP on residual stress is SP-time-dependent and a
decrease is obtained (as indicated in Fig. 7.80) showing a decay followed by a
leveling off of the residual stress from a value of 1250 MPa at the surface to
*625 MPa. Note that tempering samples at 800 oC leads to a 50 % reduction of
compressive-residual surface stresses within the first 5 h.

The above results indicate the importance of introducing compressive-residual
stress by the SP of ceramics–which is a new development of the last decade. Even
in brittle materials, like most ceramics, microplastic deformation is introduced

Fig. 7.82 Effects of shot
peening and crack-healing on
the Weibull distribution of
crack initiation load [22].
Open access article
permitting unrestricted use
and reproduction
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at the SP surface, which strain hardens with consequent compressive-residual
stress formation. The application, at elevated temperatures, of SP-treated ceramics
is possible, due to their stability (Fig. 7.80). The successful increase in the
near-surface strength of ceramics promises a greater use of static and cyclic
applications in future.

(b) Al2O3/SiC composites

As indicated above, the compressive residual stress generated by SP prevents
fatigue-crack propagation and the near-surface strength of ceramics can be
improved. Thus, SP is a promising technique for increasing the strength of
ceramics in the surface region for better fatigue resistance. Certain structural
ceramics exhibit crack-healing [henceforth: CH] ability. Thus, if CH can be
combined with SP, the surface strength and reliability of ceramics may be
increased. As known, CH is a technique which heats a material before its use or
application to some temperature, resulting in restoring its strength. In the present
case of Al2O3/SiC composites, the specimens were CH in air at 1300 �C for 1 h.

Fig. 7.83 Fatigue of Ce-TZP ceramics in static and cyclic (pulsating and reversed bending) tests:
a Ce-TZP-II, b Ce-TZP-IV, and c Ce-TZP-V. The applied stress values are given as static stress
rs, and maximum stress rmax for R = 0.2 and stress amplitude rA for R = -1; rf and rc t-m refer
to the average bending strength and the critical transformation stress, respectively. Data points in
combination with figures indicate numbers of survivor specimens under identical loading
conditions [8]. With kind permission of John Wiley and Sons
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SP was performed with ZrO2 shots having a diameter of 180 lm. Figure 7.81
compares the residual stresses in smooth SP and SP + CH specimens. Note that
SP + CH treatment gave the highest residual surface stress.

A maximum compressive-residual stress of 300 MPa is observed on the surface
of the SP specimen, decreasing in the depth direction. In the case of the SP + CH
specimen, the residual stress also decreased, but still exhibited a compressive-
residual stress of 200 MPa. However, the induction of compressive-residual stress
was accompanied by simultaneous CH. SP, in combination with CH, is a useful
technique for improving the strength of ceramics, as may be seen in Fig. 7.82,
which compares plots of the fracture probability against the crack-initiation load.

7.14.5 Grain Size

Recall the HP relation, which summarizes the effect of grain size on some static
mechanical properties. Experimental results indicate that the resistance of materials
to fatigue-crack initiation and propagation is significantly influenced by grain size.
This applies to ceramics as well. It is widely recognized that, when all the other
structural factors are kept approximately fixed, an increase in grain size will

Fig. 7.84 Cyclic and static
fatigue limits r0 related to
strength rf as a function of
the grain size of Ce-TZP [8].
With kind permission of John
Wiley and Sons

Table 7.4 Sintering parameters, average grain size, relative densities, Young’s modulus and
Vickers hardness of Ce-TZP materials [40] (with kind permission of John Wiley and Sons)

Materials Sintering
parameters

Average grain
size (lm)

Relative
density (%TD)

Young’s
modulus (GPa)

Vickers
hardness

Ce-TZP-I 1400 �C, 0.2 h 0.5 97.57 201 836
Ce-TZP-II 1400 �C, 2 h 1.0 99.83 202 849
Ce-TZP-III 1500 �C, 0.5 h 1.4 99.55 190 816
Ce-TZP-IV 1500 �C, 1 h 1.5 99.73 202 854
Ce-TZP-V 1600 �C, 1 h 2.7 99.36 199 780
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generally result in a reduction in the fatigue-endurance limit. This observation
parallels observations made of static deformation, namely that strength increases
with decreasing grain size. An example of the effect of grain size appears below for
CeO2-stabilized tetragonal ZrO2 (Ce-TZP). In Fig. 7.83, three grain sizes are
presented to evaluate their effects on fatigue life.

The grain sizes are indicated in Table 7.4. Thus, in Fig. 7.83, the grain sizes are
1.0, 1.5 and 2.7 lm. Also note that, for the same time-to-failure (lifetime),
the stress decreased with increasing grain size, regardless of the magnitude of R.
Here, a comparison is made between static- and cyclic-fatigue tests. The time-to-
failure of the statically-loaded specimens is longer by 2–3 orders of magnitude at
the same stress level than under cyclic loading (R = 0.2), with the reduction of the
time-to-failure being more pronounced under cyclic loading with increasing grain

Fig. 7.85 Scanning electron micrographs of the fracture surfaces of a, c, and e Ce-TZP-IV and
b, d, and f Ce-TZP-V as observed after a and b short-term strength and after cyclic fatigue tests
with c and d R = 0.2 and e and f R = -1 [8]. With kind permission of John Wiley and Sons
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Fig. 7.86 Linear amount of wear of Al2O3 and ZrO2 structures with two different average grain
sizes plotted against the length of the wear path during a unidirectional and b reciprocating
sliding contact [40]. With kind permission of Elsevier

Fig. 7.87 Volumetric wear intensity of a Al203 and b ZrO2 specimens during reciprocating
sliding contact as a function of the average grain size of the structures [40]. With kind permission
of Elsevier

Fig. 7.88 Linear amount of wear of Al2O3 and ZrO2 structures with two different average grain
sizes plotted against the length of the wear path during a unidirectional and b reciprocating
sliding contact [40]. With kind permission of Elsevier
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size. In addition, the fatigue limits, r0, under cyclic loading with R = -1 are
much lower than under static and cyclic loading with R = 0.2. The static- and
cyclic-fatigue limits are related to the mean value of the bending strength, rf,
shown in Fig. 7.84, again indicating a decrease in the fatigue limits of the Ce-TZP
ceramics under cyclic loading with R = -1 and their dependence on grain size.

Figure 7.85 compares the SEM micrographs of the areas fractured by the
strength measurement with those of the specimens fractured under cyclic loading.
Observe that the fatigue specimens have a higher degree of transcrystalline frac-
ture in larger grain sizes. Recall that TZP undergoes a tetragonal to monolithic

Fig. 7.89 Tribosystems and operating conditions for a unidirectional sliding and b reciprocating
sliding wear [40]. With kind permission of Elsevier

Fig. 7.90 Scanning electron micrographs of block specimens of Al2O3 with a D = 0.85 lm and
b D = 12.2 lm, and ZrO, with c D = 0.55 lm and d D = 1.65 lm, worn in reciprocating sliding
contact. Arrow indicates direction of sliding [40]. With kind permission of Elsevier
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transformation under stress, which has occurred in the Ce-TZP. The enhanced
degree of transcrystalline fracture in Fig. 7.85 indicates that damage to the
structure, on account of the ZrO2 t ? m transformation within the grains, is
crucial for crack initiation and propagation under cyclic loading. The Ce-TZP
ceramics exhibit subcritical crack growth and an additional cyclic-fatigue effect,
the latter being more pronounced in microstructures with larger grain sizes.

In the above illustration, grain-size variation and ‘tetragonal toughening’ (i.e.,
tetragonal to monolithic transformation) are acting simultaneously, although the
effect of grain size is clear. In the following illustration, the wear resistance of
alumina is considered; however, zirconia is also included for the purpose of
comparison. Al2O3 and ZrO2 ceramics are of interest for use as various wear
components, such as bearing parts, cutting tools, valve seats and artificial hip joints.

These parts are exposed to reciprocating sliding wear (equivalent to cyclic-
sliding deformation). Therefore, tests to check their resistance under cyclic (sliding)
wear are also of great technological interest. Figure 7.86 compares the results of
unidirectional and reciprocating tests of Al2O3 and ZrO2 for the grain sizes indi-
cated. In Fig. 7.87, the volumetric-wear intensities of Al2O3 and ZrO2 ceramics are
shown as a function of the average grain size. The wear intensity of Al2O3 increases
strongly in microstructures containing average grain sizes, D, larger than *4.5 lm,
as seen in (a). The wear intensity of the fine grained (FG) structures is about two
orders of magnitude smaller than that of the coarse grained (CG) structures. The
volumetric-wear intensities of ZrO2 increase more steadily, as seen in (b). The wear
intensities of FG Al2O3 ceramics are substantially lower than those of the FG ZrO2

ceramics. The linear amounts of wear for two grain sizes appear in Fig. 7.88 as a
plot of wear versus the length of the wear path. Note that the sliding-wear tests were
performed using a block-on-ring tribometer, shown in Fig. 7.89. This test was
performed using unlubricated ceramic specimens. The normal force was 10 N and
the sliding speed 0.78 m s-1. The unlubricated oscillating-sliding test was per-
formed at normal load, frequency of oscillation and stroke of 100 N, 20 Hz and
0.5 mm (±0.25 mm amplitude), respectively. These parameters were kept constant
during each test and resulted in an average sliding speed of 0.02 m s-l. These wear

Fig. 7.91 Effect of the number of cycles on a ratio of extension crack and b crack growth (Dc) at
DT = 400 �C [36]. With kind permission Elsevier
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tests were run over 1.4 9 105 cycles or a total wear-path length of 0.14 km.
SEM micrographs of worn Al2O3 and ZrO2 surfaces are presented in Fig. 7.90.
The layers show greater mechanical stability in FG than in CG Al2O3 and ZrO2

ceramics. CG structures promote flaking of the layers, owing to cracking and
delamination; this reduces the protection against wear to the material underneath.
Intercrystalline fracture, followed by the spalling or fragmentation of individual
grains, prevails on the surfaces of the CG structures of Al2O3 (Fig. 7.90b) and ZrO2

(Fig. 7.90d). Relatively smooth surface areas are observed locally, owing to plastic
deformation and shear fracture (Fig. 7.90b and d).

It must be emphasized again that the reciprocating-sliding test is equivalent to
fatigue (or oscillating) deformation, which is the subject of this chapter.

7.15 Thermal Fatigue

Regardless of the origin of stress when cycling is applied, fatigue damage may
result. Dangerous stress cycling is associated with thermal effects. Premature
failure, resulting from cyclic stresses due to temperature changes, seems to be one
way of approaching the problem of thermal fatigue in high-temperature structural
components. This problem is of great concern in many fields in which structural
components must operate at high service temperatures; if thermal gradients are

Table 7.5 Composition (vol. %) of different composites [38] (with kind permission Elsevier)

Composites Si3N4

(0.5 lm)
Si3N4

(0.02 lm)
Al2O3

(0.1 lm)
AIN
(0.5 lm)

TiC0.7N0.3

(0.5 lm)
Al2O3

(0.5 lm)
Y2O3

SAAT10 53.25 17.75 10 5 10 0 4.0
ST10 61.50 20.50 0 0 10 3.2 4.8
ST15 57.75 19.25 0 0 15 3.2 4.8
ST20 54.00 18.00 0 0 20 3.2 4.8

Fig. 7.92 Model of five-
layered graded material with
symmetrical structure [36].
With kind permission
Elsevier
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generated, the propensity for thermal-fatigue cracking increases. Thus, it is of
great technological interest to strengthen those components that will be exposed to
conditions in which thermal gradients are set up to inhibit thermal-fatigue damage.

The introduction of compressive stress and surface hardening are effective
methods for preventing thermal fatigue. It is likely that their inhibiting effects are
associated with both delayed-crack nucleation and crack growth, if cracks or pores
are already present in the material (which is the actual case in most ceramics).
Several methods for surface modification have been mentioned in the previous
section, among them SP is a technique used to improve the fatigue properties by

Fig. 7.93 TEM micrographs of the surface layer of GSS1 specimen, a long columnar b-Si3N4,
b intragranular and intergranular TiC0.7N0.3 particles, c crack deflection and d twin structure [36].
With kind permission Elsevier

Table 7.6 Composite of each layer of five-layered FGM with symmetrical structure [38] (with
kind permission Elsevier)

Specimen code The 1st layer The 2nd layer The 3rd layer

GSS1 ST10 ST15 ST20
GSS2 SAAT10 ST15 ST20
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introducing a compressive-stress pattern on the ceramic surface. An illustration of
the effect of thermal cycles on crack growth is shown in Fig. 7.91. The symbols in
Table 7.5 represent the composition of the ceramics. In this case, the major

Fig. 7.95 Morphologies of the indentation cracks at DT = 400 �C after the different number of
thermal shocks, a initial indentation cracks of ST10, b indentation cracks after 25 thermal shocks
of ST10, c initial indentation cracks of GSS1 and d indentation cracks after 35 thermal shocks of
GSS1 [36]. With kind permission Elsevier

Fig. 7.94 Fracture surface micrographs of the ceramic samples at DT = 600 �C, a ST10 and
b the surface layer of GSS1 [36]. With kind permission Elsevier
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constituent in the HIP composite is Si3N4. GSS1 in Fig. 7.91 represents a func-
tionally-graded ceramics. Figure 7.92 presents a model of five-layered, graded
materials with symmetrical structures. The compositional distribution changes
along the Z-axis. The thicknesses of the surface layer, the second layer and the
third layer are: a, b and c, respectively. The thickness ratio is e = a/b = b/c and a
structural parameter is fixed at 0.3. Table 7.6 shows the composition of each letter
(Fig. 7.93).

Note in Fig. 7.91b that the crack growth, Dc, of the graded ceramic material
(GSS1) is much lower than that of homogeneous ceramic materials. These are all
indications that the thermal-fatigue resistance of graded ceramics is higher than
that of homogeneous ones. The fracture-surface micrographs of the ceramic
samples at DT = 600 �C are shown in Fig. 7.94. Many microcracks are visible on
the fracture surface of ST10 (Fig. 7.94a), caused by thermal shock and causing a
rapid drop in strength. Several microcracks are detectable on the fracture surface
of the surface layer of the GSS1 (see Fig. 7.94b). The retained strength of the
graded ceramic (GSS1) shows only a slight decrease after thermal shock; its cracks
are fine and small (see Fig. 7.94b), producing only a minor reduction in strength.
Further indications of the improved thermal-fatigue resistance may be obtained by

Fig. 7.96 Typical laser thermal fatigue test results of a 127-lm-thick, precracked TBC specimen
showing the coating temperature and thermal conductivity changes as a function of cycle number
under 10-min heating and 2-min cooling laser cycling. The ceramic surface temperature increases
and the metal backside temperature slightly decreases as the delamination crack is initiated and
propagated. The effective ceramic coating conductivity shows an initial increase due to the coating
sintering, and then a decrease due to the crack propagation [38]. With kind permission of Elsevier
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means of indentation tests performed on homogeneous (ST10) and functionally-
graded ceramics (GSS1) specimens. Notice in Fig. 7.95 that the GSS1 specimen
has a much better resistance to indentation, even after 35 thermal cycles.

In Fig. 7.93, the TEM micrographs illustrate the surface layers of the GSS1
specimens. A long, columnar b-Si3N4 grain is clearly visible in Fig. 7.93a. It may
also be seen from Fig. 7.93b that the larger TiC0.7N0.3 particles are located at grain
boundaries, while the smaller ones are trapped inside the b-Si3N4 grains.

Note in Fig. 7.91b that the crack growth, Dc, of the graded ceramic material
(GSS1) is much lower than that of homogeneous ceramic materials. These are all
indications that the thermal-fatigue resistance of graded ceramics is higher than
that of homogeneous ones. The fracture-surface micrographs of the ceramic
samples at DT = 600 �C are shown in Fig. 7.94. Many microcracks are visible on
the fracture surface of ST10 (Fig. 7.94 a), caused by thermal shock and causing a
rapid drop in strength. Several microcracks are detectable on the fracture surface
of the surface layer of the GSS1 (see Fig. 7.94b). The retained strength of the
graded ceramic (GSS1) shows only a slight decrease after thermal shock; its cracks
are fine and small (see Fig. 7.94b), producing only a minor reduction in strength.
Further indications of the improved thermal-fatigue resistance may be obtained by
means of indentation tests performed on homogeneous (ST10) and functionally-
graded ceramics (GSS1) specimens. Notice in Fig. 7.95 that the GSS1 specimen
has a much better resistance to indentation, even after 35 thermal cycles.

One of the reasons for the improved strength properties of the functionally-graded
ceramics is due to the surface formation of compressive-residual stresses, which
counteract some of the tensile stress generated during the thermal shock process.

There is growing interest in the potential uses of ceramic coatings as thermal
barriers applied to components intended for in-service high-temperature exposure,
e.g. in gas-turbine engines. Such applications rely on the understanding of ceramic
coating behavior and ceramic failure modes under high temperatures, when high
thermal gradients may exist under cyclic conditions. The lifetime properties of
thermal barrier coatings [henceforth: TBC] are affected when cyclic deformation
occurs in the presence of thermal gradients, associated with thermal fatigue.
Specimens of ZrO2-8 wt%Y2O3 are produced by air-plasma spraying for the use as
TBC. Crack propagation, induced by laser-thermal fatigue, is shown in terms of
thermal-conductivity tests in Fig. 7.96. This figure shows typical test results for a
127-lm-thick, precracked TBC specimen (with 1-mm diameter substrate hole)
under laser-cyclic loading. The thermal conductivity of the ceramic coating may,
thus, be determined as a function of the laser-cycle number. The effective thermal
conductivity at any given cycle contains valuable information about the advancing
delamination crack in the coating under laser-thermal cyclic loading.

The crack-propagation rate (i.e., delamination; da/dN) under laser-thermal
cyclic loads may generally be expressed in terms of the Paris law, given below as:

da

dN
¼ C DKð Þm ð7:20Þ
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Fig. 7.97 The laser thermal fatigue test results of a 0.2-mm-thick TBC specimen with a 2-mm
hole in the substrate when exposed to 20-min heating and 4-min cooling laser cycling. a A close
relationship between the coating thermal conductivity and delamination crack length is
demonstrated. b The coating propagation process has been monitored independently by a high
sensitivity video camera, and expressed as a function of measured temperature difference across
the coatings [38]. With kind permission of Elsevier
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Fig. 7.98 Crack lengths and the corresponding crack propagation rates of laser tested
TBC specimens as a function of cycle number. a 127-lm-thick coating, b 176-lm-thick coating,
c 185-lm-thick coating, d 200-lm-thick coating [38]. With kind permission of Elsevier

Fig. 7.99 The relationship between the delamination crack propagation rate da/dN and the laser
thermal transient stress associated stress intensity factor amplitude DK [38]. With kind
permission of Elsevier
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Fig. 7.100 Micrographs of laser thermal fatigue tested TBCs showing the coating delamination
crack propagation and coating spallation. a Severe fatigue damages are observed near the early
crack propagation wake surfaces with strong coating asperity/debris interactions and coating
multiple delaminations under the laser thermal cyclic loading. The later crack paths show
relatively smooth surfaces, which corresponds to the faster crack propagation regions under the
increased crack propagation driving force. b Coating spallation morphology after the laser
thermal fatigue test [38]. With kind permission of Elsevier

Fig. 7.101 Growth behaviour of the alumina type TGO during thermal cycle fatigue [32]. With
kind permission of Professor Yamazaki for the editorial office
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DK is the stress-intensity factor; da/dN is the crack-propagation rate; m is an
appropriate exponent; and C is a constant:

DK ¼ Kmax � Kmin for R [ 0 ð7:21Þ

and:

DK ¼ Kmax for R � 0 ð7:22Þ

Fig. 7.102 Change of delamination failure morphologies [32]. With kind permission of
Professor Yamazaki for the editorial office

Fig. 7.103 Crack length density in top coat as a function of thermal cycles [32]. With kind
permission of Professor Yamazaki for the editorial office
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In this case, namely under laser-thermal cyclic loads, Eqs. (7.20–7.22) may be
given as:

da=dN ¼ da=dNheating þ da=dNcooling

¼ C1DKm
heating þ C2DKm

cooling

ð7:23Þ

da/dNheating and da/dNcooling are the crack propagation rates under laser-thermal
transient heating and cooling, respectively; DKheating and DKcooling are the stress-
intensity factor amplitudes associated with heating and cooling, respectively.
Also note that Eq. (7.21), in terms of the measured thermal conductivity, kmeasured,
for a precracked TBC specimen, may be expressed as:

kmeasured ¼ kintact þ kcracking ð7:24Þ

where kintact is the thermal conductivity of non-cracked TBC specimens, which
typically increases with increased time or cycle number due to the ceramic-sin-
tering effect, while kcracking is the thermal-conductivity reduction due to a coating-
cracking effect.

In Fig. 7.97, coating thermal conductivity and delamination-crack length are
shown for a TBC specimen with a 2-mm hole in the substrate. The evolution of
crack propagation and coating spallation behavior may be seen. In Fig. 7.98d, the
effect of the cycle number on the crack-length increase is clearly visible, until
spallation sets in at *210 cycles. Here, the crack-length increase and the crack-
propagation rates for different coating thicknesses, as a function of the cycle
number may also be seen. Equation (7.23), on a logarithmic (ln) scale is illustrated
in Fig. 7.99 for the thicknesses indicated.

In Fig. 7.99 the relationship between the delamination-crack propagation rate,
da/dN, and the laser-thermal transient stress associated stress-intensity factor
amplitude, DK, is illustrated during laser-thermal fatigue testing. The exponent,
m, representing delamination-fatigue crack growth under a laser-thermal cycle
driving force, DK, is about 5. Observe the micrographs of the laser-thermal fati-
gue-tested TBC specimens (Fig. 7.100). Here, (a) shows severe fatigue damage
near the early crack-propagation wake surfaces with strong coating asperity/debris
interactions and multiple coating delaminations under the laser-thermal cyclic
loading. However, the later crack paths show relatively smooth surfaces, corre-
sponding with faster crack-propagation regions under the increased crack-propa-
gation driving force. A coating-spallation morphology, after the laser-thermal
fatigue test, is shown in Fig. 7.100b.

7.16 Design for Fatigue

Regardless of whether a material is metallic or ceramic, design to overcome
fatigue failure and to increase resistance to cyclic deformation is essential.
However, for the time being, this task seems almost impossible. As indicated
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above, due to the basic nature of fatigue and of the parameters affecting it, it is
difficult to have a perfect design. The necessary resistance to fatigue failure,
required in order to overcome crack initiation and propagation, is clear. However,
the translation of these aspects of fatigue into real designs of specific components
is far from simple. It is virtually impossible to provide design prescriptions for
each specific component and all the possible applications, due to the multitude
structural applications and service environments and their various sizes (to men-
tion only a few of the crucial, relevant factors). Nevertheless, here are a few of
basic principles that may be applied to each individual case, as follows:

(a) A ceramic should be chosen so that the applied stress may be kept below the
endurance limit, at which that material is expected to have an infinite lifetime.
This design concept is also known as the ‘infinite lifetime concept’. Often, a
poorly-defined fatigue limit is not observed; in such ceramics, the use of an
empirically evaluated lifetime at a specific stress is sound. A stress level of
*107 – 108 cycles is a reasonable design criterion.

(b) ‘Safe life design’ is a conservative approach. Parts are designed to operate for
certain lifetimes, after which they are replaced by new parts. Thus, as per the
designers’ instructions, the empirically determined lifetime is only used with the
proper safety factor. Clearly, in either (a) or (b), the random appearance of an
unexpected stress, due to some irregular-stress cycle cannot always be foreseen.

(c) ‘Damage-related design’ requires the periodic, nondestructive inspection of
crack formation and growth. By using one of the nondestructive-testing
methods, it is possible to perform such inspections to see if existing cracks are
nearing their critical-crack size. There are mathematical methods for making
reasonably-accurate predictions of crack growth between inspections and for
evaluating the time left for further safe use of that part following its inspection.

Despite these crucial design rules, a fatigue problem exists, since failure is
usually sudden and often occurs at a stress level much lower than the ultimate-
stress level. Frequent attempts have been made to relate static-deformation data to
fatigue, but experiments have indicated little direct connection between the fatigue
limit and yield strength, ductility and other static-deformation properties. In
metals, a well-known relation exists between the ultimate tensile strength, rUTS,
and fatigue strength. For steels, for example, Chapetti et al. [46] relate the fatigue
strength, reR, to rUTS by:

reR ¼ 0:5rUTS ð7:25Þ

indicating that fatigue fracture is related to surface-crack initiation. Another
empirical relation for metallic materials is:

SFL ¼ 140 þ 0:25rUTS ð7:26Þ

In this equation, SFL is the fatigue limit. To-date, the author does not know if
these relations hold for ceramic materials and whether similar relations exist
between monotonic stress and fatigue strength for all ceramics.
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Attempts have been made to relate fatigue properties to static parameters, based
on the similarity between monotonic and fatigue mechanisms, which control cyclic
straining and plastic flow. This is somewhat problematic, because most ceramics
are brittle and may be observed in their plastic state only at elevated temperatures.
It would be more practical to discover a relation between static-yield stress and
fatigue strength, since the yield stress in brittle materials coincides more or less
with the fracture strength.

Various degrees of stress concentration are usual features of fabricated-struc-
tural parts. Stress concentration acts at certain locations for fatigue-crack initia-
tion. Residual stresses are common in machine parts, but only compressive stresses
do not contribute to crack initiation or propagation. Residual-tensile stress or
tensile components of applied loads are to be avoided, in so far as possible while
designing for fatigue, because of their damaging natures. It has been observed that,
all other things being equal, increasing specimen dimensions results in decreased
fatigue strength. One explanation is that smaller-sized specimens have fewer
microcracks than larger ones. Fatigue performance designers generally correct for
the dimensions of the various parts.

To summarize the requirements for fatigue design, the following is a list of
some of the many factors that influence fatigue life and must be taken into account
during the design process:

(a) The ceramic material: Usually materials with high melting points are pre-
ferred, since, in general, physical and mechanical properties are related to the
melting point via the cohesive properties. Ceramics should be free of inclusion
porosity and other voids that interrupt material continuity;

(b) The conditions of material processing: The cyclic properties, like the static
ones, are dependent on the processing of the machine elements;

(c) The surface conditions of a ceramic part: Parts should be scratch-free and
polished specimens perform better than unpolished ones;

(d) The geometry of machine elements: Machine-element geometry is an essential
design parameter–length, width, thickness and diameter produce the size
effects of materials. Furthermore, the radius (size and sharpness) and the
transition radius from location to location are of utmost importance, since they
act as stress-raisers. Designers must account for the characteristic effects of
different types of radii;

(e) The effect of the environment: Environmental effects are important design
considerations. Corrosive environments are detrimental. Some structures are
often located in corrosive environments; appropriate design steps should be
taken to select the most resistant materials for parts exposed to corrosive
environments. Corrosive environments may accelerate the growth of fatigue
cracks, which initiate at the surface and, therefore, reduce overall fatigue
performance;

(f) The effect of temperature: Temperature is a highly significant factor to be kept
in mind. Creep and fatigue deformation may act in concert at high temperatures.

7.16 Design for Fatigue 613



www.manaraa.com

To conclude this chapter, it may be stated that fatigue damage is one of most
frequent causes of the breakdown of structural elements in service. All the
previous sections explained the failure of machine parts due to fatigue during
service and the means for improving their resistance by realizing the various
acting factors. Every structural material experiences the problem of fatigue life
and any differences that exist are dictated by overall material properties. Clearly,
it is beyond the possibility of one textbook to consider each of the many
materials used for machine parts and all the particular applications of these parts.
Therefore, one or two examples of certain materials sufficed to serve as repre-
sentatives of the wide spectrum of applications for structural use exposed to
fatigue deformation.
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Chapter 8
Fracture

Abstract In ceramics it is essential to consider all kinds of fractures that a
material might experience during its service life time as a consequence of defor-
mation. Fracture propensity is critical in ceramics which does not show elongation
(plasticity) because failure can set in at deformations which basically are elastic
(brittle ceramics). It is important to understand the theories of fracture, and relate
them to the theoretical strength of materials. Among the important theories one can
mention Griffith’s theory on fracture, Orowan’s fracture theory, and the dislocation
theory of brittle fracture including the Stroh model of fracture. One of the most
important parameters regarding fracture is toughness. Fracture toughness is the
property that describes the ability of a material containing a crack to resist fracture
and is one of the most important properties of any material for design applications.
Related to fracture toughness is the term R-curve, which refers to fracture
toughness that increases as a crack grows. Prediction of the effect of existing flaws
in ceramics on fracture strength is the R-curve. Fracture toughness is an indicator
for failure in ceramics and the R-curve expresses ceramic crack resistance.
Another way to characterize a ceramic is by the energy absorption concept which
is related to its fracture toughness. The J-integral as a fracture criterion is used to
express the energy absorbed during crack extension. Fracture may occur in
ceramics under static load, time dependent and cyclic deformation. Toughness can
be improved by changing the course of crack, by crack tip shielding, crack
bridging and crack healing. In ceramics undergoing transformation, transforma-
tion-toughening can improve the toughness.

8.1 Introduction

This chapter presents fracture resulting from all the types of deformation con-
sidered in the previous chapters (static, time-dependent and cyclic), but first, the
atomic bonds forming materials are discussed. ‘Atomic cohesion’ is the bond
between atoms that holds them together to form an aggregate that does not

J. Pelleg, Mechanical Properties of Ceramics, Solid Mechanics
and Its Applications 213, DOI: 10.1007/978-3-319-04492-7_8,
� Springer International Publishing Switzerland 2014
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disintegrate under the normal conditions characteristic of that specific material. A
brief look at the essentials of cohesion aids in the understanding of fracture, which
occurs when a force of a certain magnitude is applied to the atomic bonds between
atoms, causing the disintegration of a material. Those forces that hold the groups
of atoms or molecules of a substance together are called ‘bonds’. The formation of
bonds between atoms is mainly due to their tendency to attain a minimum potential
energy, thus reaching a stable state. In solid materials, it is usually assumed that
two types of forces act between the atoms: (a) an attractive force, which keeps the
atoms together, forcing them to form solids and (b) a repulsive force, which comes
into play when a solid is compressed. Figure 8.1a illustrates the concept of
cohesion based on the relation below:

In a material, such as NaCl, the overall cohesive energy may be expressed as:

FðrÞ ¼ A

rM
� B

rN
ð8:1Þ

The first term is the attractive force, while the second term is the repulsive
force. With decreasing distance between the atoms near the equilibrium position,
the repulsive force (the second term in the relation) increases more rapidly than the
first one and the exponent, N, must be greater than M. At the equilibrium distance,
r = r0 F(r) is zero, as seen in Fig. 8.1a. One can express Eq. (8.1) in terms of r0 as:

A

rM
0

¼ B

rN
0

ð8:2Þ

The equilibrium distance is:

r0 ¼ ðBAÞ
1

N�M ð8:3Þ

Usually, the force is the negative derivative of the energy. Thus, integration of
the force gives the cohesive energy as:

Fig. 8.1 The cohesion in a material, such as NaCl: a a plot of force versus distance and b the
energy variation over distance. The solid curves are the sum of the attraction and the repulsion
between two atoms
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U rð Þ ¼
Z

F rð Þ ¼
Z
ð A

rM
� B

RN
Þdr ð8:4Þ

UðrÞ ¼ � A

rM�1

1
M � 1

þ B

rN�1

1
N � 1

þ C ð8:5Þ

Equation (8.5) may be written as:

UðrÞ ¼ � a

rm
þ b

rn
þ C ð8:6Þ

when U(r) = 0 and r goes to infinity, C = 0 and:

UðrÞ ¼ � a

rm
þ b

rn
ð8:7Þ

This relation is plotted in Fig. 8.1b, which gives the potential energy versus the
distance.

Similarly, to the above, at r = r0, the potential energy is a minimum and one
can write:

dU

dr

� �
r¼r0

¼ 0 ¼ am

rmþ1
0

� bn

rnþ1
0

ð8:8Þ

The cohesion above is for ionic solids; covalent and metallic bonds are dif-
ferent. In covalent bonds, electrons between atoms are shared, whereas in metallic
solids, atoms of the same (or different) elements donate their valence electrons to
form an electron gas throughout the space occupied by the atoms. Giving up their
electrons to a common pool, known as an ‘electron cloud’ or ‘electron gas’, these
atoms actually become positive (similar to positive ions). They are held together
by forces similar to those of ionic bonds, but acting between ions and electrons.
The electrostatic interaction between the positive ions and the electron gas holds
metals together. Unlike other crystals, metals may be deformed without fracture,
because the electron gas permits atoms to slide past one another, acting as a
lubricant. In non-ductile materials, such as most ceramics, this is not possible and
renders them brittle.

For further study of cohesive forces, refer to the literature. The main focus of
this short introduction on cohesive energy and forces is on the shape of Fig. 8.1a,
which is half a sinusoidal function (used to determine the theoretical cohesive
strength of a crystal in Chap. 3, Sect. 3.3.3 via Eqs. (3.15–3.18). In Sect. 3.3, the
critical amount of shear stress required to move adjacent atomic planes past one
another was calculated, i.e., the energy per unit area involved in shearing two
atomic layers from their equilibrium configuration. Calculations based on Fig. 3.1a
can be most useful when fracturing a material. The critical shear stress calculated
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in Eq. (3.18) is *G/6 (a more realistic value calculated for smax is &G/10–G/30).
Even these refined values are *2 orders of magnitude greater than the experi-
mental values.

The calculation of the theoretical strength in Chap. 3 is based on the proper
shear stress for ductile ceramics, some at RT, but the vast majority at high tem-
peratures. For non-ductile materials, the normal stress, r, rather than the shear
stress, s, is applicable. Applying a tensile stress normal to the planes, which
separates two atomic planes, the theoretical cleavage stress may be evaluated in the
same way as described in Sect. 3.3.3, but instead of considering the shear stress a
normal stress is considered. One can derive an equation similar to Eqs. (3.17–3.18)
in terms of the theoretical cleavage stress as:

rmax ¼ r0 ¼
E

2p
ffi E

6
ð8:9Þ

with E being the Young’s modulus. In polycrystalline ceramics, the values of E are
in the range of 100–500 GPa. In alumina, for example, it is 460. A rough evalu-
ation for alumina, according to Eq. (8.9), gives a theoretical strength of
*76.7 GPa. When using the refined value of E/10, the theoretical strength is
*46 GPa. This theoretical cleavage stress is about two orders larger than the
experimentally observed strength.

The inevitable conclusion is that real crystals must contain defects, such as the
dislocations suggested by Taylor, Orowan and Polanyi, which reduce mechanical
strength or, more specifically, the resistance to slip when the applied stress reaches
a critical value. Their postulate showed that shear is possible at much lower
stresses than in a perfect crystal.

8.2 Fracture Types

Regardless of the kind of fracture (static, cyclic or creep), most types of failure
by fracture are either brittle or ductile. The following figure illustrates the var-
ious types of fractures encountered in materials, some of which appear only in
very ductile materials, especially in metals. For a complete picture of the pos-
sible types of fractured surfaces, even if they are not characteristics of ceramics,
it is helpful to see them. Figure 8.2 schematically illustrates some types of
fracture observed in materials, including metals such as steel or aluminum, and
in very ductile and soft specimens (e.g., Pb, Au.). ‘Fracture’ means the sepa-
ration of a body into two or more parts due to stress acting on it at temperatures
below the melting point. ‘Failure by fracture’ consists of two steps: (a) crack
formation and (b) crack propagation leading to complete fracture. In most
ceramics, flaws in the form of pores or microcracks exist in the as-grown con-
dition even without the application of a stress. The ability of a material to
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undergo complete or partial plastic deformation barely encompasses all the types
of fractures that exist.

All the fracture types shown schematically in Fig. 8.2 may also be observed
experimentally (see for example Pelleg). However, only two of these are illustrated
in Fig. 8.3: the (a) classic cup-and-cone-type and (b) brittle fracture obtained by
tensile testing to fracture. No necking occurs in brittle fracture and the percentage
of elongation and reduction of the area are nearly zero. In this type of tensile
fracture, the yield and tensile strengths are essentially identical.

Fig. 8.2 A schematic illustration of some types of fractures observed in metals, such as steel or
aluminum: a brittle fracture; b ductile fracture; c shear fracture; and d complete ductile fracture,
also known as ‘chisel point fracture’

Fig. 8.3 Macroscopic appearance of ductile a, b and c, d brittle tensile fractures ([8], p. 102).
With kind permission of ASM International. All rights reserved. http://www.asminternational.org
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8.3 Brittle Fracture

Since most ceramics are predominantly brittle at RT, it is important to mention
some characteristic points:

(1) There is no gross, permanent deformation of the material;
(2) The surface of a brittle fracture tends to be perpendicular to the principal

tensile stress, although other components of stress may be factors;
(3) Brittle fracture often occurs by cleavage fracture; the surface is characterized

by flat normally grain-sized facets (in polycrystals);
(4) A river pattern consists of steps between parallel cleavages on parallel planes,

that usually converge in the direction of the local crack propagation. This is
mainly observed in metals, but also in ceramics (see Fig. 8.4);

(5) Characteristic crack advance markings frequently indicate where a fracture
originated (fatigue fractures are a good example of this);

(6) The path that a crack follows depends on the material’s structure. In poly-
crystalline materials, transgranular and intergranular cleavages are important.
Cleavage clearly appears in SEM and other micrographs.

8.3.1 Theoretical Strength

Structural elements in brittle ceramics fail with little or no plastic deformation, often
without warning. Since brittle fracture may lead to catastrophic results, it has been
studied more intensively. Begin by assuming that a solid is perfect and that it breaks

Fig. 8.4 The river-pattern
emitting from a pore on the
fracture surface [56]. With
kind permission of editorial
office of IOP Science
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by separating along atomic planes. Differentiating energy versus distance results
either in a force versus distance relation (as indicated in Fig. 8.1a or in a stress versus
distance relation, because force is related to stress by the area. In Fig. 8.1a, r0 rep-
resents the equilibrium separation between two atoms. To move an atom even a small
distance by deformation requires a force (stress) which increases over the distance
which the atom is being forced to move. A maximum force is required to bring an
atom to distance r1. Figure 8.5 is an illustration of the stress-distance variation.

One may now express the above statements in the following way. The sum of
the areas equals:

Sum of areas ¼ 2 � ðDrrmaxÞ=2 ¼ Drrmax ð8:10Þ

This relation is a result of the assumption that each half-area may be approx-
imated as a triangle. Thus, with two triangle-like areas, Eq. (8.10) is obtained.
Now, Dr = (r1 - r0) may be expressed in terms of strain, as:

e ¼ Dr

r0
ð8:11Þ

The energy is the stress multiplied by the distance, namely:

energy ¼ rmax2ðDrÞ ð8:12Þ

Expressing Dr in terms of strain, taken from Eq. (8.11), and substituting into
Eq. (8.12) results in:

energy ¼ 2rmaxer0 ð8:13Þ

Fig. 8.5 The cohesive force (in terms of stress) as a function of the distance between atoms,
representing (in this case) the stress needed to move an atom away from its neighbor: a the actual
plot of stress versus distance and b presenting (a) as two equal halves
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Strain is given as:

e ¼ r1 � r0

r0
¼ Dr

r0
ð8:14Þ

Strain may also be expressed in terms of the Young’s modulus, E (r = eE), to
obtain:

e ¼ rmax

E
¼ Dr

r0
ð8:15Þ

Substituting this value of e into Eq. (8.13), the energy may be expressed as:

energy ¼ 2rmax

rmax

E
r0 ð8:16Þ

Overcoming the theoretical cohesive strength of a material by fracturing creates
two new surfaces and the surface energy of each is c. The fracture energy is
balanced by both energies of the two newly-formed surfaces. Thus, Eq. (8.16) may
be written:

2c ¼ 2r2
max

r0

E
ð8:17Þ

or

rmax ¼
ffiffiffiffiffiffi
cE

r0

r
ð8:18Þ

Equation (8.18) may be obtained more precisely by combining Eqs. (3.15b) and
(3.17), as:

s ¼ smax sin
2px

a
ð8:19Þ

This is based on Fig. 3.27. The fracturing of a brittle solid requires work to
create two new surfaces. Each of the two surfaces has a surface energy of c. The
fracture energy in a brittle solid, or rather the work done per unit area of surface, is
the integral under the stress displacement curve and may be expressed

energy ¼
Za=2

0

smax sin
2px

a
dx ¼ smaxa

p
ð8:20Þ

Equation (8.20) is equivalent to the formation of two surfaces or:
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smax

a

p
¼ 2c ffi rmaxa

p
ð8:21Þ

Note that instead of the shear stress, s, the stress, r, is used in line with the
notation in Fig. 8.5 for cohesive stress. Thus, re-expressing Eq. (8.21), gives:

a ¼ 2pc
rmax

ð8:22Þ

Substituting for a from Eq. (8.21) into Eq. (3.17) and recalling that r is used
instead of s, one obtains:

r2
max ¼

Ec
h
¼ Ec

a
ð8:23Þ

In Eq. (8.23), the approximation from Sect. 3.3.3 was used (that h % a).
Rewriting Eq. (8.23) by expressing rmax, one gets:

rmax ¼
ffiffiffiffiffiffi
Ec
a

r
ð8:24Þ

Also note that in Fig. 8.5 the distance was given in terms of r0, rather than
a. Thus, by changing a to r, one goes from Eq. (8.24) to (8.18), in line with the
notation in Fig. 8.5. Equations (8.18) or (8.24) provide a value (see ‘theoretical
strength’ in Sect. 3.3.3) which is much higher than the strength actually observed.
It has been suggested that, in reality, the calculated fracture stress needed to create
two new surfaces does not apply except in cases of flawless, perfect brittle
materials, such as whiskers (i.e., silica fibers), because various flaws, such as
cracks, are usually present in engineering ceramics and are responsible for the
lower-than-theoretical fracture strength. Giffith was among the first to explain the
discrepancy between the theoretical and the actual strengths of materials (dis-
cussed later on).

8.3.2 Theories of Brittle Fracture

Brittle fracture in single crystals is related to the resolved normal stress on a
cleavage plane. This concept is similar to that of slip in ductile materials, as
formulated by Sohncke [51] (see a schematic illustration in Fig. 8.6.

Sohncke states that fracture occurs when a resolved normal stress reaches a
critical value. Under tension, a fracture acquires low index planes in which the
density of the atoms is high. These planes are known as ‘cleavage planes’ and the
tensile stress is acting normal to them. Recall that Schmid’s law for slip is
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formulated in a similar manner (Sect. 4.6; Fig. 4.15b; relation 4.6), but it con-
siders slip planes. The critical stress, rc, is given by:

rc ¼
P cos /

A= cos /
¼ P

A
cos2 / ð8:25Þ

as shown also in Fig. 8.6. Equation (8.25) was obtained as follows. The normal
stress, which is the tensile stress acting on the cleavage plane (in the Fig. 8.6 it is
the slip plane), is given in terms of the load, P, as Pcos/. The area on which
normal stress is acting is A/cos/. Therefore, the load per area gives the stress
(critical) as shown in Eq. (8.25). The difference between fracture strength and
cohesive strength is a consequence of the inherent flaws in a material (mentioned
above), which lowers fracture strength, as stated by Griffith [22].

8.3.3 Griffith’s Theory on Fracture

The existence of flaws in the form of microcracks explains why the actual strength
is lower than the theoretical strength. Crack formation requires energy to produce
two new surfaces. Thus, Griffith’s [22] approach to brittle failure is often called an
‘energy balance theory’. Observe the schematic illustration in Fig. 8.7 character-
izing a crack. Here, the crack is shown at the center, though it may be at the sides
of the specimen (half-cracks).

In his model, Griffith [22] assumed that glass (a perfect, brittle material) con-
tains small, flat (slot-like) cracks, which act as stress raisers. Together with Inglis’
[29] theory of a pre-existing crack and its growth, Griffith [22] was able to show
that theoretical, cohesive strength is reached locally at the crack tip. Crack growth
is associated with strain-energy release during growth. (Griffith’s [22] relation is
derived below).

Fig. 8.6 A cleavage plane
in single crystals related to
normal stress, which is Pcos/
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Inglis’ [29] description of the crack (Fig. 8.7 is a plate) assumes that the applied
stress, ra, is magnified at the end of the ellipse along the x axis (the major axis).
The expression of this ellipse in the configuration shown in Fig. 8.7 is:

x2

c2
þ y2

b2
¼ 1 ð8:26Þ

The radius of curvature, q, is given (see, for example, Shumate, Jr. [50]) as:

q ¼ b2

c
ð8:27Þ

The stress concentration at the edge of the crack (the end of the major axis),
where c is half the major axis and b = half the minor axis (i.e., half the dimensions
of the crack), is given as:

rmaxðc; 0Þ ¼ ra 1þ 2c

b

� �
¼ ra 1þ 2ðc

q
Þ1=2

� �
ð8:28Þ

The last term in Eq. (8.28) is a result of substituting for b from Eq. (8.27).
When b � c (e.g., a slot), Eq. (8.28) reduces to:

Fig. 8.7 The Griffith crack
model for fracture. The flat,
elliptical profile in the center
of the plate represents a crack
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rmaxðc; 0Þ
ra

� 2c

b
¼ 2

c

q

� �1=2

ð8:29Þ

for circular holes, b = c. From Eq. (8.28), i.e., the central relation), one gets:

rmaxðc; 0Þ
ra

� 3 ð8:30Þ

The stress distribution along x is shown in Fig. 8.8.
For a static-crack system, the total energy is the sum of three terms:

U ¼ �WL þ UEð Þ þ US ð8:31Þ

UE is the elastic energy, US is the surface energy and WL is the mechanical
energy of the body or, alternatively, the amount of work done by the applied loads.
A decrease in strain energy results from the formation of a crack. Thermodynamic
equilibrium is reached when:

dU=dc ¼ 0 ð8:32Þ

The mechanical energy of a body under constant, applied force during crack
formation is:

WL ¼ 2UE at constant loadð Þ ð8:33Þ

The Inglis’ solution [29] for stress and strain fields around a sharp crack is:

UE ¼ pc2 r2
L

E
plane stress for a thin plateð Þ ð8:34Þ

For a thick plate, the above should be modified to:

Fig. 8.8 Stress distribution away from the tip of a crack. Equation (8.29) relates rmax to the

crack by rmax ¼ ra2
ffiffiffiffiffiffi
c=q

q
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UE ¼ p 1� m2
� �

c2 r2
L

E
plane stress for a thick plateð Þ ð8:35Þ

The surface energy of the crack in the plate is:

US ¼ 4cc ð8:36Þ

c is the surface energy per unit area of the crack. In Eq. (8.36), the relation
applies to a unit width of the crack. The total energy for the plane stress case is the
sum of Eqs. (8.34) and (8.36), namely:

U ¼ �pc2 r2
L

E
þ 4cc ð8:37Þ

The minus sign is a consequence of the fact that the growth of a crack releases
strain energy. The tensile stress acts normally to the surface of the crack. Following
Griffith’s [22] concept by using the equilibrium condition in Eq. (8.32) for Eq. (8.37),
an expression for the constant load and plane stress conditions is obtained as:

rL ¼
ffiffiffiffiffiffiffiffi
2cE

pc

r
ð8:38Þ

For constant load and plane strain conditions, one obtains:

rL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2cE

1� m2ð Þpc

s
ð8:39Þ

The change in stress over distance in the vicinity of the crack tip in Fig. 8.7 is
illustrated schematically in Fig. 8.8.

Despite the great impact that Griffith’s theory had on the understanding of
fracture in truly brittle materials, such as glass, some problems remain unresolved.
Why do large cracks tend to propagate more easily than small cracks? Is this
because dimensional change also modifies the radius of curvature? Where do
cracks originate? Griffith’s [22] theory (discussed above in regard to perfect, brittle
materials, such as glass) is entirely satisfactory for amorphous materials, but
cannot, in principle, be extended to metals or ductile materials, due to the different
nature of plastic deformation in ductile materials.

8.3.4 Orowan’s Fracture Theory

Orowan considered Griffith’s [22] theory. If no plastic deformation occurs, the
radius of curvature at the tip of a crack must be equal to the atomic radius, ‘‘a’’,
representing the sharpest crack. By using the stress-concentration factor at the tip
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of an elliptical crack, Orowan arrived at a similar relation to Griffith’s [22], in
which the stress-concentration factor is defined as Kt, given as:

Kt ¼
rmax

ra
ð8:40Þ

from Eq. (8.28):

rmaxðc; 0Þ ¼ ra 1þ 2c

b

� �
ð8:28Þ

and for b � c (e.g., a slot), Eq. (8.28) reduces to Eq. (8.29) or is expressed in
terms of Kt as:

Kt ¼
rmaxðc; 0Þ

ra
� 2c

b
ð8:41Þ

This relation is a consequence of b � c and, thus, 1 can be neglected. When the
radius of curvature q is of atomic dimensions (i.e., ‘‘a’’), Eq. (8.27) may be written
as Eq. (8.27a):

a ¼ b2

c
ð8:27aÞ

Equation (8.41), in terms of ‘‘a’’ after substituting for b becomes:

Kt ¼
2cffiffiffiffiffi
ac
p ð8:42Þ

If it is assumed that the atomic radius is ‘‘a’’, then the fracture stress at the crack
tip becomes equal to the theoretical stress (as calculated in Chap. 3, Sect. 3.3.3,
Eq. (3.18)) and is approximately:

smax ¼ s0�
G

2p
� G

6
ð3:18Þ

or in terms of theoretical stress, rT = rmax:

rT ¼
E

10
� E

20

Then, with the value of *E/10 (i.e., the theoretical stress) replacing rmax (c, 0)
in Eq. (8.41) and by using Kt from Eq. (8.42), one obtains for ra:

ra ¼
E

20

� � ffiffiffi
a

c

r
ð8:43Þ
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One of the questions that Eq. (8.43) poses is whether a crack of the size obtained
by the calculations in Eq. (8.43) really exists in glass. (For rT, an experimental
strength of *0.01–0.1 is often observed and with stress-concentration factors on
the order of 10–100 crack sizes, 100–10,000 Ǻ have been calculated). Whether
such cracks are present in freshly-formed glass remains an unanswered question in
the theories of both Griffith [22] and Orowan [41]. Since glass is easily damaged,
mechanically or during handling, it is likely that, in most commercial glasses,
surface defects will result. An indication of such a possibility is the well-known fact
that hydrofluoric acid (HF) glass etching results in higher strength; such etching
removes surface flaws and, therefore, increased strength is observed. Etching away
the surface of the glass produces an effect known as the ‘Joffé’s effect’.

A definite size effect exists in brittle materials, such as glass, and their strength
depends on the volume of the material. This volume-dependence is simply
explained by the fact that the probability of finding proper-sized cracks increases
with volume.

8.3.5 The Dislocation Theory of Brittle Fracture

8.3.5.1 Introduction

Although this is a discussion on brittle materials, such as ceramics (glass is a
perfect, brittle material), several researchers have developed theories of fracture
based on dislocation models. More specifically, the shear stress created by dis-
location pile-ups at some obstacle, specifically grain boundaries in polycrystalline
materials, reaches a sufficient value for crack formation. The following illustrates
Stroh’s [52] basic concept of microcrack formation, ultimately leading to the
occurrence of fracture in brittle materials.

8.3.5.2 The Stroh Model of Fracture

Similarly to Zener’s model [9] of microcrack formation at a pile up of edge
dislocations, Stroh [52] developed a theory of fracture based on the concept of
cracks initiated by the stress concentration of a dislocation pile-up. For brittle
materials in which crack growth is not damped-out by plastic flow, Stroh calcu-
lated that the conditions for crack initiation may be given by:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3pGc
8ð1� mÞL

s
ð8:44Þ

s is resolved shear stress acting on the pile-up, c is the surface energy of the
cleavage plane and L is the distance of the pile-up. Another expression for shear
stress, ss is given as:
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ss � si þ
2cs

nb

� �
ð8:45Þ

si is the lattice-friction stress in the slip plane. In this case, the obstacle is grain
boundary, d, which is taken into account by Stroh [52], as seen in Eq. (8.45a):

seff ¼ sy � si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Epc

4 1� m2ð Þd

s
ð8:45aÞ

Stress, ss, is created by the internal pile-up of n dislocations. seff is an effective
stress and sy is the yield stress. c is the surface energy per unit area of the plane, as
indicated earlier, and d/2 is the length of the dislocation pile-up. One illustration of
Stroh’s [52] concept is shown below:

In Fig. 8.9, one sees a 2D crack dislocation with a giant Burgers vector, nb, of
length c. Stroh’s [52] dislocation model for spontaneous microcrack formation,
calculates the elastic energy associated with the wedge deformation of length, c,
extending to a barrier by means of:

We ¼
Gn2b2

4p 1� mð Þ ln
4R

c
þ 2csc ð8:46Þ

Some of these symbols represent their conventional usages. R is the bounding
radius in the stress field. The surface energy term, 2csc, is added to obtain the total
energy of the system. Differentiating Eq. (8.46), the critical length, cmin, may be
found:

oWs

oc
¼ 0 ð8:46aÞ

Fig. 8.9 Nucleation of a
wedge crack due to piled-up
dislocations on a slip plane
[47]. With kind permission of
Elsevier

632 8 Fracture



www.manaraa.com

cmin ¼ G
n2b2

4p 1� mð Þ
1

2cs
ð8:47Þ

In polycrystalline solids, typical values [47] of b, G, m and cs are: b = 2 9 10-8

cm; G = 1012 dynes/cm2; m = 1/3 and cs = 103 dynes/cm2, respectively, which
yields cmin = 2.4 9 10-8 for cmin. To obtain the cmin for ceramics, the specific
values of G (or E) should be used for the surface energy and m, rather than the
values indicated.

Probably, Stroh’s [52] concept may be applied to semi-brittle materials, but its
use for typically brittle materials is questionable. Thus, Low [39] questions the
validity of Stroh’s [52] concept for various reasons (see his work for a detailed
discussion), among them the absence of observations of large pile-ups by etch pit

Fig. 8.10 Schematic
overview of principal damage
initiation mechanisms in SiC:
a grain boundary debonds
and voids; b foreign particles,
such as inclusions;
c dislocation pileups, leading
to Zener-Stroh cracks;
d twins and stacking faults;
e dilatant crack produced by
elastic anisotropy [49]. With
kind permission of Elsevier
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or TEM at the vicinity of the yield stress. Furthermore, Low [39] claims that
theoretical shear strength must be reached in order to produce a pile-up large
enough to exceed the theoretical cleavage strength. Nevertheless, many have
applied the Stroh [52] concept to various materials, such as MgO (Johnston [31])
or SiC (e.g., Park [43], Shih [49]). Johnston’s [31] Fig. 2 resembles Fig. 8.9, which
represents the applied stress to crack initiation in MgO. Shih [49], in his publi-
cation on fracture criteria in ceramics, indicates that there are a number of
microstructural mechanisms that have been identified as being the most likely sites
for failure initiation during compressive loading. These are shown schematically in
Fig. 8.10. Note the mechanism of pile-ups for fracture in (c), due to grain-
boundary obstacles. Basically, Fig. 8.10c resembles Fig. 8.9. Thus, pile-ups are
formed when they are stopped by an obstacle blocking their motion within their
slip planes. A high shear stress is generated at the leading dislocations of the pile-
ups, which may be related to microcrack nucleation and coalescence, for example
at grain boundaries, resulting in intergranular fracture. Stroh [52] derived an
expression for the minimum stress to nucleate at the end of a sliding interface:

smin ¼
12lcs

pL

� �
ð8:48Þ

(In 8.48) l(:G) is the shear modulus, cs the appropriate surface energy and L
is the length of the sliding interface. Low [39] reproduced the Johnston’s [31]
figure, illustrating crack nucleation in MgO at a slip-band intersection (shown in
Fig. 8.11). Figure 8.11 was obtained by tension at RT. It indicates that a crack
formed at a slip-band intersection and, once formed, could be prevented from
propagating to produce complete fracture if it intersected the slip band. A crack
can be nucleated at the intersection of two slip bands. Cracks of this type initially

Fig. 8.11 Crack nucleation
at slip band intersection in
MgO crystal [39]. With kind
permission of Elsevier
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propagate along a (110) plane (the slip plane), but eventually switch to the (100)
plane normal to the tension axis to produce complete fracture, as shown in
Fig. 8.12 at RT. If double slip is prevented and the crystal deformed in single slip

Fig. 8.13 Microcracks in
MgO stabilized by slip bands.
x 150 [39]. With kind
permission of Elsevier

Fig. 8.12 Crack nucleated at (110) slip band intersection in MgO and propagated on (001)
cleavage plane. x 225 [39]. With kind permission of Elsevier
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only, then ductile behavior is observed and the crystals remain unbroken after
elongations of up to 8 %. Examples of cracks stabilized by intersection with slip
bands are seen in Fig. 8.13. This condition is produced by sprinkling the surface of
the crystals with silicon carbide abrasive before testing, to produce many surface
sources for slip bands. The most brittle condition is that in which only two
intersecting slip bands form and a crack nucleates at their intersection, immedi-
ately propagating to complete fracture (Fig. 8.12). Low [39] indicates that
Johnston et al. [31] also investigated the role of grain boundaries in crack
nucleation by loading bicrystals of magnesium oxide in such a way that slip bands
originating in the crystals impinged on the boundary.

The boundary misorientation was varied systematically and the probability of
crack nucleation at the boundary, due to the blocking of the slip band, was found to
depend on the degree of misorientation. For boundaries of ‘medium’ misorienta-
tion (5–20o tilt plus twist), screw bands penetrated the boundary, but edge bands
were blocked and small cleavage cracks nucleated in the second grain in the
manner envisaged by Zener [9] and Stroh [52]. These cracks may be seen at a
number of points in Fig. 8.13. In the case of larger angle grain boundaries (tilt plus
twist), cracks nucleated in the boundary itself, presumably because the cohesive
strength of the large misorientation was less than the cleavage strength of the
second grain. In all the cases, cracking was observed only at blocked edge dis-
location bands. Screw dislocation bands either terminated at the boundary or
penetrated into the adjacent grain without crack nucleation (see Fig. 8.14).

It may be summarized that Stroh [52] assumed that the dislocation sources in
the grain adjacent to the pile-up are locked by Cottrell atmospheres and, thus,

Fig. 8.14 Microcracks at
slip bands blocked by grain
boundary in MgO bicrystal
[39]. With kind permission of
Elsevier
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prevented from relieving the stress concentration by slip. This mechanism operates
only during yielding, when the density of the operative sources is low and the few
sources that do operate may be expected to form a large pile-up in a short time.
The probability of brittle fracture is the same as the probability that dislocations
near a piled-up group will not be released by yielding in the next grain.

8.3.6 Fracture Toughness

8.3.6.1 Introduction

In the Sect. 8.2, one of the dislocation mechanisms was discussed–the pile-up
concept–as the origin of brittle fracture due to the stress concentration occurring at
the leading dislocation in the pile-up. However, in materials that is entirely brittle,
as are most ceramics at RT and low temperatures, plastic deformation by dislo-
cation motion does not occur or occurs to such a limited extent that cracks are
sharp up to the atomic level. In order to understand the fracture behavior of
ceramic materials, it is first necessary to understand the fracture mechanisms of
materials that are entirely brittle. In such materials, the mechanism of fracture is
associated with various flaws inherent or intentionally added to the ceramics. A list
of most of the flaws that may induce brittle failure by crack formation is given
below, as indicated in Fig. 8.10:

(a) Flaws formed by debonding along grain boundaries. These occur due to the
presence of ellipsoidal defects, either in the form of foreign atoms or second
phases. Tensile stresses are formed, triggering crack formation; the cracks then
become initiating sites for intergranular fracture.

Fig. 8.15 TEM micrograph
of grain boundary, indicated
by arrows, showing
c intergranular inclusion in
isolated region [49]. With
kind permission of Elsevier
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(b) Voids and various inclusions, which become initiation sites for failure in
ceramics. Such voids are always present in conventional and imperfect pro-
cessing techniques. Inclusions are often located at grain boundaries. Figure 8.15
shows the graphite inclusions of second-phase particles in SiC. Transgranular
microcracks develop.

(c) Stress concentration development at piles-ups, according to the Zener-Stroh
[9] model (see the Sect. 8.2). High stresses are generated at the leading dis-
location in a pile-up, which may be dissipated by the formation of microcracks
along the grain boundaries, resulting in intergranular fracture.

(d) Stress concentration due to twinning and stacking faults. The induced tension
stress initiates and propagates a dilatant crack leading to transgranular
fracture.

(e) Elastic anisotropy effect. Different grains have different stiffnesses due to
elastic anisotropy. Under a compressive applied traction, internal tensile
stresses, perpendicular to the loading direction, may develop. Such stresses are
higher along the grain boundaries and inside the stiffest grains. It has been
shown by Shih et al. [49] that high stress concentrations may be achieved at
triple points subjected to compressive stresses, where transgranular micro-
cracks develop.

This list of flaws shows that, in all cases at ambient temperatures, fracture is
usually initiated via crack propagation by cracks present in the ceramics. The
failure strength of ceramics is strongly dependent on the stress state and lateral
confinement.

8.3.6.2 Microcrack Growth and Crack Propagation

For practical purposes, the ‘fracture toughness’ of a material is of interest; this is
the property which describes the ability of a material containing a crack to resist
brittle fracture and is one of the most important properties of any material for

Fig. 8.16 Different failure modes: a Represents mode-I (tensile force), b represents mode-II
(shear force) and c represents mode-III (torsional force) [6]. With kind permission of Elsevier
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design applications. The linear-elastic fracture toughness of a material is deter-
mined by the stress-intensity factor, KIc. The subscript, Ic, denotes a mode-I crack
opening under a normal tensile stress perpendicular to the crack.

The stress-to-fracture in conventional tests, such as tensile tests, is not a safe
guide for the prevention of fracture resulting from crack propagation in structures
used in service, since crack growth to catastrophic dimensions might often occur
even below the tensile yield stress of the material. A critical-stress intensity factor,
Kc, is a measure of fracture toughness. The fracture resistance of a material is
known as its ‘fracture toughness’, which generally depends on: temperature,
environment, loading rate, the composition of the material and its microstructure,
together with the geometric effects of the tip. The existence of flaws, such as pores
and microcracks, pose a special problem for the field of ceramic technology. The
subject of fracture toughness is generally related to the amount of stress necessary
to propagate a preexisting crack. Various defects commonly exist in materials and
may develop to failure by fracture. The I subscript in KIc is used to denote the
crack-opening mode, as indicated in the various types in Fig. 8.16.

The stress intensity factor is given in Eq. (8.49):

KIc ¼ r
ffiffiffiffiffiffiffiffiffi
paB
p

ð8:49Þ

As mentioned earlier, this stress-intensity factor is a function of loading, crack
size and structural geometry. r is the applied stress, a is the crack length and B is a
dimensionless factor, which depends on specimen geometry. Thus, fracture
toughness is the resistance of a material to failure from fracture initiated by a
preexisting crack. The occurrence of cracks in structural components indicates a
certain threat to their reliable operation, because these cracks can grow during
service and reach critical sizes, leading to fracture. For a crack to grow, the stress
at the crack tip must be greater than the strength of the material. The cohesive
bond in the vicinity (front) of the crack is thus broken. However, this, by itself, is
not a sufficient criterion for the growth of a crack to failure. An additional

Fig. 8.17 Schematic
representation of a crack
propagated in a a dense
ceramic material and b a
porous ceramic material,
showing a sharp crack-tip in
the dense material and a blunt
crack-tip in the porous
material [15]. With kind
permission of Elsevier
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requirement is the release of energy that must occur when a crack grows to a size
that forms two new crack surfaces. Both of these prerequisites are essential. On the
one hand, if the force introduced into the system is of sufficient magnitude to break
the bonds, but there is not enough energy to form new surfaces, the crack will not
grow. On the other hand, if insufficient force is introduced into the system, such
that the atomic bonds cannot be broken, even though there is enough energy to
form new surfaces, the crack will also not grow. The geometry of a crack, or more
precisely its sharpness, is a decisive factor in establishing the magnitude of the
stress-concentration factor which develops at the crack tip. At the tip of a sharp
crack, this factor requires only sufficient energy to form new surfaces, since the
magnitude of the stress at the tip is of the order of the theoretical strength of the
material (its cohesive stress). Therefore, a relatively small load will provide the
necessary conditions for crack propagation. When the crack tip is dull (i.e., blunt),
it is relatively easy to provide the energy for the formation of two new surfaces,
but the stress is insufficient at the crack tip, because the stress concentration is
much lower than that of a sharp crack. In this case, higher loads are needed to
provide the required stress for crack growth. Thus, crack-tip blunting increases the
fracture toughness of ceramics. Porous ceramics favor crack-tip blunting over the
joining of pores and cracks (see Fig. 8.17).

Figure 8.18 schematically illustrates a sharp tip and a blunt one. From
Eqs. (8.50) and (8.51), it may be seen that stress decreases with the distance away

Fig. 8.18 Schematic
representation of a a sharp
crack, b a blunt crack with a
root radius of q0 and c a grain
suffering a non-uniform
tensile stress [15]. With kind
permission of Elsevier
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from the crack tip. This implies that the stress applied to a grain at the crack tip is
not a constant, as shown in Fig. 8.18c. However, the grain does not fracture
immediately; even the stress at some positions exceeds its fracture strength.

ry ¼
KIffiffiffiffiffiffiffiffi
2pr
p for a sharp crack ð8:50Þ

Fig. 8.19 Relationship between the toughness ratio of a blunt crack to a sharp crack and the ratio
of the blunt crack-tip radius to the effective grain width, where the hatched region represents the
results for different characteristic zone size. The dashed lines in the insets are the crack front of
different grain arrangement [15]. With kind permission of Elsevier

Fig. 8.20 SEM micrographs of grain and pore morphology in a FSC porous specimen and
b CSC porous specimen, where the arrows represent crack propagation direction during strength
and toughness tests [15]. With kind permission of Elsevier
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and

ry; blunt
KI; bluntffiffiffiffiffiffiffiffi

2pr
p 1þ q0=r

1þ q0=2rð Þ3=2
for a blunt crack ð8:51Þ

Equation (8.50) is the same as Eq. (8.49). The variation of the toughness ratio of
a blunt crack to a sharp crack and the ratio of the blunt crack-tip radius to the
effective grain width are illustrated in Fig. 8.19. The grain and pore morphologies of
the two types of porous SiC ceramics are shown in Fig. 8.20. Note that the specimen
labeled FSC has fine pore structures, while the pores in the CSC specimen are large
and have definite alignment. Both the FSC and CSC specimens exhibited trans-
granular fractures, regardless of their different compositions. The crack-tip blunting
reinforcement in porous ceramics, based on a grain fracture model, shows that crack

Fig. 8.21 Crack geometry of thin silica glass film at a low magnification and b high
magnification. showing crack tip [12]. With kind permission of John Wiley and Sons

Fig. 8.22 Blunting of crack tip a immediately after crack introduction and b after film was
soaked in water at 90 �C for 7 d [12]. With kind permission of John Wiley and Sons
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tip blunting increases the fracture toughness of porous ceramics to an extent
depending on the pore morphology. From the above, may infer that changing the tip
geometry from a sharp to a blunted configuration strengthens ceramics. Crack-tip
geometry may be directly observed by high-resolution-high-voltage electron
microscopy (HR-HVEM). An illustration of the tip geometry of SiO2 glass appears
in Fig. 8.21, representing a silica glass thin film 20 nm thick. The strength of glass is
strongly influenced by surface flaws or cracks. The shape of the cracks, especially
their tip radii, are important parameters for analyzing fracture. A similar example is
shown in Fig. 8.22 for a 40 nm thick glass film.

Figure 8.22a is a magnified view of a crack tip immediately after crack formation.
The radius of curvature of the crack tip is 1.5 nm, the same as in Fig. 8.21b, indi-
cating that tip geometry is independent of specimen thickness. This specimen was
soaked in water at 90 �C for 7 d and the results are in Fig. 8.22b, which shows the
position of the new crack tip, as indicated by the arrow. Note that crack blunting took
place during soaking and that the radius of curvature of the crack tip increased from
1.5 to %5 nm. A diagram of the mechanisms involved is reproduced in Fig. 8.23.

One may also observe a variation in the crack geometry with aging after the
glass was immersed in water. This suggests, as indicated in Fig. 8.23, that the
mechanisms acting during the blunting process are dissolution and precipitation,
rather than dissolution alone. An increase in the strength of the glass following
blunting is obtained. Figure 8.23 represents those types of glass known to be very
sensitive to external effects and exemplifies the facts that crack blunting improves
the fracture resistance of ceramics while also illustrating the geometry of a blunted
crack under HREM.

Of these three modes of cracking (shown in Fig. 8.16), mode-I (crack opening)
is the most commonly discussed in the literature. Eftis and Leibowitz [16] pre-
sented opening-mode stresses in polar coordinates as:

Fig. 8.23 Diagram of two
crack blunting mechanisms
[12]. With kind permission of
John Wiley and Sons
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ry ¼
KIcffiffiffiffiffiffiffiffi
2pr
p cos

h
2
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2
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2

� �
ð8:52Þ

syz ¼ sxz ¼ 0

rz ¼ mðry þ rxÞ
rz ¼ 0 for plane stress:

The stress distribution in the vicinity of a crack is shown in Fig. 8.24.
Figure 8.7 is inset at the center of Fig. 8.24 and the origin of the coordinate system
is located at the crack tip.

Note that the stress approaches infinity as the crack tip is approached, since the
denominator factor, (2pr)-1/2, approaches infinity with r going to zero. The lit-
erature contains expressions for K (and a) for a large number of crack and loading
geometries and both numerical and experimental procedures exist for determining
the stress-intensity factor in actual, specific geometries. From Eq. (8.49), it is
possible to express critical stress as:

rf ¼
KIcffiffiffiffiffiffiffiffiffi
paB
p ¼ KIc

a
ffiffiffiffiffiffi
pa
p ð8:53Þ

Fig. 8.24 Distribution of the
stresses in the vicinity of a
crack tip
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This is basically Eq. (8.50). In Eq. (8.49) above, a (= B1/2) is a geometrical
factor equal to 1 for edge cracks and generally of the order of unity in other
situations. In design analysis, it is assumed that a material can withstand a stress up
to a critical value of the stress-intensity factor. Beyond this critical value of KIc,
cracks propagate rapidly.

8.3.6.3 R Curves

The term ‘R-curve’ refers to fracture toughness which increases as a crack grows–
a desirable material property. Constructing R-curves is important for the prediction
of the effect of existing flaws in ceramics on fracture strength. Fracture toughness
is an indicator for failure in ceramics and the R-curve expresses ceramic crack
resistance. The R-curve is crack-size dependent and, therefore, often the mea-
surement of toughness properties, as a function of crack length, is required for
constructing R-curves. Though mostly studied in metals and composites, investi-
gations during the last decade have revealed similar properties of fracture tough-
ness behavior in monolithic ceramics, such as Al2O3, and others, e.g., PSZ,
a-SiAlON, Si3N4, etc. In Fig. 8.25, the R-curves for Si3N4, doped with various
rare-earth [henceforth: RE] elements, are shown as stress intensity and normalized
stress intensity with crack size change (crack extension). The curves provide
information on extrinsic toughening by the edition of RE elements (RE)-MgO to
Si3N4 ceramics. These materials tend to exhibit superior strength and fracture

Fig. 8.25 R-curves were normalized to the peak toughness to clearly show the change in shape
with sintering additive. Values of K0 were deduced for two samples (La and Lu doped) from
measured crack-opening profiles in R-curve samples, while K0 for Y-doped material was taken
from Kruzic et al. [35] Also shown are typical data for a Y2O3 doped Si3N4 that exhibits
transgranular fracture. With kind permission of John Wiley and Sons
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toughness, properties which result in a wider range of potential commercial
applications than those of only intrinsically toughened Si3N4.

Such additions give (i) sufficiently weak grain boundaries and (ii) bimodal grain
distributions and/or high aspect ratio self-reinforcing grains. These structures fail
predominantly intergranularly, which leads to extrinsic toughening via crack
deflection and crack bridging. Crack deflection and crack bridging are considered
to be basic mechanisms in the toughening process. Extrinsic toughening via
grain-bridging involves intact grains that span the crack flanks and sustain part of
the applied loads that would otherwise be experienced at the crack tip, thereby
effectively toughening the material by lowering the near-tip stress intensity, Ktip,
relative to the applied stress intensity, Kapp. Thus:

Ktip ¼ Kapp � Kbr ð8:54Þ

Fig. 8.27 SEM micrograph
of the fracture surface of the
material showing the
predominantly transgranular
fracture crack mode [55].
With kind permission of
Elsevier. (ADS96R is a MgO-
CaO-AI2O3 glass matrix)

Fig. 8.26 R-curves of
ADS96R with various grain
sizes [55]. With kind
permission of Elsevier.
(ADS96R is a MgO-CaO-
AI2O3 glass matrix)
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Fig. 8.29 The dependence of
the bridging-zone length,
lmax, on the grain size [55].
With kind permission of
Elsevier

Fig. 8.30 An example of the
beam-like ligaments bridging
the cracks [55]. With kind
permission of Elsevier

Fig. 8.28 The dependence of
the limiting (steady-state)
toughness, GIc, on the
average grain size of the
material [55]. With kind
permission of Elsevier
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where Kbr is the bridging-stress intensity. Grain bridging occurs as a result of
intergranular fracture and, accordingly, the boundaries must be sufficiently weak to
provide a preferential crack path. As a consequence of a reduction in boundary
adhesion, the local intrinsic fracture resistance at the boundary should increase
steady-state bridging, as Kbr � 1/Ktip, by allowing for more high-angle deviations
from the mode-I crack path (Fig. 8.16a), providing a more tortuous path, more
bridging and less transgranular fracture. In consequence, higher toughness may be
expected when lowering boundary adhesion in polycrystals.

The effect of grain size on R-curves is shown for Al2O3 in Fig. 8.26, obtained
by instrumented in situ dynamic SEM, using the double torsion technique. The
R-curve of the alumina glass is characterized by the energy dissipation require-
ment (during load-crack opening and closure), which provides data on whether the

Fig. 8.31 A ligamentary microcrack [arrowed in (a)] is seen to close in (b) after propagation of
the main crack, probably due to the influence of the residual thermal stresses in the material.
Micrographs from video recording [55]. With kind permission of Elsevier

Fig. 8.32 The dependence of
the change in toughness, DGI,
on the grain size [55]. With
kind permission of Elsevier
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localized grain bridging is responsible for the toughening mechanism observed. In
Fig. 8.26 of as-sintered and aged samples, the energy release, GIc, is plotted
against crack extension, Da. The fracture mode displayed in the experiments is
predominantly transgranular, as seen in Fig. 8.27. The results from Fig. 8.26 show
that increasing the grain size increases both the limiting (or ‘steady-state’)
toughness and the toughening rate (the slope of the R-curve), while the bridging-
zone length (measured by the crack extension required to reach a steady-state)
decreases. These bridging-zone lengths are large: up to 12 mm or 3000 grain
diameters for the as-sintered materials. The dependence of ‘steady-state’ (limiting)
toughness and bridging-zone length on grain size are seen in Figs. 8.28 and 8.29.
Notice in Fig. 8.30 that the cracks are largely transgranular with short intergran-
ular steps. Grain bifurcation leads to beam-like ligaments which bridge the crack.
The role of the visible ligamentary microcrack shown in Fig. 8.31 is to open and
reclose after the advance of the main crack, possibly due to residual stresses in the
material. Such elastic ligaments obviously exert a closing force, which has been
suggested as the reason for the additional toughening. Furthermore, toughening
depends on grain size, as may be seen in Fig. 8.32.

Al2O3 is one of the many ceramics displaying R-curve behavior characterized,
as mentioned in the beginning of the section, by increasing resistance as a crack
grows–a remarkable phenomenon, when considering the fact that cracks are the
‘‘root of all evil’’ in the nascent state of brittle fracture. Much experimental evi-
dence indicates that this is caused by a crack-bridging mechanism, by grains which
have not fractured. The geometry of these grains involves frictional forces, i.e.,
increased force is required to overcome frictional- and bridging- induced resis-
tances, for the induction of fracture. In other words, toughening of the material has
occurred.

Here, in Figs. 8.30 and 8.31, shown in connection with alumina toughening,
toughness is indicated by the symbol GIc (following the authors’ notation),
however the notation found in most of the professional literature is KIc.

It seems that it is possible to design ceramics with increased toughness by
inducing the frictional sliding of constrained grains, once a crack has been formed,
by controlling grain morphology, interface strength and by inducing residual stress.

8.3.6.4 J-Integrals

The fracture of ceramics, like alumina, may also be characterized by the ‘energy
absorption’ concept. Thus, toughness, KIc, (which is a linear elastic fracture
mechanics parameter) and GIc, the critical strain energy release were measured in
ceramics as a fracture criterion. The strain energy concept (Irwin [30]) of linear
elasticity may be generalized by defining a new parameter, J, which may be
applied to nonlinear elastic behavior (for example to fracture). As a fracture cri-
terion, it is applied to express the energy absorbed during crack extension. Notched
beam specimens are used and the fracture surface energy, cnbt, and the work of
fracture, cwof, are calculated from the linear elastic relations of KIc and � GIc,
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which are used as the fracture-surface energy for crack initiation. The range of
typical values of cnbt is 5–20 J/m2, while the energy absorption values, cwof, of a
slowly extending crack often has a value of [100 J/m2. It has been established
that, for refractories, cwof is � cnbt. She ratio (cwof/cnbt) has been applied as an
indication of the refractories’ resistance to thermal shock damage which may be as
high as 20, depending on the particular refractory of interest. This ratio can be
controlled to some extent through chemistry, microstructure and processing.

The critical value of J (i.e., JIc) is about the same as KIc and GIc, as mentioned
above for the fracture criterion. It is based on a crack-path independent energy-line
integral that encloses the crack-tip region. In other words, it is a parameter
describing the total energy of the crack-tip and the stress–strain field. One of the
experimental methods for measuring JIc is to determine the energy difference
between a cracked and an uncracked specimen loaded under the same conditions,
when the load is at its maximum prior to catastrophic failure of the cracked
specimen. Since, in general, brittle ceramics exhibit a distinguishable load maxi-
mum before fracture, the J-integral evaluation provides a reasonably reliable
method for determining the energy dissipation during fracture initiation in mate-
rials such as ceramics.

As mentioned at the start of this section, the J-integral concept was originally
applied to metals, in which the linear elasticity concept might include the plastic
observations, i.e., plastic flow in the close vicinity of the tip. Reservations
regarding the use of the J-integral in brittle materials, such as ceramics, are a
consequence of the presence of microcracks or rather subcritical crack growth
before fracture sets in, making it not strictly applicable. However, in ceramics, in
which extensive inelastic processes are active in the crack-tip process zone, the use
of J is not more restrictive than the use of the KIc criterion in linear elastic fracture
mechanics.

Fig. 8.33 Schematic of J measurement technique [27]. With kind permission of John Wiley and
Sons
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An accepted method for J-integral measurements (as performed by Rice et al.
[44]) is by a compliance method. This technique involves the subtraction of the
load–displacement curve of an unnotched elastic (UE) specimen from that of a
notched inelastic (NI) specimen for the same load of Pmax. Figure 8.33 illustrates
this technique of J-integral measurement.

Note that the measuring technique depends on parameters such as specimen
type, dimensions and loading technique. From such measurements, JIc is calcu-
lated. The critical value, JIc, according to Eqs. (8.55) or (8.56) is calculated after
performing the integral (represented by the area under the load curve vs. exten-
sion) at fracture:

JIc ¼
2

bB

Z dJ

0
Pdd ¼ 2AJ

bB
ð8:55Þ

or

JIc ¼
2

bB

� �
ANI � AUEð Þ ð8:56Þ

In the above equations, A is the area, b is the uncracked ligament and B is the
specimen thickness. The above was obtained according to Homney et al. [27].
following their approach as follows. The elastic property measurements were
performed using a dynamic mechanical resonance method. The shear modulus, G,
measurement was first performed by torsional resonance and then by flexural
resonance to estimate the Young’s modulus. E was calculated by estimating
Poisson’s ratio, m, and then by using an iteration based on:

v ¼ E

2G
� 1Þ

� �
ð8:57Þ

(This appeared as Eq. (1.12a) in Chap. 1). Next, the fracture toughness, KIc,
was measured on single-edge crack-like specimens with notches of one-half the
specimen thickness. The specimen was tested in three-point flexure over a 6-in.
span on a commercial testing machine at a crosshead speed of 0.05 in./min. The
KIc’s were calculated from Brown and Strawley’s [14] equation:

KIc ¼ rf
ffiffiffi
c
p

f
c

d

� �
ð8:58Þ

where rf is the fracture stress, c the notch depth and f(c/d) is a polynomial
describing the geometry of the test specimen. In the linear elastic case, KIc is
related to GIc and cnbt through:

K2
Ic

1� m2ð Þ
E

¼ GIc ¼ 2cnbt ð8:59Þ
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GIc is the critical strain energy release rate and cnbt is the fracture surface energy
of crack initiation, often referred to as the ‘notched-beam-test’ fracture-surface
energy in refractory literature. Also note that the stress intensity factor (Eq. 8.58)
was given in Eq. (8.49) as:

KIc ¼ r
ffiffiffiffiffiffiffiffiffi
paB
p

ð8:49aÞ

Table 8.1 is a summary of all the creep tests performed on S3N4. Stress
intensity factors for various geometries are given in Table 8.1 of Suh and Turner
[7] (pp. 422–423), among them for edge cracks, though not strictly applicable to
simple edge-crack-like specimens tested by the 3-point flexure method.

Table 8.1 Summary of Creep Tests for Hot-Pressed Silicon Nitride [40] (with kind permission
of John Wiley and Sons)

Test temperature (c) Stress (MPa) Minimum strain rate (l/s) Life (h) Total strain (%) Note

Monolith
1200 250 5.0 9 10-8 45 1.0 1
1200 250 4.4 9 10-8 40 0.9 I
1200 250 4.1 9 10-8 51 1.0 1
1200 200 1.8 9 10-8 148 1.4 2
1200 150 8.2 9 10-9 202 1.0 2
1200 150 7.5 9 10-9 350 1.6 2
1200 100 1.4 9 10-9 4
1200 70 5.0 9 10-10 3280 0.8 2
1250 100 5.8 9 10-9 360 1.3 2
1300 150 1.6 9 10-6 2 1.1 3
1300 100 4.1 9 10-7 12 1.4 3
1300 70 8.7 9 10-8 25 1.4 3
1300 70 7.2 9 10-8 19 1.2 3
1350 70 8.1 9 10-7 4 2.7 3
1350 40 9.0 9 10-8 55 3.4 3
Composite
1200 250 4.0 9 10-8 56 1.0 1
1200 200 1.6 9 10-8 95 0.9 2
1200 200 1.5 9 10-8 132 1.1 2
1200 200 1.4 9 10-8 195 1.5 2
1200 150 4.8 9 10-9 254 0.8 2
1200 100 8.0 9 10-10 4
1200 100 6.4 9 10-10 4
1250 100 3.1 9 10-9 605 1.1 2
1300 100 2.5 9 10-7 14 1.4 3
1350 70 8.2 9 10-7 6 2.9 3
1350 40 1.2 9 10-7 48 3.2 3

Notes 1. Fracture in a transient creep regime. 2. Fracture in steady state creep regime. 3. Fracture
in a accelerated creep regime. 4. Interrupted before fracture
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At a later stage, the work-of-fracture, cwof, was evaluated in a specimen with a
side notch having the geometry of a v-notch. These specimens were broken on a
commercial testing machine over a 6-in. span at a crosshead speed of 0.002 in./min
to yield fully stable fractures. The work-of-fracture was calculated from:

cwof ¼
Z

Fds=2A ð8:60Þ

R
Fds is the area under the load-displacement curve and A is the area of the

remaining v-section of the specimen after notching. Comparing JIc data with other
fracture parameters, such as KIc, GIc and 2cwof, is of interest. Thus, in a perfectly
linear case (as indicated earlier), the critical value of J (i.e., JIc) is about the same
as KIc and GIc for the fracture criterion and Eq. (8.59) may be rewritten as:

JIc ¼ GIc ¼ K2
Ic 1� m2
� �

=E ð8:61Þ

Like other measurements, the results of the fracture of 50 % alumina refrac-
tories indicate that the order observed is GIc \ JIc \ 2cwof. This trend appears to
be consistent for all the ceramic materials which have been studied to date. Since
JIc exceeds GIc for each refractory investigated, the magnitude of the difference
(Jlr-GIc) may indicate the refractory’s propensity for exhibiting inelastic energy
dissipation processes in the crack-tip zone during fracture initiation. Figure 8.34
relates the crack-brittleness ratio to the difference (Jlr-GIc).

The other measure of energy dissipation by inelastic processes during fracture
is 2cwof. It is also a measure of the presence of energy-consuming inelastic pro-
cesses, but of those occurring during slow crack motion through a complete
fracture process. JIc also exceeds 2cwof. In a manner similar to Fig. 8.34, a plot
may be constructed relating the normalized work of fracture to the (2cwof - GIc)
parameter shown in Fig. 8.35.

Fig. 8.34 Crack brittleness
ratio, JIc/GIc versus (JIc-GIc)
[27]. With kind permission of
John Wiley and Sons
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Thus, the above discussion on the J-integral shows that its measurement in
various refractories yields JIc values which exceed GIc. With regard to JIc, these
measurements appear promising as a technique for quantitatively describing the
inelastic energy consumption in the crack-tip process zone during fracture initia-
tion in refractory ceramics.

8.3.7 Fatigue Fracture in Ceramics

Fatigue (non-static fatigue) is a cyclic deformation, such that damage in ceramics
under cyclic loading is associated with its microstructure, specifically with the
presence of flaws. Unlike in metals, which are designed for strength, in ceramics
the major interest is toughness, which is very much affected by the presence of
cracks and their growth. Ceramics are of interest for various structural applications
in which cyclic loading is involved. Among these uses, ambient temperature is also
being considered in particular for biomedical implants. However, in predominantly
brittle ceramics, the focus has been on their use at elevated temperatures, such as
in aviation (for fuselages) and for engine components, to mention a few. However,
in general, applications of ceramics have been limited by their sensitivity to the
presence of preexisting flaws in the form of cracks, pores and microcracks.
Therefore, ceramics are expected to show marked susceptibility to premature
failure under cyclic fatigue loading. Fracture is associated with fatigue-crack
propagation and, therefore, the growth rate, da/dN, as a function of the stress
intensity, K, is a subject of considerable interest. Figure 8.36 compares da/dN as a
function of DK of several ceramic materials, intermetallics and metals.

Two aspects related to failure are observed in fatigue crack growth at the tips in
materials. The first, which promotes crack advance, is the microstructural damage

Fig. 8.35 Work-of-fracture normalized similar to the JIc fracture criterion [27]. With kind
permission of John Wiley and Sons
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in front of the tip and the second, which impedes crack propagation at the tip, is a
shielding mechanism implemented by crack bridging or crack deflection and
fatigue crack closure. The crack-closure mechanism is related to DK. Recall that
the crack-growth rate is related to DK by Eq. (7.9), which is Paris’ relation,
reproduced here as:

da

dN
¼ CDKm ð7:9Þ

Essentially, creep blunting is associated with the amount of localized plastic
deformation that occurs at the crack tip prior to crack propagation and represents
the controlling feature in tip blunting. Such behavior cannot occur in commonly
brittle material at RT due to its lack of plasticity. Therefore, ceramic materials may
be toughened by using various crack-tip shielding mechanisms, whose effect is to
impede crack extension by locally reducing near-tip intensity (or rather stress
concentration) by modifying microstructural factors to promote toughening. Here,
a list of the known methods (following Ritchie’s [4] classification) is presented
(Fig. 8.37).

One should note that transformation toughening is a possible method only in
ceramics undergoing a transformation, for example in a zirconia-based ceramic in
which tetragonal-monoclinic transformation might occur. One of the roles of

Fig. 8.36 Schematic variation of fatigue-crack propagation rate (da/dN) with applied stress
intensity range (DK), for metals, intermetallics and ceramics [4]. With kind permission of
Professor Ritchie
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particle additions is to induce crack deflection and, by so doing, the toughness of
the ceramics is improved. An important aspect of toughening is by crack-tip
shielding involving crack bridging by fibers (in fiber-enforced ceramic compos-
ites) or when a crack intersects a ductile phase (particle). The propagation of
cracks eventually leads to failure. It is of great importance to extend the lifetimes
of components operating under cyclic conditions. The fracture mode in cyclic
loading is characterized by striation growth (which was believed to be a feature
only in metallic fatigue). The fracture surfaces in ceramics were considered to be
almost identical to those under monotonic loading (see Fig. 8.38) except that more
debris is often present on fatigue-fractured surfaces. However, it turns out that
striations are also found in ceramics, as seen, for example, in 3Y-TZP (Fig. 7.13,
Sect. 7.2.2). Thus, striation cannot be considered a distinguishing fatigue feature

Fig. 8.37 Schematic illustration of the primary toughening mechanisms in ceramics and
ceramic-matrix composites. Note that all mechanisms are extrinsic in nature and promote
inelastic deformation which results in a nonlinear stress/strain relationship [4]. With kind
permission of Professor Ritchie
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of fractured surfaces characterizing only metals. Microstructure can have an
important effect on resistance to fatigue fracture. Thus, the effect of grain size on
the fatigue-crack growth rate is indicated in Fig. 8.39.

Regardless of the origin of stress when cycling is applied, fatigue damage may
result. Dangerous stress cycling is associated with thermal effects. Premature
failure, resulting from cyclic stresses due to temperature changes, seems to be one
way of approaching the problem of thermal fatigue in high-temperature structural
components. This problem is of great concern in many fields in which structural
components must operate at high service temperatures; if thermal gradients are
generated, the propensity for thermal-fatigue cracking increases. Thus, it is of
great technological interest to strengthen those components that will be exposed to
conditions in which thermal gradients are set up to inhibit thermal-fatigue damage.

Note that the grain size effect is evident in Fig. 8.39 and this effect is not
emphasized or masked in b of this figure. Normalizing the growth rate in terms
Kmax/Kc, the microstructural effects (i.e., the grain-size effects) are essentially
eliminated. Rather than using the Paris Eq. (7.9), as

da

dN
¼ CDKm ð7:9Þ

Fig. 8.38 Fractography of ceramic fatigue showing nominally identical fracture surfaces under,
respectively, monotonic and cyclic loading in (a, b) alumina (Coors 99.5 %) and (c, d) silicon
nitride (hot-pressed with 7 wt% Al2O3 ? Y2O3). Note, however, the more debris and surface
damage on the fatigue surfaces [4]. With kind permission of Professor Ritchie
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Liu and Chen [37] suggested:

da

dn
¼ C0ðKmaxÞnðDKÞp ð7:9aÞ

where Kmax appears in the equation in addition to DK. C0 is a constant and the
exponents, n and p, are *10 and 15 (in alumina reinforced with SiC whiskers) as
compared to n = 0.5 and p = 3 for metal fatigue of a nickel-based superalloy. C0 is
a constant equal to C (1 - R)n and (n ? p) = m, the exponent of Paris’ relation.

Ritchie [4] classified the fatigue mechanisms related to crack growth as being
either ‘intrinsic’ or ‘extrinsic’ mechanisms, associated with the crack-tip charac-
teristics. The intrinsic mechanism generally characterizes metals and their alloys,
in which crack advance is a consequence of damage in the crack-tip region
characteristics under cyclic loading. In the case of an extrinsic mechanism, crack-
tip shielding behind the tip is degraded by accelerated crack growth during the
unloading cycle. In ceramics, the cyclic process is predominantly extrinsic. One
vital means of crack-tip shielding is bridging, which plays an important role in
closing crack surfaces. Grain-bridging stress, p, may be expressed as a function of
the distance behind the crack tip, X, and crack-opening displacement, 2u, in terms
of the length of the bridging zone, L, and an exponent, k, as:

pðXÞ ¼ Pmax 1� x

L

� �k

pðuÞ ¼ Pmax 1� XðuÞ
L

� �k ð8:62Þ

Fig. 8.39 Fatigue-crack growth rates, da/dN, as a function of a the applied stress-intensity range,
DK, and b the maximum stress intensity normalized by the fracture toughness, Kmax/Kc, for a
range of polycrystalline aluminas [4]. With kind permission of Professor Ritchie
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The function p(X) describes the bridging stress distribution from a value of
Pmax at the crack tip (X = 0) and decreasing to zero at the end of the bridging
zone, where X = L. At this location, 2u = 2uf, the critical crack opening for creep
rupture. Bridging is a toughening mechanism. However, under cyclic loads, the
repetitive opening and closing of the crack results in a decrease in the toughening
capacity of the bridging zone due to the reduction in grain-bridging stress. This
means that the accumulated damage at the grain/matrix interfaces causes pre-
mature damage by grain debonding. Measured crack-opening profiles in SiC
ceramics may be seen in Fig. 8.40.

In Fig. 8.40a, SEM measurements were performed an in situ toughened ABC
SiC of the opening profile for a crack approximating R-curve behavior and the plot
is a function of distance, X, behind the crack-tip (see Sect. 8.3.6.3). In 10b, the
best-fit profile is shown as determined by the following relation by Ritchie [4]
(after Barenblatt):

uðxÞ ¼ KA

E0
8x

p

� �1=2

þ 2
pE0

Z L

0
pðX0Þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X0 þ

ffiffiffiffi
X
pp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X00 �

ffiffiffiffi
X
pp

ffiffiffiffiffi
ffiffiffiffiffidX0 ð8:63Þ

Here, the net crack opening profile, u(X), for a linear elastic crack under an
applied far-field stress intensity, KA, with a bridging traction distribution, p(X), of
length, L, acting across the crack faces is expressed in terms of the elastic mod-
ulus, E0 (= E in plane stress of E/(1 - m2) in plane strain). X0 is the integral
variable where the stress, p, acts. Also shown are the best-fit profiles determined
from Eq. (8.63), shown as the dashed line, and the calculated opening profile for a
traction-free track, indicated by the solid line. In Fig. 8.40b, the best fits, p(X) and
u(X), were estimated by fitting the data. These data may further used to evaluate
p(X) and p(u) in Eq. (8.62).

For further calculations to predict the bridging contribution of a crack that has
already propagated some amount Da or to predict other pertinent data on fatigue

Fig. 8.40 Measured crack-opening profiles in an ABC-SiC ceramic for a Case I where the crack
was grown near instability (at *2 9 10-8 m/cycle at *92 % Kc), and Case II where the crack
was grown near threshold (at *1 9 10-10 m/cycle at *75 % Kc). In b, the best-fit bridging
traction distributions are plotted for each case [4]. With kind permission of Professor Ritchie
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lifetimes, one is referred to Ritchie’s [4] original work. This section is not com-
plete without a schematic summary of the intrinsic and extrinsic processes leading
to fracture by crack opening and propagation in metals and ceramics (Fig. 8.41).

8.3.8 Improving Toughness

There are various techniques that may be used to improve the toughness of
ceramics, such as: (i) changing the course of a crack (deflection, bowing,
branching, etc.); (ii) crack-tip shielding by bridging, transformation or causing
plastic yielding in the tip vicinity; (iii) and crack healing. In (i) and (ii), the roles of
second-phase particles, whiskers or fibers may explain the process occurring at the
crack tip, though not necessarily, since the grain boundaries of polycrystalline
ceramics may do just the same. In (iii), the major role of crack healing is tem-
perature and duration at some temperature.

8.3.8.1 Changing the Course of a Crack

a) Crack deflection is one way to change the course of a crack, thus improving
resistance to fracture. Toughening occurs due to deflection, whether particles or
only grain boundaries are involved. A crack approaching some sort of micro-
structural inhomogeneity, such as a second-phase particle, may become tilted at
some angle off its original plane. The deflection of a crack into a non-planar crack
might be caused by the presence of residual strains. The origin of such residual

Fig. 8.41 Schematic illustrations of the intrinsic and extrinsic mechanisms involved in cyclic
fatigue-crack growth in a metals and b ceramics, showing the relative dependencies of growth
rates, da/dN, on the alternating, DK, and maximum, Kmax, stress intensities [4]. With kind
permission of Professor Ritchie

660 8 Fracture



www.manaraa.com

strain, which may be compressive or tensile, may result from a mismatch of the
thermal expansion during fabrication between the matrix and a second-phase
particle. The sign of the residual strain (developed between the particle and the
matrix) determines the direction of the deflection and also the position of the
particle with respect to the movement of the crack. Crack deflections in lithium-
alumino-silicate glass ceramics and Si3N4 composites are considered below.
Figure 8.42 shows crack profiles in lithium-alumino-silicate glass. In this struc-
ture, residual strain develops due to the thermal expansion mismatch between a
single crystalline phase of Li2Si2O3 produced by heat treatment and the glass
matrix. It is desirable to use an independent measure to specifically substantiate
that crack deflection is associated with an increase in fracture toughness. Post-
fracture information on the type of fracture and the origin of failure does not
indicate the essential path and direction of the crack propagation. The crack-front
tilt (or twist) is a significant piece of data for the unique determination of the effect
of deflection on the toughening of the material under consideration. In Fig. 8.43,
representative traces of end members of two Si3N4 specimens (samples A and G)
are shown and the frequency distributions from smoothed histograms associated
with these measurements appear in Fig. 8.44.

Since direct aspect ratio information could not be obtained for the Si3N4 sys-
tems, toughness correlations are, thus, based upon the measured mean deflection
angles. As a reference required for comparison, the highest toughness at a median

Fig. 8.42 Indentation crack profiles in lithium–alumin–silicate glass ceramic (heat treated 250 h
at 850 �C, etched in 2.5 % HF for 5 s) indicating fracture of Li2Si2O3 grains accompanying crack
deflection. Also note microcrack [20]. With kind permission of Elsevier
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Fig. 8.44 Relative
toughness-median deflection
angle correlations for the hot-
pressed Si3N4 series. (Vf in
the figure is the volume
fraction) [20]. With kind
permission of Elsevier

Fig. 8.43 a Crack deflection profiles for end member of the Si3N4 series traced from scanning
electron micrographs. b Frequency distributions of measured detection of the angles for end
members of the Si3N4 series [20]. With kind permission of Elsevier
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deflection angle of 40� (composition G, median deflection angle of 40�) was
selected. The prediction for rod-shaped particles with measured relative toughness
and deflection angle is compared in Fig. 8.44. Only the lowest toughness (equi-
axed grained material) deviates significantly from the prediction. From a series of
hot-pressed silicon nitrides of rod-shaped grains having various aspect ratios, it
was established that particle size does not toughen brittle ceramics due to crack
deflection, but that its shape does have a strengthening influence. Clearly, an
increase in the volume fraction also increases toughness. This observation is in line
with the common concept of crack-deflection strengthening. The shape and size
effects are shown in Figs. 8.45 and 8.46. Particle morphology effects may be seen
in a series of hot-pressed silicon nitrides comprised of rod-shaped grains having
various aspect ratios (Fig. 8.45; shape effect).

Lithium-alumina-silicate glass ceramics, containing Li2Si2O3 lath-shaped crys-
tals indicate the particle-size effects (Fig. 8.46). The most effective morphology for
increasing toughness is the rod shape, followed by the disc and sphere shapes.
Beyond particle morphology, additional features that affect the toughness of
ceramics are volume fracture and the particle aspect ratio. Mathematical evaluation
of the effect on toughening of rod-, sphere- and disc-shaped morphologies may be
found in the work of Faber and Evans [20]. The relative toughness predictions for
crack deflection for spherical, rod-like and disc-shaped particles are summarized in
Figs. 8.47–8.49. From these toughness predictions, it is evident that an increase in
toughness depends solely on particle shape and the volume fraction of the second
phase. The most effective morphology for deflecting propagating cracks is a rod with

Fig. 8.45 Fracture toughness
of a series of hot-pressed
Si3N4 materials versus
calculated aspect ratio [20].
With kind permission of
Elsevier
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a high aspect ratio. Toughening results primarily from the twist of a crack front
between particles, as indicated by the deflection profiles. Less effective for tough-
ening are disc-shaped particles and spheres, respectively. These predictions provide
the basis for the design of high toughness, two-phase ceramic materials. In addition,
the ideal second phase should be present in amounts of 10–20 vol%. If the percentage
is higher, the effect diminishes. Particles with high aspect ratios are most suitable for
maximum toughening, especially particles with rod-shaped morphologies.

Fig. 8.47 Relative toughness
predictions from crack
deflection model for spherical
particles including the effect
of a distribution in
interparticle spacing.
Predictions are compared to
the relative toughness due to
surface area increase [20].
With kind permission of
Elsevier

Fig. 8.46 Fracture toughness
of a series of lithium-
alumino-silicate glass
ceramics plotted versus
increasing growth time of the
crystalline phase [20]. With
kind permission of Elsevier
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The experimental evidence correlates well with the guidelines developed for
toughening brittle materials by crack deflection processes.

b) Crack bowing is relevant to an explanation of the difference between ‘crack
deflection’ and ‘crack bowing’. In the latter case, a nonlinear crack front develops,
due to the resistance of a second-phase particle which happens to be in the path of
an advancing crack.

Because of the resistance of the particles, the crack bows between them, causing
the stress intensity, K, at the particle to increase, while, in the bowed segment of the
crack, a softening effect occurs, i.e., K decreases along this segment. Bowing

Fig. 8.49 Relative toughness
predictions for initial tilt and
for maximum twist based on
crack deflection model for
disc-shaped particles of two
aspect ratios [20]. With kind
permission of Elsevier

Fig. 8.48 Relative toughness
predictions from crack
deflection model for rod-
shaped particles of three
aspect ratios [20]. With kind
permission of Elsevier
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increases until the fracture toughness of the particle is overcome, thus enabling the
crack to advance. As such, strong particles act as barriers to crack propagation,
acting as pinning points with a distance, d, between them. The bowing out resem-
bles the line tension, T (discussed in Sect. 3.3.8 in the chapter on dislocations).
Figure 8.50 is a modified illustration of Fig. 3.45 (from Sect. 3.3.8, Chap. 3).

Lange [36] has analyzed the effect of the pinning points and expressed the
fracture energy (i.e., the energy/unit area required to initiate fracture) as:

c ¼ c0 þ
T

d
ð8:64Þ

where co is the energy/unit area required to form a new fracture surface, T is the
critical line energy/unit length (tension is the energy-per-unit length) of the crack
front and d is the distance between pinning points. An estimate for the critical line
energy is given by:

T ¼ Cc0 ð8:65Þ

where the value of C may be approximated by the crack size in the material. By
substituting values for C and c0, one may evaluate the line tension. The line energy
of a crack front in a glass composite (sodium borosilicate glass-Al2O3 composite),
for example, was estimated as 15–60 ergs/cm. Often in the literature, the factor 2
precedes Eq. (8.64), to indicate the energy required to form two surfaces.
The fracture energy data obtained from the work of the sodium borosilicate

Fig. 8.50 Modified
illustration of Fig. 3.45 from
Sect. 3.38, Chap. 3
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glass-Al2O3 composite are plotted as a function of the inverse average interparticle
distance (l/d) in Fig. 8.51.

As may be seen, each of the series resulted in a linear plot. The slope of each
plot equals the line energy of the crack front. The effect of the particle size may be
incorporated into Eq. (8.64) as:

c ¼ c0 þ F Dð Þ T
d

ð8:66Þ

F(D) is a dimensionless function of particle size D, where 0 B F(D) B 1. When
the pinning positions do not effect crack propagation, F(D) = 0 and, thus, the
second term has no effect on the fracture energy. Unlike the case of deflection, no
size effects were observed from the toughening of brittle materials, like ceramics,
by the bowing process. The size of the pinning particles (and their fraction)
determine the spacing, d, between the pinning points. Like dislocation pinning by
obstacles and the concept of break-away stress (Pelleg), crack fronts are thought to
break away from their pinning positions. The distance between the pinning posi-
tions decreases as the volume fraction of the particles increases; this, in turn,
increases c, as seen in Eq. (8.66). A schematic illustration of the break-away
position of a crack front from its pinning sites appears in Fig. 8.52.

The calculated strength is compared with experimental strength data in
Fig. 8.53, which is a plot of the flexural strength versus the volume fraction of
Al2O3 dispersed in sodium borosilicate glass-Al2O3. We may conclude this section
on crack bowing as follows. In contrast to deflection, there is a particle-size effect
on toughness. A volume fraction increase increases toughness due to the
decreasing distance between crack-anchoring particles, according to the second
term in Eq. (8.66) or (8.64). This means that there is interaction between the crack
front and the second phase (particle) dispersion.

Fig. 8.51 Fracture energy of
composite series versus
average inverse interparticle
spacing [39]. With kind
permission of John Wiley and
Sons
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Fig. 8.52 Breakaway
position of crack front from 2
pairs of pinning positions,
each separated by distance d.
Distance between 2 arms of
crack front anterior to each
pinning position (indicated by
2 arrows) is hypothesized to
control breakaway position
because of overlapping stress
field. Large arrow is direction
of crack propagation [36].
With kind permission of John
Wiley and Sons

Fig. 8.53 Comparison of
strength data of composite
series reported in Hasselman
and Fulrath with strength
values calculated from
Eq. (8.66) [36]. With kind
permission of John Wiley and
Sons
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An increase in particle size decreases the distance between them and decreasing
distance means an increase in fracture energy. Larger particle-size dispersions are
more effective in interacting with crack fronts than smaller ones. Apparently,
strengthening brittle materials by means of the dispersion of larger-sized particles is
more effective than doing so by means of smaller ones, though there is a particle-
size limit, since large particles tend to increase the size of the crack. Therefore, the
best results demand a compromise when choosing the particle size for dispersal.

8.3.8.2 Crack-Tip Shielding

As indicated above, crack-tip shielding is a method for strengthening brittle
materials by increasing their toughness. Several techniques are possible for
inducing crack-tip shielding, among them bridging, transformation and causing
plastic yielding in the tip vicinity. These techniques will be briefly considered here:

(a) Bridging in Pure Ceramics (grain-bridging)

In ceramics, flaws, in the form of cracks of various sizes, usually exist, unless
very special techniques are applied to greatly reduce (though not completely
eliminate) their volume fraction. An existing crack in a brittle-ceramic matrix
propagates and stress concentrations exist in the vicinity of the crack tip. The
microstructure effect on crack propagation and its influence on toughness are
considered below. This was directly observed during Vickers-induced flaw
experiments. The experimental set up of the test specimen and the schematic
indentation tests are shown in Fig. 8.54. Reflected light micrographs are seen in
Fig. 8.55. A microstructural observation of grain bridging in alumina appears in
Fig. 8.56. Grain-localized ‘bridges’ across the crack interface, over large distances
of several millimeters behind the tip, in nominally pure, CG alumina were
observed. A major feature of this experimental procedure is its facility in moni-
toring the evolution of fracture during the application of stress. Accordingly, direct
observations were made of the crack growth by optical microscopy, using the two
loading configurations shown in Fig. 8.55a and b. Grain boundaries of the spec-
imen (for observing bridging and additional features) were outlined by polishing
with 0.3-lm A12o3 powder. The observations indicated that, after the sudden
propagation of the cracks to the edges, the fractured segments tended to remain
intact and additional forces were needed for the separation of the pieces. This
observation provided the clue for the idea that the advancing tip is retained by
some forces acting across the interface.

Forces resisting further activity were observed to come from some distinct,
local ligamentary entity. In Fig. 8.55, one may see that crack extension has
occurred along the length of the specimen and in the areas labeled (a), (b) and (c).
The progressive evolution through the loading sequence is visible. The areas of
this figure are magnified in Fig. 8.56a, b, and c. In zone A of Fig. 8.55, the
formation and rupture of a single ligamentary bridge through all six stages may be
followed (better seen in the magnified illustration in Fig. 8.56).
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More detailed information on the crack interface events are found in Fig. 8.57
and indicate physical contact restraints that persist even though that the crack
interface is open to a large extent. Figure 8.58 presents a slightly more complex
picture. Here, the grains in the centers of the fields of view have developed
secondary microfractures in the base region of attachment to one of the crack
walls. There is a strong element of transgranular failure associated with this mi-
crofracture process, particularly evident in Fig. 8.58a. Figure 8.59 illustrates a
case in which a bridging grain has broken away from both walls and is presumably
on the verge of detachment from the interface. Indeed, some minor fragments of
material have already been thrown off as fracture debris, visible at lower left of the
micrograph. These micrographs present bridging in pure alumina. There are
indications in the literature that the interface-bridging mode may be far more
widespread than hitherto suspected.

Fig. 8.54 a Schematic of tapered double cantilever beam test specimen used to observe crack
growth during loading: a top view; b side view. Specimen cut from triangular slab, 12-mm edge
length and 2-mm thickness to produce crack 7-mm long. Starter notch length 300 lm, radius
100 lm. Wedge angle 60o; (b) Schematic of indentation flaw test used to observe radial crack
evolution to failure: (a) plan view, showing Vickers flaw on tensile surface; (b) side view,
showing flexure system. Specimen dimensions 25-mm diameter by 2-mm thickness. Biaxial
loading, 2-mm radius punch on 10-mm-radius (3-point) support [54]. With kind permission of
John Wiley and Sons
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(b) Particle bridging

In (a), grain-localized bridging was considered as one of the toughening
mechanisms in ceramics, responsible for increased toughness. Bridging grains are
wedged in the microstructure by internal compressive forces, which lead to an
increase in fracture toughness as the crack grows. In this section, the effect of
particles (second phase) on bridging is considered. The particles added during

Fig. 8.55 Reflected light
micrograph of crack
evolution in tapered DCB
specimen of alumina, shown
at six stages of loading.
Wedge remains inserted in
notch (just out of field at left)
in all stages [54]. With kind
permission of John Wiley and
Sons
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Fig. 8.56 a Enlargement of zone A in Fig. 8.55, showing evolution of a grain bridging site from
inception to failure. Persistence of interface related secondary cracking is apparent through stage
V. b Enlargement of zone B in Fig. 8.55. Note continually changing course of the local fracture
path through the loading to failure. c Enlargement of zone C in Fig. 8.55 [54]. With kind
permission of John Wiley and Sons
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Fig. 8.56 (continued)
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Fig. 8.57 Scanning electron micrographs of fractured-but-intact alumina disk, showing exam-
ples of apparent frictional interlocking at grain bridging sites [54]. With kind permission of John
Wiley and Sons

Fig. 8.58 Scanning electron micrographs, showing secondary micro-fracture about bridging
grains indicating the intensity of interface traction forces [54]. With kind permission of John
Wiley and Sons

Fig. 8.59 Scanning electron
micrograph, showing
detachment of bridging grain
from fracture interface [54].
With kind permission of John
Wiley and Sons
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processing may be brittle or ductile. Nevertheless, since the formation of a ductile
surrounding in the vicinity of a crack tip is considered a basic reason for the
observed strengthening by bridging, the particles causing the toughening are
considered to be ductile.

But before moving ahead, a few general words on crack toughening. In
Fig. 8.60, a summary of extrinsic toughening mechanisms is listed (an extension of
Fig. 8.41). A schematic illustration of crack-tip shielding, including ductile particle
toughening, is shown in Fig. 8.61. Crack-tip shielding occurs in the vicinity of the
crack tip, either in the region ahead of the crack tip (referred to as the ‘frontal zone’)
or behind it (in the ‘wake zone’), as indicated in Fig. 8.61. Toughening by the
interaction of a propagating crack, involving crack-tip shielding may be expressed
(according to F. J. Lino [38]) as follows: Overall toughness, T, is given by:

T ¼ T0 þ Tl ð8:67Þ

and the crack resistance by:

R ¼ R0 þ Rl ð8:68Þ

In the above relations, T0 is intrinsic toughness, Tl is the extrinsic toughness
mechanism (crack-tip shielding), R0 is the fracture resistance energy and Rl is the
crack resistance energy contribution. The critical condition for crack extension is
then given by:

Kc ¼ Ka ¼ T0 þ Tl ¼ T ð8:69Þ

or

Gc ¼ Ga ¼ R0 þ Rl ¼ R ð8:70Þ

where Kc and Ka are the critical and applied stress intensity factors and Gc and Ga

are the critical and applied mechanical-strain energy release rates.
Since crack-tip shielding events are irreversible by nature, it is expected that the

toughness of ceramics will increase with the crack extension (T- or R-curve
behaviors). This implies that the toughening terms, Tl or Rl, are functions of crack
length, c. Therefore, Eqs. (8.69) and (8.70) may take the form:

T cð Þ ¼ T0 þ Tl cð Þ ð8:69aÞ

or

R cð Þ ¼ R0 þ Rl cð Þ ð8:70aÞ

In Fig. 8.62, plots of fracture strength, rf, and toughness versus crack size, c,
are shown for materials exhibiting both non-R-curve and R-curve behaviors.
Bridge formation and evolution is illustrated schematically in Fig. 8.63.
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A SEM micrograph of crack propagation, obtained in situ in an Al2O3-Al2TiO5

composite, is shown in Fig. 8.64. The advancing crack tip appears to be attracted
to the alumina-aluminum titanate [henceforth: A-AT] interphase interfaces. This
observation implies that the high residual stress (and possibly the elastic modulus

Fig. 8.60 Schematic representation of the classes and mechanisms of crack-tip shielding [46].
With kind permission of Professor Ritchie
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mismatch), due to the presence of AT, is instrumental in the formation of bridging
elements in the A-AT composites. Here, AT is a second-phase involved in the
bridging.

Now, back to the effect of ductile particles on bridging in brittle materials which
cause toughening–a more specific schematic illustration of brittle ceramic tough-
ening via crack bridging by ductile particles is illustrated in Figs. 8.65–8.67. Gen-
erally, it is assumed that the crack-bridging forces provided by the still unbroken
particles improve the fracture toughness of the matrix, thus also of the composite
aggregate. The toughening of the brittle matrix is due to the bridging action involving

Fig. 8.61 Schematic illustrations of crack-tip shielding processes in ceramics (redrawn after
Lawn) [21]. With kind permission of Dr. Jorge Lino

8.3 Brittle Fracture 677



www.manaraa.com

reinforcement of the crack surfaces; the toughening mechanism is indicated in
Fig. 8.65. An existing flaw in a ceramic, in the form of a crack, will propagate and,
because of the stress concentration around the particle, will encircle it while it is in
the unbroken stage, becoming approximately a macroscopic planar crack perpen-
dicular to the applied stress (Fig. 8.65a). In this configuration the inclusions act as
bridges between the opposing faces of the crack, preventing excessive crack opening
and, thereby, reducing the stress-intensity factor, KI, at the crack tip (Fig. 8.65c).

For crack extension, a critical value of the intensity factor, KIc, is required
which is greater than it would be in the absence of the particles; a higher applied
stress is required for crack propagation. This indicates ceramic toughening.
According to Fig. 8.65, complete crack-surface bridging is effective until the
particle stretch in the center of the crack reaches a critical value, d corresponding
to the crack size a=ac as shown in Fig. 8.65b. For a [ ac and KI = KIc, the
particles in the center portion of the crack rupture and the crack-surface bridging is
only partial (see Fig. 8.65c). Note that the deflection of the crack toward the
adjacent particle and the stress concentration around the particle in the plane
perpendicular to the applied load are possible only if the stiffness (Young’s
modulus) of the particle is less than that of the matrix (Fig. 8.65a). If, however, the
stiffness of the particle is larger than that of the matrix, the crack would generally
be repelled by the particle and in the net ligament, between the inclusions (par-
ticles), there would stress reduction, rather than concentration (Fig. 8.65d). In such
a case, the crack would remain entirely within the matrix and there would be no
significant influence of the inclusions on the toughness of the material.

Fig. 8.62 Comparison of materials exhibiting non-R-curve and R-curve behavior; a for non-R
curve materials, the fracture strength (rf) decreases with increasing flaw size. R-curve materials,
however, exhibit a range of crack sizes over which the fracture strength is invariant, i.e., they are
‘‘flaw tolerant’’; b for non-R-curve materials, the toughness (T) is a constant, independent of
crack size. For R-curve materials, the toughness increases with crack size. cf denotes the crack
size below which the fracture stress is constant (redrawn after Harmer et al.) [21]. With kind
permission of Dr. Jorge Lino
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Physical considerations require a certain amount of ductility of the particle
(inclusion) in order to attain a noticeable improvement in toughness. A mathe-
matical analysis indicates that the effective toughness of the composite ceramics is
a function of dc. However, the yielding model for particles in the presence of
cracks (shown in Figs. 8.66 and 8.67) indicates that, if the inclusion/matrix
interface is very strong (due to high degree of geometrical constraint), the critical
crack opening displacement, dc, corresponding to the inclusion rupture, is rela-
tively small; therefore there is no significant increase in toughness. High values for
dc are insufficient for producing very ductile inclusions (particles). Thus, Fig. 8.66
shows if the interface strength of an inclusion/matrix is already very low, then
debonding of the inclusion occurs and so there is no crack-surface bridging action

Fig. 8.63 Schematic illustration of the bridge evolution and the successive formation of the
bridging zone. Open grains denote potential bridges; shaded grains represent active bridges and
closed grains disengaged bridges. a crack deflection, b debonding, c grain pullout, d expansion of
the bridging zone, and e formation of the steady-state (Ss) bridging zone (redrawn after Padture)
[21]. With kind permission of Dr. Jorge Lino
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and, consequently, no significant increase in toughness. Significant toughening is
expected under the conditions described in Fig. 8.67.

The constraint is removed by some debonding, allowing for the necking of the
ductile particles. The bridging force variations in these two cases are shown in
Figs. 8.66b (very high interfacial bond) and 8.67b (particle necking). Mathematical

Fig. 8.65 Cracking model
for a brittle matrix containing
ductile inclusions [17]. With
kind permission of John
Wiley and Sons

Fig. 8.64 Micrograph of a
bridging site taken in situ in
the SEM (secondary
electrons) during crack
propagation in an alumina/
aluminium titanate. P and Q
denote frictions points during
grain pull-out (courtesy of
Nitin Padture) [21]. With
kind permission of Dr. Jorge
Lino
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analysis and a solution for a penny-shaped crack are provided by Erdogan and
Joseph [17] and also an evaluation of the plane strain problem. Interested readers
may consult their original work.

The contribution of particles, especially ductile ones, may be briefly summarized
as follows. Crack-surface bridging by ductile particles is widely accepted as being
one of the primary mechanisms explaining toughening in ceramics. In regard to
crack propagation leading to fracture, the significant material parameters are: the
fracture toughness of the brittle matrix; the yield strength of the ductile particles;
and the degree of ductility or the elongation limit of the particles dispersed in the
ceramics during processing. Several quantitative analyses have been performed to
help with the design of ceramic materials having more reliability in service.

In this section, limits were imposed on the improvement of toughness in
ceramics by the incorporation of brittle, discontinuous reinforcing phases.
Observations indicate that such additions bridge cracks in the regions behind the
crack tips. Whiskers act in the same manner as discontinuous reinforcing phases.
Bridging models may be used to optimize toughening effects and to allow for the
choice and modification of pertinent material characteristics, such as physical
properties and microstructure.

Fig. 8.66 Crack-inclusion model in the presence of very high interfacial bond strength [17].
With kind permission of John Wiley and Sons
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(c) Transformation toughening at the crack tip

In the literature, the most frequently cited ceramics undergoing transformation
is zirconia, which has three allotropes. This section considers its tetragonal
monoclinic transformation, which essentially is a Martenisitic one. Zirconia
ceramics are highly attractive for a large number of applications, due to their well-
researched physical and chemical properties. Among their beneficial mechanical
features are: hardness, wear-resistance, a high elastic modulus and creep resis-
tance, even at high temperatures. In addition, zirconia is known to be chemically
inert. Despite its poor thermal conductivity and due to the aforementioned prop-
erties, zirconia is an important ceramic of great thermomechanical interest for
technical use. Moreover, it features a transformation which induces toughening.

Fig. 8.67 Nonlinear crack surface bridging force model [17]. With kind permission of John
Wiley and Sons
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In Figs. 8.60 and 8.61, the list on crack-tip shielding includes transformation
toughening, which will be briefly considered below.

The critical stress intensity factor (fracture toughness) of a two-phase zirconia
system is:

KIc ¼ K0 þ DKc ð8:71Þ

where KIc is the matrix toughness and DKc is the contribution from the shielding
mechanisms. Among the toughening contributions to KIc are: (i) transformation
toughening, DKcT; (ii) microcrack toughening, DKcM; (iii) and crack-deflection
toughening, DKcD. Earlier, only bridging in pure ceramics and particle bridging
were considered. Other mechanisms are also listed in Figs. 8.60 and 8.61, but this
section is only concerned with DKcT–the transformation induced toughening. For a
steady-state transforming zirconia tetragonal particle (as given in Eq. 8.71), DKc

becomes DKcT, which is given (see, for example [18, 19, 23]) as:

DKcT ¼
gE	eT Vf

ffiffiffi
h
p

1� mð Þ ð8:72Þ

Here, g is a factor dependent on the zone shape at the crack tip in the range of
0.22–0.38 and dependent on the nature of the zone, whether it is hydrostatic or
shear (Evans [19] was using 0.22). E* is the effective Young’s modulus of the
material, eT is the dilatational strain (volume strain) change due to transformation,
Vf volume fraction of the transforming particle, h is the width of the transfor-
mation zone and m is Poisson’s ratio. Typical examples of the three common forms
of stress-induced transformation-toughening microstructures are shown in
Fig. 8.68. As is known, the transformation t ? m is sluggish when under applied
stress at RT. Increasing temperature means the stabilization of the tetragonal phase
and, therefore, strength and fracture toughness decrease with increasing temper-
ature in transformation-toughened materials like ZrO2. As a consequence of the
reduced t ? m transformation, the volume fraction, Vf, of the transforming par-
ticle and the transformation zone, h, decrease considerably, making DKcT in
Eq. (8.72) smaller.

In PSZ, the toughening is due to the transformation of the precipitates, which can
take lenticular shapes. A common PSZ is Mg-PSZ, while the TZP’s in use are Y-
TZP and Ce-TZP. Also note that in TZP, transformation occurs within the grains
(Fig. 8.68b), whereas in ZTA it occurs in the dispersed zirconia particles
(Fig. 8.68c). Often the abbreviation DZC (i.e., dispersed zirconia ceramics) is
applied to the stress-activated transformation in t-ZrO2 particles dispersed in a
ceramic matrix. In Fig. 8.68c, the ZTA is a commercially developed DZC system.
The main objective of the fabrication of a transformation-toughened ceramic is the
retention of t-ZrO2, which transforms into m-ZrO2 at or close to RT under the
influence of an applied stress having a shear component. Control of the composition
and thermal treatment are also important parameters in the fabrication of
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transformation-toughened ceramics and should be such that the tetragonal phase
does not transform spontaneously into a monoclinic phase upon cooling. It is
desirable for some stabilized tetragonal phase to remain (perhaps by using various
stabilizing additives, like yttria), when stress-aided transformations occur. In order
to determine the DKcT for Eq. (8.72), the parameters, E*, eT, Vf and h may be
obtained from independent measurements before or after the sample has been
fractured.

The crystallography of the t ? m transformation was thoroughly discussed by
Hannink et al. [24] and is available to those with further interest. Anyhow, two
distinct orientation relationships have been established (indicated below) and the
corresponding microstructure is shown in Fig. 8.69.

Orientation relationship 1 100ð Þm 010ð Þt


 and ½001
m 100½ 
k t

Orientation relationship 2 001ð Þm 100ð Þk t and 100½ 
m 010½ 
k t

In pure ZrO2, the t ? m transformation has been widely investigated, although
difficulties were encountered in retaining the tetragonal ZrO2. Therefore, suitable
stabilizing oxides, such as Y2O3 and CeO2, are added to the zirconia; there is also a
production requirement for fast cooling after the sintering and solution treatment
temperatures to retain metastable t-ZrO2 at RT. The grain structure obtained is
equiaxed. Thus, FG TZP may be attained. In the absence of stress-induced
transformation, the t ? m transformation may occur athermally (similar to a
Martensitic transformation) in specimens cooled below ambient temperature. The
orientation relationships indicated above and the microstructure refer to CeO2-
stabilized TZP (i.e., 12CeTZP). MgO is another frequent additive to zirconia,
which partially stabilizes it. Figure 8.70 is a TEM micrograph of Mg-PSZ. In
Eq. (8.72), the volume-fraction and square-root parameters of the particles are

Fig. 8.68 Typical microstructures of the three common forms of TTZ alloy: a TEM micrograph
of t precipitates in Mg-PSZ; and SEM micrographs of b Y-TZP and c ZTA. In c, the ZrO2 grains
are in bright contrast [24]. With kind permission of John Wiley and Sons
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indicated. In Fig. 8.71, KcT is plotted against Vfxh1/2 for Ce-TZP, Y-TZP and
Mg-PSZ. The straight lines obtained permit the determination of the slopes, which
define values for constant g.

Other transformations, such as ferroelastic transformation and twin formation in
a system may also induce toughening effects. The former discussion on stress-
induced transformation was Martensitic, involving both dilation and shear com-
ponents of the transformation strain. Twin transformation typically only has a
shear component.

Finally, recall the effect of the transformation zone width and the overall strong
particle-size dependence on the width as important parameters of toughening
(Eq. 8.72). By measured parameters and knowing the toughening magnitude, the
width, h, of a particle may be evaluated in accordance with Eq. (8.72a) or, with
independent evaluations of the parameters (as indicated above), the value of DKcT

may be obtained:

h ¼ ðDKcTÞ 1� mð Þ
gE	Vf

� �2

ð8:72aÞ

Suffice it to say that crack shielding applies to various types of deformation,
among them fatigue (i.e., cyclic deformation). Several toughening mechanisms are
listed in Fig. 8.60, among them fiber- (or whisker-) induced toughening. However,
having provided enough examples of toughening, the concept of crack healing will
now be considered.

8.3.8.3 Crack Healing

The process of crack healing in engineering ceramics is of great technical interest,
due to its potential relevance to saving money and extending the service time of

Fig. 8.69 TEM micrographs of partially-transformed t-ZrO2 grains in CeO2-stabilized poly-
crystalline TZP. Note that the m variants form in partially self-accommodating networks [24].
With kind permission of John Wiley and Sons
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ceramic manufactures. The concept basically relates to a self-healing process and
one would anticipate that temperature and time-at-temperature are critical
parameters for inducing self-healing. Ceramics under monotonic and cyclic
deformation can be self-healed by various types of loading. The area of flaw and
crack repair (recovering the initial properties of the ceramics) has recently become
greatly significant in the field of engineering and activity has increased toward
discovering more and more ceramic materials that are capable of self-healing. Due
to the very good mechanical properties of Si3N4, its shock resistance, thermal
performance and self-healing properties, this material has been chosen to exem-
plify the subject under consideration. In particular, Si3N4/SiC has very high crack-
healing ability (Ando et al. [10]). Crack-healing behavior was mainly investigated
under cyclic stress at 1100 and 1200 �C and the resultant cyclic-fatigue strength at
the healing temperatures were recorded. The properties of this ceramic material

Fig. 8.70 a TEM
micrograph of m phase
particles in Mg-PSZ. b and
c ORs between t and m
lattices for the two
substructures of parallel m
variants. (OR—orientation
relationship) [24]. With kind
permission of John Wiley and
Sons
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are: mean particle size = 0.2 lm, the volumetric content of a-Si3N4 was *95 %
and the rest was b-Si3N4. The SiC powder had a 0.27 lm mean particle size.
Further details of the ceramic fabrication appear in Ando’s paper. In Fig. 8.72,
Vickers indentation cracks are shown. The specimen shown in Fig. 8.72 represents
sintered ceramics. A semi-elliptical surface crack of 100 lm surface length was
introduced at the center of the tension surface of the test pieces with a Vickers
indenter using a load of about 20 N. The ratio of depth (a) to half-surface length
(c) of a crack (aspect ratio) was a/c = 0.9.

The specimens used were short for two reasons: (a) the aim was to measure the
bending strength of the crack-healed zone and not the matrix itself, (b) to reduce
the strain energy so as to eliminate breakage of the test specimen into many pieces,
which makes it difficult to identify the crack-initiation site. As mentioned at the

Fig. 8.71 Experimental data for fracture toughness as a function of Vf

ffiffiffi
h
p

for Mg-PSZ, Y-TZP,
and Ce-TZP [24]. With kind permission of John Wiley and Sons

Fig. 8.72 SEM micrographs of a indentation crack and b fracture surface [10]. With kind
permission of John Wiley and Sons
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beginning of this section, temperature and time are critical parameters in the
healing process. Thus, healing was performed at 1100 and 1200 �C under cyclic-
bending stress, where the maximum bending stress (rmax) was 210 MPa, the stress
ratio (R) was 0.2 and the frequency was 5 Hz. The bending strength of as-cracked
samples was *400 MPa, as shown in Figs. 8.73 and 8.74 by the open triangles.

Fig. 8.73 Effect of crack-
healing temperature on the
bending strength of Si3N4/
SiC at room temperature.
Data marked with an asterisk
indicate that fracture occurred
outside of the crack-healed
zone [10]. With kind
permission of John Wiley and
Sons

Fig. 8.74 Effect of crack-
healing time at 1100 and
1200 �C on the bending
strength of Si3N4/SiC at room
temperature. Data marked
with an asterisk indicate that
fracture occurred outside of
the crack-healed zone [10].
With kind permission of John
Wiley and Sons
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The applied stress of 210 MPa was *53 % of the bending strength of the as-
cracked samples and was higher than the RT cyclic-fatigue limit (*200 MPa) for
a precracked sample. For performing the self-healing process, at first a cyclic-
bending stress was applied and then the temperature increase was conducted at a
rate of 10o/min. This way, unexpected crack healing, without applying a stress,
was avoided. After crack healing, the monotonic bending tests were applied at RT
and crack-healing temperatures of 1100 and 1200 �C. As indicated, cyclic tests
were also performed at the crack-healing temperatures. Both the monotonic and

Fig. 8.75 Cyclic fatigue test
results of Si3N4/SiC at a 1100
and b 1200 �C. Data marked
with an asterisk indicate that
fracture occurred outside of
the crack-healed zone [10].
With kind permission of John
Wiley and Sons
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the cyclic-fatigue tests were conducted using a three-point loading system with a
span of 16 mm. The crosshead speed during the monotonic test was 0.5 mm/min.
Fracture initiation sites were identified by optical microscope and fracture surfaces
were analyzed by SEM.

Note the healing temperatures and the durations of treatment under cyclic stress
until crack-healing is attained in the specimens. Clearly, the crack-healing tem-
perature (1000 �C) is a significant parameter of the process. Thus, at temperatures
above the crack-healing temperature, e.g., at 1100 or 1200 �C, a surface crack can
be completely healed even under cyclic stress. The crack-healed samples recov-
ered their bending strength both at RT and at the crack-healing temperature. Most
of the samples failed to heal outside the crack-healed zone (seen marked by an
asterisk in Figs. 8.73 and 8.74). Below the crack-healing temperature, e.g. at 800
or 900 �C, the bending strength of the crack-healed zone was insufficient and most
samples failed. Since these tests primarily exemplify cyclic stresses, it is of interest
to know the numbers of cycles to failure, provided in Fig. 8.75.

Monotonic tests are also presented along the left margins of Fig. 8.75a, and b
and symbols indicate the duration at the healing temperatures. The mean values
of monotonic bending strength for 1100 and 1200 �C crack-healed samples at
each crack-healing temperature are 775 and 881 MPa, respectively. These
bending-strength results are comparable to the RT bending strength of smooth
unnotched samples of *800 MPa. The cyclic-fatigue tests were stopped at
N = 106 cycles. Those samples that did not fracture during testing are marked
by arrows (?). The applied stress at which a sample did not fracture (up to
N = 106) is defined as the cyclic-fatigue limit (*650 MPa). This value is quite
high compared to the value of a smooth specimen (*800 MPa). One might add
(as seen from the figures) that healing times between 0.5 and 5 h show no
significant difference in crack-healing behavior and a large percentage of the
original bending strength can be recovered.

Fig. 8.76 Fracture patterns of crack-healed Si3N4/SiC: a Fracture occurred outside of the crack-
healed zone. (Healing conditions: 1100 �C for 5 h in air, rmax = 210 MPa, R = 0.2, f = 5 Hz,
bending strength at room temperature 653 MPa.) b Specimen fractured across the crack-healed
zone. (Healing conditions: 1100 �C for 15 h in air, rmax = 210 MPa, R = 0.2, f = 5 Hz,
bending strength at 1100 �C = 759 MPa) [10]. With kind permission of John Wiley and Sons
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To complete this section, illustrations of the crack patterns and SEM micro-
graphs of the fractured surfaces are added (see Figs. 8.76 and 8.77).

Finally, in the results for Si3N4/SiC, the contribution of the crystallized addi-
tives, SiO2 and Y2Si2O7, to the healing of the precracked specimens should be
mentioned. This should not be surprising, since various additives strengthen
ceramics. It might be interesting to perform experiments in basic ceramics entirely
without additives. In the literature, one may find much research on the healing of a
large variety of engineering ceramics.

8.4 Creep Fracture in Ceramics

Unlike conventional deformation, where the response of a material to applied
stress is almost instantaneous (particularly in brittle materials), in creep defor-
mation, material deforms slowly under the influence of a permanent load.
Deformation may occur when the material is exposed for long time at a relatively
high stress, but which is below the yield stress. During creep, strain accumulates as
a result of long-term stress. Therefore, creep is a time-dependent deformation.
However, creep phenomena are more critical when the materials are exposed to
high temperatures. The index of high temperatures is always related to the melting
point of the specific material being tested. Generally, the higher the melting point
of a material, the lower (but not zero) the likelihood of considerable creep
deformation, but this depends on the deformation temperature. As such, modern
technology is interested in high Tm materials for the potential manufacture of
components or parts for high temperature applications. Creep always increases
with temperature. Thus, a summary of the important parameters that determine the
creep properties of specific materials is in order: (1) material properties (e.g., Tm);
(2) duration of exposure under load; (3) temperature during exposure; and

Fig. 8.77 a SEM micrographs of fracture surface of crack-healed Si3N4/SiC tested at room
temperature. Fracture occurred outside the crack-healed zone. (Healing conditions: 1100 �C for
5 h in air, rmax = 210 MPa, R = 0.2, f = 5 Hz, bending strength at room tempera-
ture = 653 MPa), b shows the detail of a [10]. With kind permission of John Wiley and Sons
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(4) applied load. Depending on the magnitude of an applied stress and its duration,
a deformation may become so large that a component can no longer perform its
function and eventually fails. The effect of all these parameters on the creep rate
was previously stated in Eq. (6.2) as:

_e ¼ f ðr; t; TÞ ð6:2Þ

In Chap. 6, creep was discussed in general, but a considerable portion of the
chapter was devoted to creep fracture and creep rupture, so these will not be
reviewed here. However, since various additives do influence the basic properties of
materials (e.g., second phases, fibers, whiskers), to complete this discussion on creep
phenomena in ceramics, an example follows of the effect of whiskers in a

Fig. 8.78 Stress dependence
of steady-state creep rate.
Creep exponent is 3.2 for the
monolithic material (filled
square box) and 4.3 for the
composite material (filled
circle) at 1200 �C, 4.5 for the
monolithic material at
1300 �C, and 4.0 for the
composite material [40].
With kind permission of John
Wiley and Sons

Fig. 8.79 Temperature
dependence of the steady-
state creep rate. The
activation energy is 1065 kJ/
mol for the monolithic
material (filled square box)
and 1190 kJ/mol for the
composite material (filled
circle) at 100 MPa, and
1032 kJ/mol for the
monolithic material at
70 MPa [40]. With kind
permission of John Wiley and
Sons
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whisker-reinforced material on the overall creep properties leading to failure,
compared with a monolithic ceramic (in this case, Si3N4). Tensile creep at high
temperatures, such as 1200 and 1350 �C, is characterized by the formation of mi-
crocracks and their effect on creep resistance. Figure 8.78 shows the stress depen-
dence of steady-state creep rates for a monolithic, whisker-strengthened ceramic.

In Chap. 6, one of the empirical relations was given as:

_e ¼ Brn exp �ðQ

kT
Þ ð6:4Þ

The exponent in Eq. (6.4) is indicated in Fig. 8.78 for both monolithic and
reinforced Si3N4 as 3.2 and 4.3, respectively. A natural logarithmic plot of strain
rate versus 1/T allows for the determination of the activation energy according to
Eq. (6.4). The plots for both the monolithic and the strengthened Si3N4 appear in
Fig. 8.79. Figure 8.80 relates the creep strains of the monolithic- and whis-
ker-strengthened silicon nitride. It is believed that this reinforcement suppressed
the occurrence of cavity sliding and GBS. The time-to-failure by creep of the
monolithic and reinforced materials are compared in Fig. 8.81. The time-to-failure
follows the Monkman–Grant relationship discussed in Chap. 6, reproduced as:

_em
mertf ¼ C ð6:103Þ

Fig. 8.80 Creep curves of whisker-free (monolithic) and whisker-reinforced (composite) hot-
pressed silicon nitride at 1200 �C and 100 MPa. The tests were interrupted at l000 h [40]. With
kind permission of John Wiley and Sons
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8.5 Ductile Fracture in Ceramics

Some ceramics (a very few) show a certain degree of ductile behavior. Single
crystal SiTiO3 is one of them. As is common in ductile alloys before fracture sets
in, plastic deformation accompanied by 3-stage strain hardening is observed.
Surprisingly, SiTiO3 ceramics behave in a similar manner. Thus, dislocation
mobility and dislocation interactions must be involved. Indeed, as shown below,
this unique ceramic also presents three stages, of which the two first represent
real hardening, whereas the third stage shows softening occurring before fracture.
Figure 8.82 shows the three stages of the deformation curve in the ductile
SiTiO3. The heavy line represents the r-e curve and the thin line indicates the
stages of the work-hardening rate. Note that if the zero stage (stage 0) is also
included, it may be considered a 4-stage hardening curve. By the slope of the
elastic region, E may be derived for SiTiO3 as 228 GPa. The decreasing strain-
hardening rate portion following the elastic region is stage 0. Unlike the case of
metals, where stage I represents linear strain hardening, in SiTiO3, the stress
remains low and almost unchanged up to *7 % strain. In stage II, there is higher
work hardening (up to *17 % strain) followed by a sharp decrease in strain rate
(stage III) until fracture sets in. Thus, Ductile ceramics (at least in SiTiO3)
somewhat resemble the deformation behavior of FCC metals. The designated red
roman numerals represent samples retrieved from seven points corresponding to
four stages of different deformation strains. Based on the observed deformation
behavior, one might expect to observe slip lines, as traces of dislocation motion
in this ceramic, and dislocation structures characteristic of the aforementioned
stages of work hardening. Figure 8.83 is an illustration showing slip lines, cross
slip and eventual fracture due to crack formation in SiTiO3 ceramics.

Fig. 8.81 Relationship
between time-to -failure and
steady-state creep rate for the
monolithic (filled square box)
and composite (filled circle)
materials. The downward
arrows indicate tests with
large accelerated creep (tests
at 1350 �C). The upward
arrows indicate interrupted
tests [40]. With kind
permission of John Wiley and
Sons
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The dislocation structure at stage 0 may be seen in Fig. 8.84. Intersecting
dislocations are visible in stage 0; the density of the dislocations is
q = 8.19 9 1013 m-2 compared to 4.8 9 1013 m-2 of as-received samples
(shown in Fig. 8.84b). Four distinctive Burgers vectors of the same h011i family
are determined using contrast analysis and the g. b = 0 invisibility criteria. The
dislocations shown in Fig. 8.84 are predominantly of the pure-edge type.

These results confirm that the four [011] (0�11), [0�11] (011), [101] (�101) and
[10�1] (101) slip systems for the six physically distinctive systems in h0�11i {011}
are activated by a compressive stress (of *56 GPa at point (i)) along [001]. In
stage I, long straight dislocations are illustrated in Fig. 8.85. It has been suggested
that, instead of being dislocation dipoles, they are collinear partial dislocations
with b = �[0�11] and �[011], respectively. Kink pairs are formed along these
dislocation lines. For stage II to operate, an increase in stress is required to activate
the operation of the secondary slip system. In Fig. 8.86, the microstructure char-
acterizing stage II is seen. Two additional slip systems, [101] (�101), and [10�1]
(101), are activated, indicating the multiple slip of the stage-II hardening. Cell and
wall structures break up upon entering stage III, as seen in Fig. 8.87. As indicated
earlier, stage III is characterized by softening. Clearly, some sort of dynamic
recovery is involved in the process associated with the break-up of cell-and-wall
structures. Dislocation annihilation and edge dipoles or mixed dislocation dipoles
pinching-off into loops also occur.

As seen from the above discussion, fracture in ductile ceramics is preceded by
dislocation interactions similar to those in metals and the motion of the disloca-
tions resembles that found in ductile materials, leading to fracture usually in stage
III. It is possible that in other ductile ceramics similar events also occur. It is
usually thought that ceramic materials are brittle at ambient temperatures and that
fracture sets in due to crack formation and propagation, which then induces further
crack opening until fracture sets in.

In ceramics, such a mechanism is in complete contradiction to the afore-
mentioned dislocation mechanism leading to failure. Other ductile ceramics
may involve dislocations in their plastic deformation, for example MgO single

Fig. 8.82 A representative
r–e curve (thick curve) and
corresponding hardening rate
(thin curve) with hardening
stages indicated [57]. With
kind permission of John
Wiley and Sons
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Fig. 8.83 a Two sets of cross-cross slip lines for samples (i) of stage 0, sample (ii) of stage I,
and (iv) of stage II making an angle of a &90�, &92�, and &92� between each other,
respectively, suggesting {101} is the primary slip planes (polarized light (OM), b those in sample
(v) subtending an angle of a & 120�, and cracks of *800 lm in size found in this sample (SEM-
SEI) [57]. With kind permission of John Wiley and Sons

Fig. 8.84 Representative dislocation substructure observed in a sample (i) of stage 0 suggesting
multiple slip, comparing to that of b as-received sample (BF image-TEM). (BF is bright field)
[57]. With kind permission of John Wiley and Sons
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Fig. 8.85 Collinear partials from [011] (01�1) slip system activated in stage I showing kink
migration, which are imaged with +g and 2g vectors (WBDF image-TEM). (WBDF means weak
beam dark field.) [57]. With kind permission of John Wiley and Sons

Fig. 8.86 Representative microstructure of stage II is the characteristic of the cell-and-wall
structure of the composite model proposed for the plastic deformation of metals (BF image-
TEM). (BF is bright field) [57]. With kind permission of John Wiley and Sons
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crystals [11, 28]. More research is needed to evaluate dislocation mechanisms
and fracture in ductile ceramics. Such experimental work is of interest,
because even the usually brittle ceramics become ductile at elevated
temperatures.

8.6 Fracture in Superplastic Ceramics

Superplasticity has been discussed in detail in earlier chapters (Chaps. 2 and 5)
and the conditions for obtaining such phenomena have been detailed. Many
ceramics can attain superplasticity under certain conditions, among them Si3N4,
SiC and ZrO2 to mention a few. In this section, essential observations of fracture
are discussed. But first, once again note the importance of superplasticity for
technology; it is of prime importance in material-shaping processes (such as:
rolling, forging and extrusion, some of which are only characteristic of the metal
industry) since large deformations can be produced at relatively low loads, with
relatively simple equipment and at relatively low cost.

One of the properties of superplasticity in alloys is a high strain rate. However,
this is likely to induce premature failure in ceramics, due to the presence of various
cracks (microcracks) and cavities (usually pores). Therefore, in ceramics using a
slow strain rate is the acceptable practice. Certain composite ceramics, such as
tetragonal zirconia, may be deformed even at strain rates up to 1.0 s-1, resulting in
superplasticity. This composite also exhibits a large tensile elongation, exceeding
1050 % at a strain rate of 0.4 s-1. Another critical criterion for superplasticity is
grain size. In particular, a small grain size is a prerequisite, since often grain
boundary sliding (GBS) occurs during superplasticity. (Remember that GBS is
considered to be the leading deformation mechanism). GBS without a change in
the grain shape is accelerated by a small grain size. Grain growth during high-
temperature deformation may occur, making the material unsuitable for extended

Fig. 8.87 Cell-and-wall structure is breaking up shown by sample retrieved a in the later stage of
stage II, b just before entering stage III (WBDFimage-TEM) [57]. With kind permission of John
Wiley and Sons
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superplastic forming. One may limit grain growth by adding a second phase, which
pins grains, preventing growth. Also (as indicated in earlier chapters), the strain-
rate-sensitivity exponent is an important parameter when observing superplastic
behavior. The strain-rate-sensitivity parameter, m, appears in Eq. (2.21) from
Chap. 2:

r ¼ K _e exp
Qc

RT

� �� �m

ð2:21Þ

Observe that temperature is an important parameter and Q is the activation
energy, also given in Eq. (2.20):

_e ¼ Arn

dp
exp � Q

RT

� �
ð2:20Þ

Superplastic ceramics deform without necking and fail by intergranular cracks
that propagate perpendicular to the applied tensile axis. Grain size has been
considered as a critical factor in superplasticity. In Fig. 8.88, fracture strain is
indicated as a function of flow stress in FG ceramics, while the strain-rate sensi-
tivity, m, remains high. In Fig. 8.88, various ceramics are plotted, (the reader is
referred to the original works):

The main observation here is that the tensile elongation in a number of ceramics
exhibits the same trend, regardless of the test temperatures and strain rates
employed. The true fracture strain, as a function of grain size, is specifically
indicated for various ceramics in Fig. 8.89. Note that the tensile elongation of the
FG ceramics indeed shows superplastic behavior, as expected in sufficiently small
grain sizes. Among the superplastic materials, Y-TZP is a well-known ceramic,
exhibiting optimal superplastic elongation-to-failure of *700 % at 1823 K and a
strain rate of 8.3 9 10-5 s-1. However, a detailed microstructural investigation of
the superplastically-deformed Y-TZP specimens reveals the occurrence of exten-
sive concurrent grain growth and internal cavitation. For the best results, both
should be avoided, as far as possible. The tendency toward cavity interlinkage in a
direction perpendicular to the tensile axis is an important factor influencing the
total elongation-to-failure, as observed in superplastic materials (Fig. 8.90).

Figure 8.90 indicates that the elevated-temperature superplastic-deformation
process enhances concurrent grain growth. Since most of the data at a given strain
rate were obtained from a specimen tested to failure, implying the same exposure
durations, the results demonstrate the significance of superplastic strain for grain
growth. Figure 8.91 illustrates the strain rate and temperature dependence of
deformation-enhanced concurrent growth.

The data in Fig. 8.91a are shown at a fixed temperature of 1823 K and at a local
true strain of 0.5, while those in Fig. 8.91b are shown at a fixed strain rate of
2.7 9 10-5 s-1 and local true strain of 0.5. �L0 refers to the grain size in the gripping
region at zero local true strain. Thus, �L� �L0 reflects the deformation-enhanced
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concurrent grain growth at elevated temperatures. From these data, the strain-rate
dependence of deformation-enhanced concurrent grain growth may be expressed as
(�L� �L0) � _e�0:6 and the temperature dependence as (�L� �L0) � exp(-170000/RT).

Using the experimental results shown in Figs. 8.90 and 8.91, the kinetics of
deformation-enhanced concurrent grain growth is:

Fig. 8.88 True fracture strain of fine-grained ceramics as a function of flow stress, when m
remains high [34]. With kind permission of Springer

Fig. 8.89 True fracture strain of fine-grained ceramics as a function of grain size under constant
strain rate conditions and constant flow stress condition [34]. With kind permission of Springer
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Fig. 8.90 Variation in average grain size with local true strain for a a fixed temperature of
1823 K and b a fixed strain rate of 2.7 9 l0–5 s-1 [48]. With kind permission of Elsevier.
pp. 3227–3236, 1991 0956-7151/91 $3.00 ? 0.00

Fig. 8.91 Variation in deformation enhanced grain growth with a strain rate and b temperature
[48]. With kind permission of Elsevier

Fig. 8.92 Optical
micrograph illustrating
extensive cavity interlinkage
perpendicular to the tensile
axis in a specimen tested to an
elongation to failure of
*150 % at 1723 K and a
strain rate of 2.7 9 10 -5 s -1.
The tensile axis is horizontal
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�L� �L0 ¼ Ae_e�0:6 expð�170000=RTÞ:

Figure 8.92 is an optical micrograph of the cavities formed and interlinked
during the deformation process. The microstructure reveals extensive concurrent
cavitation, with levels of cavitation approaching *30 % area fraction. The cavi-
ties appear to nucleate predominantly at triple points and they tend to have quasi-
equilibrium spherical cap shapes. The reduction in elongation-to-failure at low
strain rates is attributed to an increased tendency towards the interlinkage of
cavities in a direction perpendicular to the tensile axis.

8.7 Concluding Remarks

For some time now, it was believed that ceramics could not show high ductility,
due to their brittleness at low temperatures. However, certain brittle ceramics do
become ductile, permitting very large plastic deformations at low temperatures,
particularly if they are polycrystalline ceramics produced with a crystal size of
only a few nm. More and more ceramic materials have been found to show
superplasticity, provided that the proper experimental conditions are used. This is a
potentially cost-saving deformation process, because large deformations can be
achieved at relatively low temperatures. There are similarities and differences
between superplastic metallic materials and ceramic ones. The similarities include
the variation of strain rate with stress and grain size. A major difference is the
possible presence of intergranular glassy phases in ceramics. The following con-
ditions enhance superplastic ductility: (a) high strain-rate sensitivity; (b) limited
concurrent grain growth; (c) reduced cavitation; and (d) hindrance of cavity in-
terlinkage transverse to the loading (tensile) axis.
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Chapter 9
Mechanical Properties of Nanoscale
Ceramics

Abstract The mechanism of deformation in nanosize ceramics occur either by
dislocation motion or by grain boundary sliding depending on the size of the
grains. In nanoceramics of grain size above *100 nm the main deformation
mechanism is by dislocation motion. At ultra-fine nano grain sizes below
*100 nm in the range\50 nm, the deformation mechanism is by grain boundary
sliding. Dislocations cannot be accommodated conveniently in such nanosize
materials and are prevented from motion and interactions. At levels in the hun-
dreds of nanosized grains, a probable partial-dislocation mechanism may occur
concurrently with other deformation mechanisms such as grain boundary sliding.
For grain boundary sliding atomic mobility is essential, which results in a metal-
like plasticity in nanoscale ceramics. One is interested in the behavior of
nanoceramics under applied loads; therefore the various responses effecting static
mechanical properties (tension–compression, hardness, etc.) time-dependent
deformation (creep) and cyclic (fatigue) deformation are relevant. Making
ceramics superplastic requires producing ultra-fine grains in the lower nanosize
level, preferentially below 50 nm or even less. Various sophisticated techniques
have been developed over the past decade or so, such that certain nanoceramics
can now be produced with some measure of superplasticity. Superplastic materials
may be thinned down, usually in a uniform manner, before breaking, without neck
formation. The actual deformation mechanism is still under debate and may be
material-dependent as well. Despite the various views on the exact mechanism
responsible for the observed nano-behavior, it is clear from the experiments that
nanoceramics may exhibit increased strength (hardness, for example), improved
toughness, improved ductility and high resistance to fatigue. All these improved
properties serve as safeguards against unexpected or premature fracture in service.

J. Pelleg, Mechanical Properties of Ceramics, Solid Mechanics
and Its Applications 213, DOI: 10.1007/978-3-319-04492-7_9,
� Springer International Publishing Switzerland 2014
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9.1 Introduction

Thus far, little attention has been paid to the effects of grain size. In recent years,
however, more and more attention is being focused on ‘nanoscale ceramics’, i.e.,
ceramics with nanosized grains, perhaps because now a large number of ceramics
may be made ductile to various degrees, even attaining superplasticity. The pre-
vious chapter indicated that ceramics may show some ductility at high tempera-
tures, usually at temperatures C 0.5 Tm. In such cases, dislocation mechanisms are
involved, along with associated phenomena, such as work hardening, slip, etc., and
dislocation mobility and interactions play key roles. Yet, in nanocrystalline
ceramics, due to their miniscule dimensions, it is highly unlikely that dislocation-
related deformation is involved in the various mechanical phenomena. The role of
lattice dislocation slip, if at all present, is greatly diminished, due to the afore-
mentioned nanoscale. However, one might expect that alternative deformation
modes are operative, such as the sliding of nanosized grains and atomic mobility
(a diffusional process) and responsible for nanometric ceramic ductility. Atomic
mobility is essential for enabling GBS, which results in a metal-like plasticity in
nanoscale ceramics. In any event, the actual dimensions of nanosized grains
determine whether some sort of dislocation mechanism is involved, for example
partial dislocations (since SFs are observed in experiments on nanoscale ceramics).
At levels in the hundreds of nanosized grains, a probable partial-dislocation
mechanism may occur concurrently with other deformation mechanisms. The
actual deformation mechanism is still under debate and may be material-dependent
as well. Experiments indicate that this alternative mechanism is the dominant
mechanism, GBS, since the stress level required to nucleate dislocations is high
and dislocation gliding occurs in nanoscale ceramics when the grain dimensions
are at in the upper range (above *100 nm). At the lower range of nanosized
grains, dislocation gliding does not contribute to overall strain.

Here, the focus is on the various responses of nanoscale ceramics to applied
loads, presenting the similar or different observations of certain aspects (tension–
compression, hardness, cyclic- or time-dependent deformation) as was previously
discussed regarding macroscale ceramics.

9.2 Static Properties

Does a very small grain size make materials stronger? Knowledge of small-sized
materials is important for the understanding of their mechanical properties, which
dictate their practical applications. At small dimensions, a significant departure
from classical behavior is observed. The strength of a material increases either
when its structure is small or, in our case, when nanometric crystals are involved.
At small sizes, dislocation motion, if present, is restricted. Recall that when no
dislocations are involved in deformation, high strength (at a level approaching the
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theoretical strength) is required to induce strain in the test specimen. Unlike
conventionally-sized test specimens, in which ductility usually decreases with
increased strength, nanocrystalline-sized specimens show high strength combined
with good elongation. Moreover, such nano-specimens may reach high values of
plasticity, which, in some ceramics, may lead to superplastic behavior before
fracture. Here, some of the properties discussed in earlier chapters in regard to
macroscale materials will be reviewed for nanoscale-material behaviors.

9.2.1 Stress–Strain Relation

Remember that since (1 nm = 10-9 m = 10 Å) nanocrystalline materials are
typically less than *100 nm, their grain sizes are so small that a major part
(or even all) of the microstructural volume consists of interfaces, mostly in the
form of grain boundaries. A frequently presented illustration representing a typical
nanostructure may be seen in Fig. 9.1.

Consequently, it is reasonable to expect that nanomaterials will exhibit
mechanical properties different than those of coarse-grained ceramics, among
them higher strength and hardness. High ductility is unique to nanocrystalline
materials, along with strength (unlike conventional, coarse-grained materials).

Based on nanometric dimensions, often the various nanomaterials may be cate-
gorized as being: one-dimensional, 1-D (as layered structures, in which the nano size
is in only one dimension); two-dimensional, 2-D (e.g., rod-shaped); and three-
dimensional, 3-D (crystallized, like equiaxed grains). Nanocomposites are often
used in ceramics in technological applications, so much research is devoted to them.
The matrices of these nanocomposites may be in the micron range and their additives
are nanoparticles (fibers, whiskers). Furthermore, various combinations are of
interest, such as ceramics strengthened by either metallic or ceramic particles, or
metallic matrices strengthened by nanosized ceramic particles. The most obvious
advantage of nanocrystalline ceramics with homogeneous and dense microstruc-
tures is their improved mechanical properties, compared to conventional ceramics
which under proper conditions is accompanied by good ductility. It may be stated
that, while most coarse-grained ceramics are brittle, nanograined ceramics may
exhibit significant ductility before failure. Such ductility is primarily contributed by
their grain-boundary phase, but in grains at a certain ceramic phase some plastic
deformation has been observed, which contributes to overall plastic strain.

In ceramics, compressive tests (rather than tensile tests) are used to obtain strength
values and, thus, the stress–strain relation is expressed by plotting compressive stress
against strain. Figure 9.2 shows the calculated compressive stress–strain curves for
two porosities at various grain sizes. The purpose of these calculations is to predict
the compressive yield strength of nanograined ceramics as the grain size decreases
from a coarse-grained to a nanometric scale. The effects of porosity and the second
elastic phases are also considered. The method of calculation (not presented here)
and the theoretical model are given in Jiang and Weng’s paper [10], which may be
consulted. Note that the calculated variation of the compressive stress with grain size
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Fig. 9.1 Reproduced from Fig. 1 of Jiang and Weng according to Schiøtz et al.; a Molecular
dynamic simulation of grains and grain boundary in a nano-grained copper, showing the grain
boundary has finite volume concentration [13]. With kind permission of Elsevier

Fig. 9.2 Calculated compressive stress–strain relations as grain size decreases from 20 lm to
10 nm at low porosity levels: a cpore � 6 % and b cpore � 11 % [13]. With kind permission of
Elsevier and Dr. Weng (Note that cpore indicates volume concentration of pores)
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shows an inverse H–P relation, quite similar to the experimental shapes of the plots,
as illustrated in Fig. 9.3.

Observe that, below some value of the grain size, a change in slope occurs.
These experimental data are for TiO2. More on the inverse H–P relation are
considered below in the section on hardness. Usually, ceramic materials are
composed of added second phases. A second phase may be elastic or show
plasticity (e.g., metallic second phases). The second phase may influence com-
pressive strength and, thus, the overall stress–strain relation in nanoceramic
composites. In Fig. 9.4, the effect of an elastic phase, with an elastic modulus other
than TiO2, was artificially introduced into the system, having 6 % porosity and the
calculated compressive strength for three grain sizes is seen. In this figure, three
different cases are indicated: when the elastic modulus of the second phase is the
same as that of TiO2; when it is stiffer than that of TiO2; and when it is softer.
Differences may be seen in the compressive stresses at a given strain, e.g., at
*0.02 strain. The variation of the compressive stress with grain size, when a 10 %
elastic phase is added, is indicated in Fig. 9.5. These curves are compared to the
variations in stress with grain size without a second phase. Observe the thickness
of the grain boundaries (see Fig. 9.1); one might think that this has an effect on the
yield stress variation with grain size. The variations in yield stress with grain size
for three boundary thicknesses are illustrated in Fig. 9.6.

The effect of the boundary thickness is small, except in the low nano range,
below 100 nm. It should also be noted that both the compressive stress and the
compressive yield stress decrease in the very low nano range, indicating an inverse
H–P relation. Porosity reduces the compressive yield strength, but the shape of the
curves is not affected.

Fig. 9.3 Compressive yield
stress as a function of grain
size d at three levels of
porosity (experimental data
from [4, 13]). With kind
permission of Elsevier and
Dr. Weng
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The variation of true stress with true strain is shown in Fig. 9.7 for nanosized
silicon nitride ceramics; it does not indicate strain hardening and very large strains
may be achieved, as seen from the flow stress.

Fig. 9.4 Calculated compressive stress–strain relations at three different grain sizes when the
elastic phase has: a the same, b stiffer, and c softer Young’s modulus than TiO2 [13]. With kind
permission of Elsevier and Dr. Weng

Fig. 9.5 Effects of a second
elastic phase on the
compressive yield stress of a
nano-TiO2 [13]. With kind
permission of Elsevier and
Dr. Weng
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This deformation was performed at a strain rate of 10-4 s-1 and 1500 �C,
indicating that a very large strain may be achieved under a flow stress of
*34 MPa with no strain hardening. This is possible due to the stability of Si3N4

against grain growth. Such stability, that can prevent grain growth in certain
ceramics, among them Si3N4, is crucial to superplastic behavior (discussed below).
The fractured surface of one of the specimens (denoted by P2), sintered at
1600 �C, is shown in Fig. 9.8.

The method of fabrication has an important effect on the final results. Spark
plasma sintering (SPS) produces homogeneous ceramics and, in the case of Si3N4,
an average grain size of 70 nm is obtained. The results of such a fabrication
technique for Si3N4 are high hardness and good high-temperature ductility.

Fig. 9.6 Effect of the grain-
boundary thickness on the
compressive yield stress of
TiO2 [13]. With kind
permission of Elsevier and
Dr. Weng

Fig. 9.7 True stress-true
strain curve in compression
obtained for silicon nitride
nanoceramics [40]. With kind
permission of John Wiley and
Sons
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9.2.2 Flexure (Bending) Stress

It has been known for quite some time that the addition of nanosized ceramic
particles into a ceramic matrix significantly enhances its strength properties. Here,
bending stress is considered. Figure 9.9 illustrates bending stress variations for
different temperatures in alumina strengthened by SiC.

The technique used for sintering the powders was SPS, a relatively new process
that sinters ceramic powders rapidly to almost full density. The highest bending
strength (980 MPa) was obtained when the sample was sintered at 1450 �C, which
is much higher than that used for monolithic Al2O3 ceramics (350 MPa). The
addition of nano-SiC particles improved the microstructure of the composites and
enhanced the stability of the grain boundaries. The metallography of the nano-
composite SiC–Al2O3 is shown in Figs. 9.10 and 9.11 by SEM and TEM,
respectively.

The reinforcement of alumina may be accomplished by the use of other addi-
tives, such as boron nitride nanotubes (henceforth: BNNTs). Boron nitride has
many excellent properties, such as low density, high thermal conductivity, stability
and good mechanical performance. BNNTs are stable in air at 800 �C and even at
higher temperatures. It is a good substitute for carbon nanotubes (henceforth:
CNTs) for strengthening purposes. The strengthening capacity of BNNTs is a
consequence of high tensile strength and a Young’s modulus of *30 and
*900 GPa. The average values of the bending strengths of BNNT/Al2O3 com-
posites, as a function of BNNT content, are shown in Fig. 9.12. (The corre-
sponding fracture toughness also appears below). The bending strength and the
fracture toughness, as well, are greatly dependent on the amount of BNNTs; the
bending strength at *2 wt% has a highest value of *532 MPa, a 67 % increase,
compared to pure Al2O3 (*319 MPa).

Fig. 9.8 Fractural surface of
P2 sample after sintering at
1600 �C for 5 min [40]. With
kind permission of John
Wiley and Sons
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Fig. 9.9 Bending strength
versus sintering temperature
for 5 vol% SiC–Al2O3

superfast sintered by SPS
[10]. With kind permission of
Elsevier

Fig. 9.10 SEM micrograph
of fracture surface of
SiC–Al2O3 nanocomposites
[10]. With kind permission of
Elsevier

Fig. 9.11 TEM micrograph
of SiC–Al2O3

nanocomposites [10]. With
kind permission of Elsevier
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9.2.3 Hardness

The strength of nanocomposite ceramics, in terms of hardness, may be exemplified
for 1.5–3-mol% Y-TZP and Al2O3/Y-TZP nanocomposite ceramics with 1–5 wt%
of alumina. Figure 9.13 shows TEM micrographs of 3-mol% Y-TZP produced by
the hydrolysis of metal chlorides and a urea aqueous solution (150 �C for 10 h),
washed, treated by microtip ultrasonication and calcined at 450–800 �C for
0.5–2 h. This figure has an aggregate size of 25 nm and shows that the primary
crystallites of zirconia were bound together into the aggregate. The low sintering
temperature (1150 �C) is a consequence of obtaining a uniform green body, vir-
tually free of agglomerates, by using both the colloidal technique and ultrasonic
dispersion. The addition of alumina to Y-TZP provides the ceramics with
improved toughness. Also, small quantities of Al2O are known to aid densification.

Figure 9.14 shows these specimens with and without alumina after sintering.
The average grain size is about 110 nm. Square samples were used for the Vickers
hardness indentation having an approximate 4 mm height and 12 mm side. The
surfaces were scratch-free, as observed by optical microscopy. The grain sizes
were determined by a linear analysis of SEM micrographs of the polished and
etched surfaces. The hardness test results are illustrated in Fig. 9.15. As may be
seen from Fig. 9.15, average hardness increased with increasing hold times. The
hardness of the 1.25 wt% alumina–zirconia composites reached maximum values
at an average grain size of 105 nm (24 h hold time) and at a relative density of
99.8 %. The density effect may be seen in Fig. 9.16. Furthermore, one can also
see, from Fig. 9.15, that the average hardness of the 2.5 wt% alumina/zirconia
composite reached a maximum value of 16.2 GPa at an average grain size of
94 nm (15 h duration) with a relative density of 99.2 %. The longer duration at

Fig. 9.12 Dependence of
bending strength (a) on the
amount of BNNTs in the
composites [39]. With kind
permission of Elsevier
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this temperature allowed the relative density to increase to full density; however, at
the same time, average grain size also increases and the average hardness of such a
ceramic gradually decreases (Figs. 9.15 and 9.16). These hardness indentations
were performed by applying forces of 4.9 and 9.81 N for a dwell time of 15 s. For
each sample, 10 indentations were made to obtain the average hardness and
standard deviation.

Fig. 9.13 a TEM micrograph of 3Y-TZP primary crystallite aggregation (urea hydrolysis at
150 �C for 10 h, calcinations at 450 �C for 1 h). b TEM micrograph of 3Y-TZP dense
nanoaggregates [35]. With kind permission of John Wiley and Sons

Fig. 9.14 a SEM micrograph of 3Y-TZP ceramic sintered at 1150 �C for 30 h. b SEM
micrograph of 2.5 wt% alumina/3Y-TZP ceramic sintered at 1150 �C for 20 h [35]. With kind
permission of John Wiley and Sons
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The bending test and the microstructure are illustrated above for SiC–Al2O3.
Hardness may be seen in this ceramic in Fig. 9.17 as a function of temperature. This
plot closely follows the relative-density variations across sintering temperatures, as
indicated in Fig. 9.18. The figure shows that an almost full density may be obtained
at 1450 �C for SiC–Al2O3 powder by using the SPS technique, compared with the
HIP sintering technique, requiring at least 1650 �C and 1 h soaking time. This
observation indicates that SPS is a potential method for fabricating nano-SiC-oxide
composites at much lower temperatures and within very short time periods.

HV measurement of bulk nano-twinned cubic boron nitride (henceforth:
nt-cBN) samples with a standard square-pyramidal diamond indenter is shown in
Fig. 9.19. An explanation of the connection between this figure and observations
of the inverse H–P effect are found below. Reliable hardness values are best
determined from the asymptotic hardness region. In Fig. 9.19, the variations in
Vickers hardness are recorded by applying a series of loads. The asymptotic
hardness value obtained at loads above 3 N was extremely high, 108 GPa, which

Fig. 9.15 Dependence of
Vickers hardness on the hold
time during sintering at
1150 �C [35]. With kind
permission of John Wiley and
Sons

Fig. 9.16 Dependence of
Vickers hardness on the
relative densities of ceramic
specimens [35]. With kind
permission of John Wiley and
Sons
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Fig. 9.18 Relative density
versus sintering temperature
for 5 vol% SiC–Al2O3

superfast sintered by SPS
[10]. With kind permission of
Elsevier

Fig. 9.19 The HV of an nt-cBN bulk sample as a function of applied load (F). The HV of the nt-
cBN bulk decreases from *196 GPa at 0.2 N to its asymptotic value, 108 GPa, beyond 3 N.
Error bars indicate s.d. (n = 5). Left inset, an optical micrograph of the Vickers indentation with
cracks produced at a load of 19.6 N. Right inset, the HV-F curve of a 0.3-mm cBN single crystal.
HV does not reach its asymptotic value, and the crystal fractures when F exceeds 4.9 N [33]. With
kind permission of the Nature Publishing Group

Fig. 9.17 Vickers hardness
versus sintering temperature
for 5 vol% SiC–Al2O3

superfast sintered by SPS
[10]. With kind permission of
Elsevier
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is the highest hardness reported so far for polycrystalline cBN and even exceeds
that of synthetic diamonds.

Unlike macroscale materials, in which the mechanical properties depend mainly
on the dislocation dynamics and their soundness (concentration of various flaws,
such as cracks, etc.), in nanosized materials, grain size plays an especially
important role, affecting behavior. Although grain size has some effect in mac-
roscale materials, has less impact on certain properties, such as hardness. The H–P
law, originally formulated regarding metals, states that in polycrystalline materi-
als, hardness, yield stress and possibly tensile stress increase with decreasing grain
size and varying linearly as a function of d-n, where d is the grain size and n [ 0
(see Sect. 4.93 and Eqs. (4.18) and (4.18a)). This increase in hardness (yield
stress) is explained by the retardation of dislocation motion. In nanoscale mate-
rials, including ceramics, it is expected that a large increase should appear on the
H–P plots, larger than in macroscale materials with decreasing grain size.
Although this is observed at some stage, it occurs only in a very small nano range
and, rather than observing increased hardness, a decrease (softening) is recorded.
The term ‘inverse H–P relation’ is used to describe such plots.

9.2.3.1 Inverse H–P Effect

An inverse H–P phenomenon has been observed by researchers in various metals
and also in some ceramics, e.g., in boron nitride. Attempts to explain this phe-
nomenon have been made, though some claim that it is not a real characteristic
(perhaps even a sort of artifact). Recent studies tend to indicate that the inverse
H–P effect is real, true and apparently universal. However, the debate is now focused
on its mechanism. Explanations do exist suggesting various mechanisms that may be
responsible for this effect [7], even that of twinning (e.g., Tian et al. [32]). At these
small nanosizes, dislocations cannot be the cause of this observed mechanical
behavior, since such extended defects have certain dimensions that cannot be
accommodated within the space of low range nanograins; dislocations are unlikely
to reside in such miniscule structures. As stated above, in nanoscale materials, GBS
is the likely mechanism affecting behavior. In Fig. 9.20, a Vickers indentation is
shown for a nanocrystalline cBN, as a function of crystallite size. Here, ABNNC
stands for ‘aggregated boron nitride nanocomposite’.

The hardness value approaches that of single-crystal and polycrystalline dia-
monds and aggregated diamond nanorods. The other properties (unusually high
fracture toughness and wear resistance) of this material are combinations with high
thermal stability (above 1600 K in air), making this ceramic an exceptional
superabrasive material. This unusually hard boron nitride was produced by high-
pressure, high-temperature synthesis. Experimental observations and simulations
suggest that, for many polycrystalline materials, there is an optimal grain size
(usually in the range of several nanometers, i.e., nanocrystalline), which produces
a significant (20–30 %) increase in the hardness of the material, compared with
that of its coarse-grained counterpart. Usually, hardness measurements, for hard
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and brittle materials, are in the asymptotic hardness region. Note in the HV versus
crystallite size curve that, with the decrease in grain size, the hardness values of
both the ABNNC and the cBN increase. However, for polycrystalline cBN,
hardness increases from 40 GPa and reaches a maximum of 59 GPa at a grain size
of *40 nm, while ABNNC hardness increases from 60 GPa, reaching its maxi-
mum of 85 GPa at 14 nm crystallite size. If the grain size decreases by a few more
nanometers, hardness drops down to 25 GPa. Thus, the curve indicates that there is
a transition during the hardening process due to the grain size (H–P effect) to
softening (an inverse H–P effect) as grain size decreases into the range of a few
nanometers. As indicated earlier, some researchers attribute this softening to GBS.
Another approach relates it to quantum confinement. More specifically, in the
observed inverse H–P, two factors should be noted (1) the nanosize effect, which
restricts dislocation propagation through the material and (2) quantum confine-
ment, which increases the hardness of individual crystallites. This concept is a
consequence of ab initio calculations made by Tse [34], who suggested that the
hardness of nanocrystals depends on the ‘effective’ band gap, which in turn is
inversely proportional to the size of the crystallites, in other words, of the com-
bined H–P and quantum confinement effects.

In sharp contrast to the above observation (that hardness decreases significantly
in low-range nanosized cNB), Tian et al. [32] did not record an inverse H–P effect,
despite the fact that their experiments were carried out down to the size of 3.8 nm.
They consider twinned cBN to be involved in nanoscale hardening, and their
results appear in Fig. 9.21. Furthermore, continuous hardening behavior with
decreasing size or twin thickness is contrary to the findings for metals, in which
both yield strength and hardness do show softening, as seen in the inset in
Fig. 9.21 for Cu.

The continuous hardening behavior with decreasing microstructural sizes, down
to 3.8 nm in cBN, may be explained as follows. For nano-twins with thicknesses

Fig. 9.20 (Color online)
Vickers hardness (HV) as a
function of the crystallite
size. Triangles correspond to
the data for ABNNC;
inversed triangles, c-BN [7].
With kind permission of AIP
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below 3.8 nm, the quantum confinement effect (which is inoperative in metals)
becomes dominantly large, according to Eq. (9.1):

HV ¼ HHP þ HQC ¼ H0 þ kd�1=2 þ Cd�1 ð9:1Þ

Here, HHP = (H0 + kd-1/2) and HQC = (Cd-1) represent dislocation-related
dislocation hardening based on the H–P effect and bandgap-related hardening
based on the quantum confinement effect, as indicated above, following Tse’s [34]
calculations. H0 is the single-crystal hardness and k is a material constant. C is a
material-specific parameter equal to zero for metals and equal to 211Ne

1/3exp
(1.191fi) for covalent materials, where Ne is the valence electron density and fi is
the Philips ionicity of the chemical bond.

Both the H–P and quantum confinement effects account for hardening in
nanograin cBN (ng-cBN) with small grain sizes of 14 nm. This featured nanoscale
geometry, as well as the very strong covalent B–N bonding, severely confines the
nano twins {nt) migration of twin boundaries, (which is known to induce hardness
softening in nt metals). These two hardening mechanisms remain valid when the
twin thickness is significantly reduced to 3.8 nm for cBN. The continuously
increasing hardening occurring with decreasing size is in contrast with the findings
recorded for metals, in which both yield strength and hardness decrease at the low

Fig. 9.21 HV as a function of average grain size (d) or twin thickness (k) for polycrystalline cBN
bulk materials. Experimental data for nt-cBN bulk material (triangle) and for nt-cBN bulk
materials1 (squares) are shown. Using Eq. (9.1) to fit the experimental data, we obtained
HV = 42.6 + 126d-1/2 + 130.7d-1. k (126 GPa nm1/2) is taken from a previously reported value.
The fitted C (130.7 ± 16.8 GPa nm) parameter characterizing the quantum confinement effect
is in excellent agreement with the theoretical value1 (136 GPa nm) from 211Ne

1/3exp(-1291fi)
for cBN. This coincidence is not accidental and may provide proof of the existence of the quantum
confinement effect in the synthesized nt-cBN. Inset, the yield strength as a function of k for nt-Cu,
in which the critical k is about 15 nm (Ref. 15) [33]. With kind permission of the Nature
Publishing Group. [In the legend, reference k refers to Ref. [7] and 15 to Ref. [18]]
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range of the nanoscale. For polycrystalline cBN or diamonds, reducing the grain
size has been the most widely used technique for enhancing hardness.

As previously mentioned, some explain the inverse H–P effect by twinning [7].
From the above examples, it may be assumed that, despite the claims of some
researchers of the universality of the inverse H–P effect, its validity remains
debatable. The above data are from experiments performed quite recently (2006
and 2012), so this debate is still unresolved.

9.2.4 Twinning

Twinning was discussed in Chap. 4, specifically in Sect. 4.7, and a schematic
illustration of twin structure appears in Fig. 4.39. A high resolution transmission
electron (HRTEM) image of a 10-nm stearic acid-gel (SAG) BaTiO3 is also shown
in Fig. 9.22, showing twin structure.

Twins, generated in SiC particles, were observed in a Al2O3/SiC composite
[17], as shown in Fig. 9.23. These twins were observed in the larger SiC particles
identified by EDS and diffraction patterns in Fig. 9.23c and d, respectively. The
twin is another form of deformation when slip is difficult. Twins form rapidly
during the crystal deformation. The stress needed for twin nucleation is higher than
for its extension. The load or stress is known to fall suddenly, since twins are
generated continuously and produce a jagged stress–strain curve (Pelleg, Chap. 3
on Plastic Deformation, Fig. 3.14). The appearance of the curve mentioned above
has been observed in nanocomposite ceramics as well. For example, twinning in
Al2O3/SiC (Fig. 9.23) produces a jagged (zigzag) curve during flexural-strength
testing on the load–displacement plot [17]. Moreover, the existence of twins
indicates that the material had a ductile character during fracture. The fracture
energy of the Al2O3/SiC interface resulted from a thermal mismatch in the energy
absorbed by each of the twins generated in the SiC particle. It was observed that
both toughening and flexural strength increased. The contribution of twins to
fracture toughness and flexural strength may be less than that of dislocations, but,
nevertheless, it exists and influences overall strength.

Fig. 9.22 High-resolution
transmission electron
microscopy image of a 10-nm
SAG BaTiO3 nanocrystal
with complex set of twins on
(111) planes (prepared at
650 �C) [12]. With kind
permission of Elsevier
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Some (Ovid’ko [24], Li [16]) claim that deformation involving nanotwins
generated at grain boundaries and associated with partial dislocations induce
toughening in the materials, metals and ceramics alike. In fact, Li [16] suggested
that deformation twins (recall that they may be either deformation or annealing
twins) are generated near cracks in nanoscale materials. Accordingly, deformation
twins nucleate by stress-driven emissions of twinning dislocations from a grain
boundary distant from the crack tip. During the process of deformation nucleation
twins release high, local stresses near the crack-tip, enhancing fracture toughness.
In Fig. 9.24, nanotwin growth in a deformed nanocrystalline specimen is shown.

Note that two types of twins were considered in Chap. 3 on plastic deformation
[27], mechanical (deformation) and annealing (also known as growth or recrys-
tallization) twins. These types are crystallographically related, but the nature of
their formation is different. Both play an important role in the deformation of
nanocrystalline materials. Twinning is a competing mechanism to slip, but is
directly related to (stacking faults (SFs), which are themselves dislocation-related.
Twinning shear stress has been expressed [37] as a function of source size and SF
energy:

Fig. 9.23 Twins in SiC [17]. With kind permission of Elsevier
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sT

G T
¼ c

Gb
þ ab

l
ð9:2Þ

where sT is the shear stress, l is the size and c is the SF energy. Equation (9.2)
indicates that the twinning stress increases with c and with decreased source size.
Clearly, b is the Burgers vector of the partial dislocation (SF-related). The rela-
tions between normalized twinning stress and normalized SF for several metals are
shown in Fig. 9.25.

To indicate that the Burgers vector is related to partial dislocation, it is occa-
sionally written as bp. Another parameter of importance is the grain size. For the
following relations, grain size is taken into account in slip and twinning. Notice
that these relations are similar, the difference being indicated by the subscripts for
slip (S) and twinning (T); they are basically H–P equations:

rT ¼ r0T þ kTd�1=2 ð9:3Þ

rS ¼ r0S þ kSd�1=2 ð9:3:aÞ

The literature [20] indicates that kT C kS. It is clear from these equations that,
in both cases, the respective stresses increase with decreasing size. For nano-
crystalline materials, a critical radius has been suggested (Meyers et al. [20]) for
twinning, expressed as:

Fig. 9.24 Nanotwin growth in a deformed nanocrystalline specimen containing a pre-existent
crack (a two-dimensional model). a General view. A deformed nanocrystalline specimen contains
both a crack and a rectangular nanotwin ABCD. The nanotwin as a stress source represents a
quadrupole of wedge disclinations located at its vortices. b The atomic structure of the grain
contains the nanotwin ABCD (schematically) [31]. With kind permission of Dr. Skiba
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rc ¼
5pGcTB

4s0T
ð9:4Þ

where cTB is the twin-boundary energy (directly related to the SF energy) and s0T is
the local (not global) twinning shear stress.

9.3 Time-Dependent Deformation (Creep)

Creep deformation was broadly discussed in Chap. 6 in general. Here, the specific
character of creep is considered in nanoscale ceramics. The consolidation tech-
niques of the raw materials and the production methods generally determine the
mechanical, physical and other properties of a ceramic. This is particularly true in
the case of nanoscale ceramics, since the distribution of the phases in composite
ceramics, for example, and their location relative to the commonly found micro-
cracks are decisive factors in obtaining strong, tough, fracture-resistant substances.
By using an appropriate production method to eliminate glassy phases at grain
boundaries, a strong, significantly-improved, creep-resistant, nanocomposite
ceramic was obtained—a silicon nitride/silicon carbide nano–nano composite. The
final sample size was a 19 mm diameter disk with a thickness of 3–4 mm. The
electron microprobe analysis shown in Fig. 9.26 reveals that the initial Si–C–N
powder had a nominal composition of Si1.00C1.55N0.81O0.17. The presence of
oxygen in this composite is a result of surface oxidation, due to handling in air.
The SEM observation shows that the mean particle size for this powder is about
1 lm. A TEM analysis reveals that, after decreasing the amount of additive, the
grain size of the composites decreases monotonically and there is a transition from
a micro–nano structure, to a nano–nano type structure. When the material is

Fig. 9.25 Effect of stacking
fault energy on twinning
stress [20]. With kind
permission of Elsevier
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sintered without additives, 10 min at 1600 �C leads to a grain size of about 27 nm.
After 30 min of sintering, the grain size reaches about 40 nm, as shown in Fig. 9.26d.
In Fig. 9.27, an elemental analysis, by means of electron energy loss spectroscopy
(EELS), indicates that the two phases in this material, namely, Si3N4 and SiC, were
randomly mixed and had roughly equal grain size. The oxygen, which had been
diffused from the surface into the material during the high temperature processes,
caused the formation of some glassy material. HRTEM illustration in Fig. 9.28
indicates the grain-boundary region of specimens without additives, as shown in
Fig. 9.26d. Only a small amount of the glassy phase, which is dependent on the
amount of oxygen and its distribution, may be observed. In the ceramic under con-
sideration, the oxygen was not homogeneously distributed in the grain-boundary

(a) (b)

(d)(c)

Fig. 9.26 Transmission electron microscopy (TEM) observations of nanocomposites of Si3N4–
SiC a sintered with 8 wt% Y2O3 at 1600 �C for 10 min, micro–nano structure, b sintered with
3 wt% Y2O3 at 1600 �C for 10 min., nano–nano structure, c sintered with 1 wt% Y2O3 at 1600
�C for 10 min, nano–nano structure, d sintered without additive at 1600 �C for 30 min, nano–
nano structure [38]. With kind permission of John Wiley and Sons
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regions, some having more than others. Most of the glassy grain-boundary phase
exists at multigrain junctions (e.g., see Fig. 9.28c). To avoid common compli-
cations, compression creep tests were conducted to examine the creep behavior of
the nano–nano composites, rather than tensile tests, that are likely to induce
cavitation. The steady-state creep of nano–nano composites at various tempera-
ture and stress levels is shown in Fig. 9.29 as a plot of strain as a function of
time. A comparison between the creep properties of the nano–nano composite
ceramics, silicon nitride/silicon carbide and microcrystalline silicon–nitride,
based on data taken from the literature, is provided in Fig. 9.30. These nano–nano
composites show extraordinarily high creep-resistance (corresponding to a low
creep-strain rate). (For the references in Fig. 9.30, the reader is referred to the
original work). As may be seen, the nanocomposite sintered without additives
shows a creep rate as low as 6.3 9 10-11 1/s at 50 MPa stress. The steady-state
creep deformation of crystalline materials may be expressed by one of the
empirical relations as:

Fig. 9.27 Electron energy loss spectroscopy (EELS) analysis of the component elements in the
Si3N4–SiC nanocomposite sintered at 1600 �C for 30 min without additive [38]. With kind
permission of John Wiley and Sons
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Fig. 9.28 High-resolution transmission electron microscopy (HRTEM) analysis of the grain
boundary of the nano–nano composite (no additive, 1600 �C/30 min sintered). a Glassfree grain
boundary, b grain boundary containing glassy layer, c triple junction [38]. With kind permission
of John Wiley and Sons
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_e ¼ A
rn

dp
exp ð� Q

RT
Þ ð9:5Þ

For similar empirical relations, Chap. 6 (Eq. 6.30) may be consulted. In Eq. (9.5),
A is a constant, r the applied stress, n the stress exponent, d the grain size, p the

Fig. 9.29 Compression creep strain–time curves for one of the nano–nano composites (1 wt%
Y2O3, 1600 �C/10 min sintered) [38]. With kind permission of John Wiley and Sons

Fig. 9.30 Comparison of the compression creep property of nanocomposites with those of
existing silicon–nitride ceramics (additive in weight percentage unless specified, molecular
formula simplified for clarity. For instance, ‘‘6YO’’ in figure legend stands for ‘‘6 wt%Y2O3’’)
[38]. With kind permission of John Wiley and Sons
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grain-size dependent exponent, Q the activation energy, R the gas constant and T is
the absolute temperature. The stress exponent is often considered to indicate the
creep mechanism. The experimentally-determined stress exponent, n, for various
silicon–nitride system ceramics, may be as low as \1 or as high as [3, and the
activation energy, Q, may be as low as 300 kJ/mol or as high as 1200 kJ/mol.
The observed p is *1–3, which means the strong dependence of the creep rate on
the grain size. A large increase in creep rate (1–3 orders) with a corresponding
decrease in grain size when going from the micron to the nano range is supposed to
occur. However, the very large creep resistance found in nanocomposites
strongly suggests a different acting creep mechanism than is found in relatively
large, micron-sized materials. Another sign that the creep mechanism may be
different in nano–nano composites is their low activation energy. This suggests that
the resulting highly-dispersed distribution of oxygen at the interfaces may prevent
the formation of the intergranular glassy phases that are effective as fast routes for
mass transfer, leading to extraordinarily high creep resistance in such nanocom-
posites. Thus, Eq. (9.5) does not describe the increased creep resistance of Si3N4/SiC
nanoceramic.

The Si3N4/SiC nanocomposite illustrated in Fig. 9.31 indicates the well-known
fact that monolithic ceramics are weaker than nanocomposite ceramics. In this
figure, the creep strain of monolithic Si3N4 is substantially greater than that of the
nanocomposite.

Also in this case, Y2O3 was added to the nanocomposite. The creep tests were
performed by four-point bending at temperatures of 1200 and 1450 �C within a
stress range of 50–150 MPa. The creep rate was calculated from the slope of the
e versus t curve (Fig. 9.31) and steady-state creep was evaluated using Eq. (9.5), i.e.,
the Norton equation. An alternative explanation for the observed increase in creep
resistance in the nanocomposite is that the SiC nanoparticles hinder the grain growth

Fig. 9.31 Comparison of the
creep deformation of
monolithic silicon nitride and
of the C-derived
nanocomposite [9]. With kind
permission of John Wiley and
Sons
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of Si3N4 by interlocking with the neighboring Si3N4 grains. In this manner, changes
in the volume fraction and chemical composition at the grain-boundary phase occur,
modifying the creep mechanisms, with consequent, visible improvement to the
Si3N4/SiC nanocomposite. For a more general picture of improved creep resistance
in nanoceramics (both monolithic and composite), additional examples are provided
of Al2O3-based nanocomposites and of nano-zirconia. Figure 9.32 shows mono-
lithic and nanocomposite creep curves of strain versus time.

The curve of the monolith consists of primary, steady-state and very small
tertiary creep. The specimen lifetime was *150 h and *4 % of creep strain was
obtained at fracture. A large number of microcracks were also identified by optical
microscopy. Compared to the monolith, the nanocomposite exhibited excellent
creep resistance. At 1200 �C and 50 MPa, its creep life was 1120 h, which is 10
times longer than that of the monolith. The creep strain at fracture was 0.5 %, which
is eight times smaller than that of the monolith. Furthermore, the superior creep
resistance of the nanocomposite was also obtained by flexure creep tests. Similar to
tensile-creep curves, the strain of the nanocomposite tended to decrease over time,
while the monolith exhibited steady-state creep and sometimes accelerated creep.

The strain rate, as a function of applied stress, is shown in Fig. 9.33 for the
steady-state creep rates of both the monolith and the nanocomposite ceramics. It
may be observed that the creep rate of the nanocomposite is about three orders of
magnitude lower than that of the monolith under tension, and three to four orders
of magnitude lower under flexure. One of the most characteristic changes in
microstructures during creep is the rotation of the intergranular silicon-carbide
particles, accompanied by GBS and small cavity formation around the particles.
This may be seen in Fig. 9.34a.

Fig. 9.32 Tensile creep
curves of the monolith and
nanocomposite at 1200 �C
and 50 MPa. Slight
accelerated creep and steady-
state creep were present in the
monolith, while they were
little observed in the
nanocomposite [23]. With
kind permission of John
Wiley and Sons
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One may see that the interface between the upper and lower alumina grains is
curved towards the intergranular silicon-carbide particle. Significant strain contrast
contours have formed at the corners (top right and top left) of the particle and
small cavities exist between the particle and the upper grain. Based on this
microstructure, the following mechanism was suggested for GBS or its prevention.
Before the sliding occurred, the intergranular particle was supposedly located on a
straight alumina–alumina grain boundary. When creep occurred, the upper alu-
mina grain slid downward over the lower grain. In order to maintain such sliding,
the particle rotated counterclockwise and plunged into the lower grain. As
byproducts of this process, strain contrast contours and small cavities were gen-
erated, and the grain boundary curved. This plunging increases the pinning effect
of the particle and, consequently, improves creep resistance, resulting in transient
creep. More evidence of the rotating and plunging of intergranular silicon-carbide
particles and associated cavity formation is given in Fig. 9.34c. Figure 9.35 shows
a trace of intergranular crack propagation. In this case, the crack proceeded along
the alumina–alumina grain boundary, where small cavities formed around the
particles, as a result of GBS.

The intergranular small cavities, formed during the plunging of the interfacial
particles, weaken interfacial bonding and induce crack formation at the grain
boundaries. The important role of the transgranular nanoparticles is to inhibit
lattice diffusional creep. Grain boundary diffusion, however, is the most

Fig. 9.33 Stress
dependencies of steady-state
or minimum creep rates in the
tension (closed symbol) and
the flexure (open symbol) for
the monolith and the
nanocomposite. The
temperature is 1200 �C. The
stress exponent for creep rate
is 2.2 for the monolith and 3.1
for the nanocomposite in
tension, and 2.9 for the
monolith and 2.2 for the
nanocomposite in flexure
[23]. With kind permission of
John Wiley and Sons
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predominant deformation mechanism of polycrystalline alumina at temperatures
around 1200 �C. GBS requires diffusion processes, because of the role played by
vacancies in sliding. The diffusion process at the particle matrix interface is sig-
nificantly lower than at the matrix–matrix interface (which may explain the higher
creep rate in monolithic alumina). As GBS proceeds, the intergranular silicon-
carbide nanoparticle rotates and plunges into the alumina matrix, significantly
increasing the creep resistance. This results in only one stage of creep, namely that
of transient creep. Rapid crack formation at the grain boundaries during the final
stages of creep deformation bring about fracture.

An additional example is a zirconia-based nanocomposite. In this case, various
amounts of C nanotubes (CNTs) have been added to zirconia. Figure 9.36 com-
pares the nanocomposite having various amounts of CNTs or none. The addition of
CNTs to polycrystalline nanograined zirconia leads to a significant increase in
creep resistance (and fracture toughness). These CNTs have a multiwalled C
nanotubes [henceforth: MWCNTs] form. The creep resistance of the nanograined
zirconia may be explained by the ability of CNTs to inhibit GBS at high tem-
perature, thus improving creep resistance. MWCNTs substantially reduce grain
growth and may also be able to pin grain boundaries and reduce their mobility
during creep. Zirconia containing CNTs has a lower creep rate than monolithic
zirconia. With higher amounts of MWCNTs, up to 5 %, after a transient

Fig. 9.34 Transmission electron micrographs of microstructures of the nanocomposite tested at
1300 �C and 50 MPa in tension, showing examples of rotating and plunging of intergranular
silicon carbide particles and associated cavity formation. The stress direction is indicated by
arrows [23]. With kind permission of John Wiley and Sons
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decreasing creep, the creep rate drops almost to zero (Fig. 9.36b). Other properties
(hardness, fracture toughness) are also improved by additives. The most pro-
nounced effect is associated with a 5 % CNT content.

Fig. 9.35 Transmission electron micrograph of a trace of intergranular crack propagation. The
sample was tested at 1200 �C and 100 MPa in tension. Note the transgranular-fractured
nanoparticle. The stress direction is indicated by an arrow [23]. With kind permission of John
Wiley and Sons
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9.4 Dynamic Deformation in Nanoceramics

9.4.1 Introduction

In recent years, much effort is being devoted to the production of structures, among
them ceramic and nanostructures, because they exhibit valuable, advanced
mechanical properties for the construction of various components for functional
applications. A major challenge in modern materials science is to produce
homogeneous ceramics that show good static performance in applications
involving dynamic deformation during service. Since most bulk ceramics are
brittle at ambient conditions and many show ductile properties in the nanoscale
range, the search for ceramics having superior properties, with special emphasis on
their responses to dynamic deformation, is ongoing. Some hope for the improved
performance of materials lies with nanoceramics. Clearly, one of the prerequisites
for achieving good (or the best) static and dynamic properties is the production of
ceramics without pores, microcracks or other flaws. This is a formidable task, but
modern production techniques have been developed bringing the scientific and
industrial communities several steps closer to that goal.

The fundamental behaviors of nanoscale materials may be completely different
from those of bulk materials. Due to the very small sizes, especially at the low
range of the nanoscale, surface and atomistic properties dominate behavior and
one must be aware that bulk theories may not be completely applicable. Therefore,
the study of nanoscale materials is a challenging route to the understanding of
experimental observations.

Fig. 9.36 Creep strain (b) recorded as a function of time (a) and creep rate as a function of creep
strain measured during compression creep test for composites with different amounts of CNTs
[19]. With kind permission of Elsevier
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9.4.2 Fatigue

This section begins with thin-film ceramics having nanosized dimensions, such as
the low pressure chemical-vapor deposition [henceforth: LPCVD] of silicon
nitride, tested via a nanoscale tensile test. The test devices are fabricated using a
surface micromachining technique, in combination with deep reactive ion etching
and ion milling. In situ fatigue measurements were performed on silicon nitride
test structures using a 200 nm beam width inside a focused-ion-beam system,
which is a recently developed experimental technique. The fatigue result is shown
in Fig. 9.37.

By reducing the applied tensile stress to 3.8 GPa, these silicon nitride test
structures can survive cyclic loadings up to 108 cycles.

When designing devices, such as nanoelectromechanical systems (NEMS), an
understanding of the nanoscale mechanical properties of materials is essential,
since they may incur thermal or mechanical stress during operation. Tensile tests
may be performed within such systems by means of thin-film samples and the
amplitude of the applied stress may be controlled by the frequency and amplitude
of the input electrostatic energy. During such experiments, mechanical-amplifier
actuators exhibit time-delayed failure and their resonant frequencies decrease
monotonically over the test time, when the maximum operating stress exceeds

Fig. 9.37 Stress-life testing data for nano-scale tensile samples. The circle with a horizontal
arrow indicates devices that did not fail under cyclic loading up to 108 cycles [6]. With kind
permission of IOP Publishing and Ghodssi for the authors
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4.3 GPa. The variation in resonance frequency over time is shown in Fig. 9.38.
The fatigue results appearing in Fig. 9.37 were obtained by means of a mechan-
ical-amplifier actuator with resonator 2 at its first resonant mode. In this experi-
ment, the input voltage to resonator 1 is 14.1 VRMS and the resonant frequency of
resonator 2 is found to be 38.09 kHz. The mechanical-amplifier actuator with
resonator 2 at its first resonant mode is indicated in Fig. 9.39.

To summarize the results of this thin-film mechanical testing, note that the
change in resonant frequencies indicates that tensile samples become more com-
pliant during the test and that the failure of the tensile samples occurs as a result of
the progressive accumulation of damage. Nonetheless, no fatigue failure of
nanoscale LPCVD silicon nitride thin films is found up to 108 cycles during testing
at stress amplitudes below 3.8 GPa with a load ratio of 0.48.

The benefits of using nanosized alumina-based composites, such as Al2O3/SiC
follow. For instance, alumina is a commercial product having very good hardness,
wear and corrosion resistance, and it responds very well to the sintering process;
however, it has low bending strength and low fracture toughness. Even the

Fig. 9.38 Variation of
resonant frequency with time
for a mechanical-amplifier
actuator during fatigue testing
(test cycle: 108 cycles at
stress amplitude 4.4 GPa) [6].
With kind permission of IOP
Publishing and Ghodssi for
the authors

Fig. 9.39 Micrograph of a
mechanical-amplifier actuator
for fatigue tests with
resonator 2 at its first resonant
mode (f0 = 38.09 kHz). In
this device, only one
suspended beam is used as
fixed-beam 2 [6]. With kind
permission of IOP Publishing
and Ghodssi for the authors
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addition of *5 % SiC improves the properties of the composite, giving it good
crack healing ability. Applied stress, as a function of time (static fatigue), in
monolithic Al2O3 and Al2O3/SiC composites are compared in Fig. 9.40.

Applied stress-to-failure in a plot against the number of cycles is shown in
Fig. 9.41, comparing Al2O3 with the Al2O3/SiC composite. Here, the strength-
ening effect on fatigue in SiC may be seen. In the Figs. 9.40 and 9.41, in addition
to the applied stress, the bending stress is also indicated. Note that all the speci-
mens broke outside the crack-healed zone, supporting the importance of crack
healing in ceramics. A fracture-surface photograph of the composite ceramic
crack-healed specimen is shown in Fig. 9.42. The healing of cracks in ceramics is
a means of improving fatigue resistance, not just the static mechanical properties
(including static fatigue). In order to obtain this improvement, nanosized particles
of SiC are dispersed in the alumina matrix. The alumina powder used for the
alumina composite material has an average particle size of 0.5 lm and 99.99 %
purity. In the Al2O3/SiC composite considered above, only the SiC are

Fig. 9.40 a Relationship between applied stress and time to failure of monolithic Al2O3.
b Relationship between applied stress and time to failure of Al2O3/SiC. With kind permission of
Professor Ando for the authors of Ref. [1] and Professor of Ref. [2]

Fig. 9.41 Relationship
between maximum applied
stress and time to failure of
Al2O3/SiC and monolithic
Al2O3 crack-healed [1]. With
kind permission of Professor
Ando for the authors of
Ref. [1] and Professor Liu
of Ref. [2]
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nanoparticles, as seen in Fig. 9.43. Note that the healing of the base specimens and
of the precracked specimens were performed at 1300 �C for 1 h. The crack-
healing ability of the Al2O3/SiC composite material is better than that of mono-
lithic alumina. In Fig. 9.42, one may observe that these base specimens broke in
many places. The macroscopic fracture surface of the specimen (Nf = 3900
cycles) is shown in Fig. 9.42a. An enlarged photograph of the crack-initiation
point appears in Fig. 9.42b, where there are large defects. Yet, in the fracture-
surface photograph of the specimen (Nf = 15885 cycles) in Fig. 9.42c, the special
defect cannot be recognized at the crack initiation point. One may conclude from
the rf0 result in Fig. 9.41 that the cyclic-fatigue strength of the base specimen is
equal to or higher than the value of the crack-healed zone of the alumina com-
posite material.

Recall that nanostructured materials are those materials whose structural ele-
ments (clusters, crystallites or molecules) have dimensions in the range of
1–100 nm. Finally, it may be said that the S–N response of nanocrystalline

Fig. 9.42 Fracture surface of Al2O3/SiC crack-healed a Macro-SEM photograph of crack
initiation site (Nf = 3900 cycle); b crack initiation site and flaw (Nf = 3900 cycles); c crack
initiation site of Nf = 15885 cycles sample, no-flaw can be seen at the crack initiation site. With
kind permission of Professor Ando for the authors of Ref. [1] and Professor Liu of Ref. [2]
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materials to cyclic loading are superior to those of their corresponding conven-
tionally-grain-sized ones, mainly because they have a higher yield and monotonic
stresses.

9.5 Superplastic Observations in Nanoceramics

9.5.1 Introduction

In an earlier chapter, reference was made to a relation called the Mukherjee-Bird-
Dorn equation for superplastic deformation (in metals), reproduced here as:

_e ¼ A
D0Gb

kT

b

d

� �p r
G

� �n
exp � Q

RT

� �
ð9:6Þ

in which, as usual, G is the elastic shear modulus, b the Burger’s vector, k
Boltzmann’s constant, with T representing the absolute temperature. The grain size
is commonly denoted by d; p is the grain-dependent coefficient, while n is the
stress exponent. Q and D0 are the diffusion parameters, namely the activation
energy and the frequency factor, respectively, and R is the gas constant. Also recall
that the inverse of n is the strain-rate sensitivity, m. It has been widely considered
that GBS is the dominant mechanism in superplastic flow. The values of n or m for
GBS have been experimentally evaluated and are given as: n = 2 or m = 0.5. It is
immediately obvious from Eq. (9.6) that, at constant stress and temperature, the
high strain rate increases with decreasing grain size.

Fig. 9.43 Nano-size SiC
particle located in alumina
grain. With kind permission
of Professor Ando for the
authors of Ref. [1] and
Professor Liu of Ref. [2]
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Various sophisticated techniques have been developed over the past decade or
so, such that certain nanoceramics can now be produced with some measure of
superplasticity. The present discussion will begin with static mechanical proper-
ties, such as the stress–strain relation and hardness.

9.5.2 Static Properties Observed in Superplastic Ceramics

9.5.2.1 Stress–Strain Relation

The stress–strain relation is used to determine the value of m, the strain-rate
sensitivity exponent. The value of m is derived from the slope of such plots,
indicating the existence of GBS, leading to superplastic behavior. Such plots are
illustrated in Fig. 9.44b. The plotted material provided in Fig. 9.44 is a zirconia
3 mol% yttria–alumina–alumina–magnesia spinel nanoceramic composite. Here,
PS-HEBM-SPS stands for specimens that were processed from plasma-sprayed
[henceforth: PS] powders, undergoing high-energy ball-milling [henceforth:
HEBM] (24 h) and spark plasma sintering (SPS).

A typical jump test is shown in Fig. 9.44 of flow stress versus strain. The stress
temperature is 1450 �C. The slopes of each line in Fig. 9.44b yield for m *0.5,
meaning that the stress exponent of the strain rate is *2; this indicates the
superplastic behavior of the zirconia–alumina-spinel composite under the test
conditions of temperature and strain rate. In order to determine the activation
energy, a plot of strain rate versus the inverse absolute temperature must be made
(as in Fig. 9.44c). The average activation energy of PS-HEBM-SPS is 945 kJ/mol,
which is much higher than that of the composite processed from nanopowder
mixtures (622 kJ/mol). This should represent GBS, if the concept of superplas-
ticity is the dominant mechanism of deformation. Table 9.1 summarizes the strain
rates and various temperatures of two and/or three specimens. PS-SPS appears in
the Table 9.1 as PS-SPS and is listed under column C. For the purpose of com-
parison, the flow-stress results for nanopowder mixtures are also listed in Table 9.1
and are smaller than those processed from PS powders with/without HEBM.

It is interesting to see the relevant microstructures of these ceramics, shown in
Fig. 9.45. SEM images of the fracture surfaces of the deformed (PS-HEBM-SPS)
specimen (Fig. 9.45a, c and e) show three different kinds of microstructures: in a,
equiaxed grains with rounded corners; in c, deformed dense agglomerates; and in
e, non-deformed dense PS agglomerates. In a, evidence of GBS is visible, which is
related to superplasticity. It represents deformed specimens processed from
nanopowder mixtures; this structure was formed from the fine particles created by
HEBM. Due to the short sintering time, no meaningful grain growth occurred. The
shape of the particles in e were not affected by HEBM and, thus, kept their shapes
during SPS and deformation. The strongly-bound grains inside the hard
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agglomerates did not contribute to GBS. The microstructures in b, d and f are of
the deformed PS-SPS samples.

It is assumed that the difference in the superplastic behaviors, especially in their
activation energies, implies different GBS energies. The grains in the specimens
processed from nanopowder mixtures are more random in orientation and the grain
boundaries are more prone to have high angles and high energy. As a result, GBS
should be easier in nanopowder-based specimens than in PS powder-based ones
which did not change during deformation. (In PS powder-based specimens, the
primary grains inside the particles were formed by a nucleation and growth process
from the metastable phase at elevated temperatures.)

Fig. 9.44 a Jump test of PS-HEBM-SPS specimen at 1450 �C; b stress–strain curves in log–log
scale to determine strain rate sensitivity m; c log(strain rate)-1/T curves to determine the apparent
activation energy [41]. With kind permission of Elsevier
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9.5.2.2 Hardness in Superplastic Nanoceramics

Having already reviewed hardness in nanoceramics, the discussion here will focus
specifically on the nanohardness observed in superplastic nanoceramics, again
exemplified by TZP, since it shows superplasticity and is (among others) amenable
to nanograined, bulk ceramic production with improved mechanical properties.
TZP has attracted considerable attention due to these favorable qualities. More-
over, Y-TZP has good toughness and, by the addition of small quantities (3 mol%)
of yttria, its fracture toughness (KIc) also increases. The variations in the Vickers
hardness under true compressive stress and in relation to grain size also are
illustrated in Figs. 9.46 and 9.47. Note that the grain size is 0.3 lm or 300 nm.

These plots show also fracture toughness (discussed below). One may see that
the relatively insignificant increase in Vickers hardness as a function of the
compressive strain is temperature-dependent and, at a somewhat higher temper-
ature, it even decreases for both strain rates applied. The variation of the Vickers
hardness with grain size may be seen in Fig. 9.47.

Note that these illustrations describe a high nano level (in the hundreds),
although proper observations of ceramic toughness and hardness during super-
plastic deformation are best observed at a lower nano levels. The author believes
that one of the reasons for the insignificant increase in the hardness level is to be
expected. A common, if not general, observation in metals for example is that an
increase in strength (or strength properties) is achieved at the expense of ductility.
Superplastic deformation is an extreme ductile behavior and, thus, some loss of
hardness, in certain cases, should not be surprising. According to the authors of
these illustrations, the reason for the decrease in observed hardness is due to the
formation of additional cracks; Fig. 9.48 makes their case clear.

An additional explanation may be added–the initial increase in hardness during
superplastic deformation under compression is an outcome of the shrinkage of
residual pores already contained within the specimen before deformation.

Table 9.1 Flow stresses of the three ceramics composites A: nanopowder mixtures, B: PS-
HEBM-SPS, C: PS-SpS [41] (with kind permission of Elsevier)

Strain rate
(s-1)

Flow stress (MPa)

1300 �C 1350 �C 1400 �C 1450 �C

A B A B A B C A B C

1 9 10-4 –a –a –a 46 –a 7 118 –a 3 –a

3.16 9 10-4 –a 74 –a 22 –a 11 170 –a 5 –a

1 9 10-3 65 125 28 37 13 18 236 7 9 90
3.16 9 10-3 127 216 56 61 24 30 –b 13 16 149
1 9 10-2 227 –c 108 110 48 52 –b 24 32 197

Notes a not tested
b sample fractured during deformation
c beyond equipment load limit
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The action of the compressive stress shrinks those innate pores causing densifi-
cation. The following decrease in hardness, after further compressive stress, is then
due to a decrease in densification with the formation of new cavities by GBS.

In an earlier chapter, the effect of grain size on the strength of ceramics at
ambient temperature was given as:

rb ¼ Ad�n ð9:7Þ

Fig. 9.45 SEM images of deformed PS-HEBM-SPS (a, c, e) and PS-SPS (b, d, f) at 1400 �C
(arrow 1 grains with round corners; arrow 2 deformed hard agglomerates; arrow 3 not deformed
hard agglomerate in spherical shape) [41]. With kind permission of Elsevier
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Here, the stress subscript indicates bending and, as before, n represents the
grain-size exponent, while A is a constant. The value of n depends on the material
having a usual value of 0.4–0.5. As seen from this relation, bending strength
becomes smaller with increasing d (grain size). It is often mentioned in the lit-
erature that the bending strength Eq. (9.7) also holds for hardness, which also
shows a similar variation, i.e., when bending stress increases so does hardness.
Furthermore, bending strength depends on the pores present in the ceramics, often
expressed as:

Fig. 9.46 Variations in micro-Vickers hardness and normalized fracture toughness with true
compressive strain for specimen tested at strain rates of: a 6.9 9 10-4 s-1; and b 2.1 9 10p-3 s1

[21]. With kind permission of Elsevier

Fig. 9.47 Variation in
micro-Vickers hardness with
average grain size [21]. With
kind permission of Elsevier
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rb ¼ B exp �bpð Þ ð9:8Þ

Therefore, hardness may be expressed by a similar expression:

Hv ¼ B0 exp �b0Vt�ð Þ ð9:9Þ

In the above relations, B, b, B0 and b0 are constants and p is the volume fraction
of porosity. Vt- is similar to the volume fraction of porosity. Thus, the relation
implies that if hardness increases so does the bending stress, and vice versa.
However, the hardness of 3Y-TZP may be more sensitive to the total amount of
cavitation and residual pores, namely to the apparent density than to the effect of
grain growth, as in the case of alumina [26], in which all the strength properties are
more sensitive to the total amount of porosity.

The above data, on the strength of superplastic materials, indicate that the
plastic deformation of 3Y-TZP by the application of compressive stress (e.g., by
forging) may be accomplished without too much difficulty and without

Fig. 9.48 Variations in micro-Vickers hardness and normalized longitudinal fracture toughness
with volume fraction of cavities [21]. With kind permission of Elsevier
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significantly reducing its strength. Variations in strength properties, such as
hardness and toughness, are relatively small and there may even be some
improvement in fracture toughness. Compressive strain seems to be sufficient for
the practical shaping of superplastic ceramics to desired dimensions.

9.6 Fracture

9.6.1 Introduction

Fracture, fracture types and the theoretical strength of materials were thoroughly
discussed in Chap. 8. Now it is interesting to investigate whether the fracture
patterns and resistance (in terms of fracture toughness) are the same or different in
nanoceramics. Recall that nanoceramics are characterized by two conflicting
effects regarding strength (and, hence, resistance to fracture). First of all, a large
number of grain boundaries are expected to strengthen macro-materials. Consider
that larger nanomaterials (in the 100–800 nm range), those that do have disloca-
tions that are impeded in their motion through grain boundaries, are not unlike
bulk macrosized specimens. Secondly, GBS is a contributor to strain during
deformation, which basically reduces the strength properties of a material. Whe-
ther these two effects compensate each other or whether one of them is dominant
should be considered. Nevertheless, it is known that the strength properties of
nanomaterials are higher than found in macroscopic specimens and, therefore,
their resistance to fracture is also greater.

9.6.2 Fracture Toughness

In continuation of the discussion on the mechanical properties of nanoceramics,
this section is dedicated to fracture toughness. Nanoceramics are superior if low-
temperature sintering densifies them to a desired maximum level. Since this
greatly reduces grain growth in the starting nanoceramic powder, carrying the
strength advantages into the manufactured nanoceramics. However, since high-
temperature processing, such as sintering, is likely to provide a fully-dense cera-
mic composite, the mechanical properties, especially hardness and strength, may
be greatly improved even for high-temperature applications. One of the reasons for
improvement in high-temperature fabrication is the elimination, or rather reduc-
tion, of the pores. The purpose of a proper additive in a ceramic composite is to pin
grain boundaries and prevent growth.

Below are several examples, parallel to those presented previously for regular
ceramics, demonstrating the concept of fracture toughness for nanoceramics. First,
take zirconia and zirconia–alumina nanoceramics, in which cracking occurs in a
Palmqvist mode. In this case, Niihara et al. [22] express fracture toughness as:
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KIc/

Ha1=2

� �
H

E/

� �2=5

¼ 0:035
l

a

� ��1=2

ð9:10Þ

H is the Vickers hardness, E is the Young’s modulus, 2a = d is the diagonal of
the indentation, / is the constrained factor and l is the crack length. As is clear
from many hardness indentations on ceramics, Palmqvist cracks are observed at the
ends of the diagonals of the indentations. The criteria for such cracks are given as:

0:25 ffi 1
a
ffi 2:523 ð9:11Þ

Expressing fracture toughness according to the above relations yields:

KIc ¼ 9:052 � 10�3 H3=5E2=5dðlÞ�1=2 ð9:12Þ

A value of E = 210 GPa has been assumed for all of the ceramic samples,
irrespective of their compositions. In addition, the crack lengths were measured
immediately after the indentation was conducted to avoid slow crack growth after
removing the load. The ceramic under consideration is YSZ. The above relations
show the connection between hardness and fracture toughness. Fracture toughness
versus the yttria-stabilizer content in fully tetragonal Y-TZP ceramics and 2.5 wt%
Al2O3/Y-TZP composites are shown in Fig. 9.49. The average value of 8.62 MPa
m1/2 is indicated. The microstructure of the 2.5 % yttria content, represented by the
dashed line in Fig. 9.49, is illustrated in Fig. 9.50.

Fig. 9.49 Fracture toughness
versus yttria-stabilizer
content for fully tetragonal
Y-TZP ceramics, and
2.5 wt% Al2O3/Y-TZP
composites [35]. With kind
permission of John Wiley and
Sons
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Grain size (which can grow) is one of the major factors that can affect fracture
toughness. Other key factors are pores and grain boundary cavities. The change in
the normalized transverse fracture toughness, KI(t)/KI(0), with the transverse grain
size, dt, is shown in Fig. 9.51. Note that the KI(t)/KI(0) value decreases initially
with an increase in dt, implying that fracture toughness decreases when individual
grains grow. With a further increase in dt, the KI(t)/KI(0) value begins to rise after
showing a minimum. The initial strain rates indicated in Fig. 9.51 are 6.9 9 10-4

and 2.1 9 10-3s-1 and the test temperatures are 1723 and 1773 K. The fracture
toughness values are calculated [15] by Eq. (9.13), where E is clearly a Youngs
modulus, C is the radius of the median crack, and the subscripts refer to longi-
tudinal and transverse directions.

Fig. 9.50 SEM micrograph
of 2.5 wt% alumina/3Y-TZP
ceramic sintered at 1150 �C
for 20 h [35]. With kind
permission of John Wiley and
Sons

Fig. 9.51 Variation of
normalized transversal
fracture toughness with
transversal grain size [21].
With kind permission of
Elsevier
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KIðtÞ ¼ 0:019 E0:5a�0:5
t

Ct

at

� ��1:5

ð9:13Þ

Fracture toughness, calculated from C of the crack parallel to the compressive
stress, is defined by longitudinal KI(l) and the normal, as the transverse fracture
toughness, KI(t). As usual, P in these relations represents the load–in this case, the
indentation load. Observe in Fig. 9.51 that the degradation of the mechanical
properties (expressed as normalized fracture toughness) is quite small, if not
negligible, which means that, under compressive stress, the plastic working of
3Y-TZP, such as forging, may be performed without too much difficulty.

The next example is b-SiC, to which 7 wt% Al2O3 is added. The microstructure
of this HIPed and annealed powder is shown in Fig. 9.52. The average grain size of
the FG SiC was 0.11 lm. SC0 is a FG ceramic with equiaxed 110 nm SiC grains.
SC1 refers to large, elongated grains grown in a matrix of small grains. In SC2, the
shapes of both the matrix and large grains are elongated. The frequencies of the
grain distributions for all three types of composites are shown in Fig. 9.53.

Tables 9.2 and 9.3 list microstructural characteristics, fracture toughness,
densification and annealing conditions, respectively. In Fig. 9.54, crack bridging
by large SiC grains is indicated. Recall that crack bridging improves fracture
resistance by acting as bridges between opposite faces of a crack and, during the

Fig. 9.52 SEM micrographs of hot-pressed and annealed materials: a SC0, b SC1, and c SC2
[14]. With kind permission of John Wiley and Sons
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course of crack opening and propagation, the cracks deform plastically and fail by
ductile rupture. Bridging prevents excessive crack opening. The variation of
fracture toughness with indentation load appears in Fig. 9.55 for all three types of

Fig. 9.53 Grain size distribution revealed by the relation between grain diameter and areal
frequency [14]. With kind permission of John Wiley and Sons

Table 9.2 Microstructural characteristics and fracture toughness of hot-pressed and annealed
materials [14] (with kind permission of John Wiley and Sons)

Materials Densification and
annealing conditions

Relative
density
(%)

Fracture
toughness
(MPa�m1/2)

Matrix
grains

Large grains

dAVG

(lm)
R95

(lm)
Vol
fraction
(%)

dLG

(lm)
RLG

(lm)

SC0 Hot-pressed at
1750 �C for
15 min with
20 MPa

97.2 1.9 0.11 2.25

SC1 SC0 is annealed at
1850 �C for 6 h

96.3 4.2 0.40 3.41 17.6 1.34 3.88

SC2 SC0 is annealed at
1850 �C for 12 h

95.4 6.1 1.28 5.25 10.1 3.59 3.26

Table 9.3 Polytypes in hot-pressed and annealed materials [14] (with kind permission of John
Wiley and Sons)

Materials Densification and annealing conditions Composition (%)

3C 4H

SC0 Hot-pressed at 1750 �C for 15 min with 20 MPa 93 7
SC1 SCO is annealed at 1850 �C for 6 h 90 10
SC2 SCO is annealed at 1850 �C for 12 h 88 12
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composites. As can be seen, there is an increase in fracture resistance with crack
length in SC1 and SC2, but the toughness in SC0 is insensitive to indentation load.
This suggests that annealing improves the fracture resistance of SiC, as seen from
the data in Tables 9.2 and 9.3. Table 9.2 also shows that the fracture toughness of
b-SiC increases as the result of the bridging by the larger, elongated grains.

For a more comprehensive picture of fracture and fracture resistance, here is yet
another exemplary nanocomposite–zirconia reinforced with ZrB2. The many

Fig. 9.54 SEM view of
crack bridging by large SiC
grains in SC2 [14]. With kind
permission of John Wiley and
Sons

Fig. 9.55 Relation between
fracture toughness and crack
length for SC0, SC1 and SC2
[14]. With kind permission of
John Wiley and Sons

Table 9.4 Nomenclature
assigned for the nanoceramic
composites developed [5]
(with kind permission of John
Wiley and Sons)

Sample
designation

ZrO2 matrix
(mol% yttria)

Comments

TM2B 2 Mixed grade
TM2.25B 2.25 Mixed grade
TM2.5B 2.5 Mixed grade
T3B 3 Co-precipitated grade
T2B 2 Co-precipitated grade

B stands for ZrB2
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applications of zirconia-based ceramics have earned them their reputation as an
important structural ceramic, thanks to their excellent combination of fracture
toughness and strength. Tables 9.4 and 9.5 characterize some of these zirconia-
based composites. Microstructures of these composites are shown in Fig. 9.56.

Table 9.5 Overall properties, i.e., relative density (RD), elastic modulus (E), hardness (HV10)
and fracture toughness (KIc) of the ZrO2/ZrB2 nanocomposites, SPSed at 1200 �C [5] (with kind
permission of John Wiley and Sons)

Material designation Relative density Elastic modules Vickers hardness
(% qth) (E, GPa) (Hv10, GPa)

TM2B 95.4 250 12.3 ± 0.1
TM2.25B 97.8 260 1.31 ± 0.2
TM2.5B 98.4 257 13.7 ± 0.1
T3B 98.4 266 13.9 ± 0.3
T2B 98.5 261 13.9 ± 0.2

The standard deviation in the hardness data measured is also shown

Fig. 9.56 SEM fractographs of spark plasma-sintered ZrO2–ZrB2 nanoceramic composites,
sintered at 1200 �C for a holding period of 5 min in vacuum: T3B grade (a), T2B grade (b), and
TM2B grade (c). The presence of finer ZrO2 grains (100–300 nm) and coarser ZrB2 particulates
(2–3 lm) can be distinguished. A model ceramic nanocomposite microstructure with nanosized
matrix particles reinforced with microsized reinforcement particulates, as observed in the newly
developed materials, is shown in (d) [5]. With kind permission of John Wiley and Sons
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Selected SEM fractographs of both mixed and co-precipitated ZrO2 powder-based
composites are shown in this figure.

Based on SEM images, the microstructure is characterized by the presence of
coarser tabular elongated ZrB2 particles (*2–3 mm) and equiaxed nano-ZrO2

particles (*100–300 nm). A schematic illustration of the phases in the micro-
structure is also presented. The ZrO2 grains in T3B are relatively finer
(100–150 nm) than those in T2B and TM2.25B composites. The average ZrO2

grain size in T2B is *200–300 nm. The presence of a few coarse ZrO2 grains of
*300 nm or more is found in TM2B. The variation of the hardness and the fracture
toughness with the amount of Y2O3 in the ZrO2 matrix is seen in Fig. 9.57.

There is almost no change in hardness with the addition of Y2O3; the values are
between 12 and 14 GPa, as listed in Table 9.5. The absence of improvement of
hardness, may be attributed to the presence of pores or microcracks, apparently
formed during post-fabrication cooling or possibly developed due to indentation
stresses. This may occur even after a 30 wt% ZrB2 (a hard additive) was incor-
porated into the nanosized zirconia composite. Grain growth in ZrB2, which may
also have occurred, is another probable factor involved in the hardness values that
were obtained. The toughness values were measured from an analysis of the
indentation. The KIc of brittle materials, exhibiting radial-median cracks when
l/a [ 2.5, may be calculated (Anstis’s model [3]) according to Eq. (9.14). In this
relation, E, H and P have their usual meanings: elastic constant, hardness and
indentation load, respectively, and c is the half-crack:

Fig. 9.57 Plot of hardness and toughness versus yttria stabilization ZrO2 matrix for spark
plasma-sintered (1200 �C, 5 min) nanocomposites. Different symbols represent the mechanical
property measured with various composites based on the ZrO2 matrix processed from either
coprecipitated or mixed-grade ZrO2 powders: filled square, Hv10 of the mixed grades; open
square, Hv10 of the co-precipitated grades; m, KIc of the co-precipitated grades; filled triangle KIc

of the coprecipitated grades (using the Palmqvist formulae); and open triangle, KIc of the mixed
grades (using the Plamqvist formulae) [5]. With kind permission of John Wiley and Sons
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KIc ¼ g
E

H

� �1=2 P

c3=2
ð9:14Þ

g is an indenter-geometry-dependent, dimensionless constant. Another
(Palmqvist [25]) equation may also be applied to the case of Palmqvist-type
cracks, when 0.25 \ l/a \ 2.5, given as:

KIc ¼ g
E

H

� �2=5 P

al1=2
ð9:15Þ

The parameters a and c of Eqs. (9.14) and (9.15) are indicated in Table 9.6 as
2a the average indent diagonal length, 2c the crack length and l = c - a. Equa-
tions (9.14) and (9.15) associate hardness measurements with fracture toughness.
The indentation tests used to evaluate fracture toughness are shown in Fig. 9.58.
The indentation data, including the indentation diagonal, crack length and
indentation toughness are listed in Table 9.6.

The basis of these composites, shown in Tables 9.4, 9.5, 9.6, is zirconia, which is
known to transform into a monoclinic polymorph if not stabilized. As mentioned
previously, prior transformation toughening by ZrO2 t ? m ZrO2 may occur in
sintered and/or annealed composite powders, depending on the stabilization of the
zirconia. In the case of ZrO2–ZrB2 stabilized by yttria additives, the transformability
of % t-ZrO2, as a function of the amount of yttria in the zircomia matrix, is presented
in Fig. 9.59. It may be seen from the graphs that transformability, the difference
between the fracture and the polished surface m-ZrO2 content (%), varies around
50–60 % for all the composites. The data in Fig. 9.59 indicate that toughness shows
an almost linear correlation with transformability.The difference in the transform-
ability between the two grades (the mixed and the coprecipitated grades) should be
attributed to the use of two different ZrO2 starting powders in the production of the
composites (see Table 9.4). Toughness increased in both grades of composites (see
Fig. 9.57) with decreasing yttria (to a level of 2 mol%) in the zirconia matrix; this
correlated with the increase in measured t-ZrO2 transformability. This is expected,
since toughness is associated with the volume fraction of the transformable t-ZrO2.

Table 9.6 Indentation data, i.e., average indent diagonal length (2a) and total crack length (2c),
as well as the fracture toughness values for the SPSed ZrO2/ZrB2 nanocomposites [5] (with kind
permission of John Wiley and Sons)

Material designation Indent diagonal
(2a) (lm)

Crack length
(2c) (lm)

l/a Indentation toughness
(MPa m1/2)

TM2B 122 158 0.3 11.4 ± 1.0
TM2.25B 118 185 0.6 8.7 ± 0.9
TM2.5B 115 197 0.7 7.8 ± 0.3
T3B 115 210 0.9 6.9 ± 0.7
T2B 114 166 0.4 10.0 ± 1.2

The crack length parameter (l) is defined as l = c - a. The standard deviation in the measured
toughness data is also shown
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The t-ZrO2 transformability is connected with the fact that a large amount of m-ZrO2

was measured on the fractured surface, which is clearly associated with the trans-
formable t-ZrO2 in spark plasma sintered (SPSed) composites. The SPS processing
route enables the retention of the finer t-ZrO2 grains (100–300 nm) and the ZrO2–
ZrB2 composite developed exhibits optimum hardness up to 14 GPa. The toughening
mechanism for improving the fracture toughness of fine grained (FG) SPS com-
posites is attributed to the contribution of transformation toughening.

Thus far, it has been stated that transformation toughening in zirconia-based
composites may contribute to fracture toughness, in addition to the known grain-
size effect. However, the paths of cracks should also be considered. If the path is
obstructed and the crack is deflected from its route (known as tortuous path) by
some hard particle, such as ZrB2, toughening is expected. In Fig. 9.60, crack
propagation may be observed.

Figure 9.60 reveals an increase in crack-path tortuosity due to crack deflection by
hard and coarser ZrB2 particles. A closer observation of Fig. 9.60b also reveals the

Fig. 9.58 SEM topography images of the Vickers indents and indentation-induced radial crack
pattern in the SPS-processed zirconia nanoceramic composites: T3B, T2B, TM2B [5]. With kind
permission of John Wiley and Sons
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crack-path debonding of the ZrB2, as evident from the crack propagation around the
ZrO2/ZrB2 interface. The ZrB2 particles limit further crack propagation.

The experiments on composites shown in Tables 9.4, 9.5, 9.6 and Figs. 9.56,
9.57, 9.58, 9.59 and 9.60 raise the hope that in the future more experiments will be
carried out on zirconia-based composites, exploring the possibilities and methods

Fig. 9.59 Percentage transformability of the ZrO2 matrix against the mol% of yttria content in
that matrix at sintering temperatures of 1200 �C. The t-ZrO2 transformability is defined as: (%m-
ZrO2 on the fractured surface—%m-ZrO2 on the polished surface). The transformability data of
various composite grades processed from the use of ZrO2 powders are indicated by different
symbols: inversed open triangle, co-precipitated grades; and filled triangle, mixed grades [5].
With kind permission of John Wiley and Sons

Fig. 9.60 Crack deflection by the hard second-phase ZrB2 particles (a) and crack wake
debonding of the coarser ZrB2 particles at the interface (b) in the T2B nanocomposite, SPSed at
1200 �C for 5 min (heating rate: 600 K/min) [5]. With kind permission of John Wiley and Sons
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for utilizing transformation-induced toughening as an important contributor to
increased toughness, improved fracture toughness, and enhanced resistance to
fracture of these and other composites.

9.7 Epilogue

Almost all the aspects of mechanical behavior, which were discussed in the earlier
chapters, have now been considered in regard to nanoceramics (in the submicron
range). The mechanical properties of bulk macroceramics are governed by
imperfections (defects), namely various point and line defects (dislocations). Point
defects associated with properties such as creep engage in diffusion-governed-
exchanges of such defects with atoms in their vicinity. This phenomenon also
occurs in nanoceramics. Line defects also operate both in macro- and nanoce-
ramics. However, a limit exists in nanoscale ceramics (below *100 nm), where
dislocation motion is hindered due to spatial limitations. Then, a different defor-
mation mechanism sets in–that of GBS. If dislocation plasticity is absent or
impaired, the possibility of grain-boundary accommodation mechanisms, involv-
ing GBS, play a major role in deformation.

Strain rates associated with this process are proportional to the grain-boundary
diffusivity coefficient and the grain diameter at some power. Generally, defor-
mation by these mechanisms is observed in polycrystalline materials only at ele-
vated temperatures. The hope is that higher, more effective grain-boundary
diffusion coefficients may be realized in nanocrystalline ceramics, so that diffu-
sion-based mechanisms may be induced and activated also at RT.

Although the observed mechanical properties in FG ceramics have been related
to the GBS mechanism, the actual deformation mechanism is still under debate and
may be material-dependent. A concept of plastic deformation has been suggested
as a mechanism involving the non-local, homogeneous nucleation of nanoscale
loops of partial dislocations; also unusual, nonlinear stress and grain-size depen-
dence is assumed to facilitate nanocrystalline plasticity. However, the dominant
mechanism is still GBS. The stress level required to nucleate a dislocation is much
higher than usually encountered in experimental data. Therefore, dislocation
gliding itself is not expected to contribute to total strain.

Naturally, different deformation mechanisms have different mechanical prop-
erties. Specifically, from available experimental evidence, nanoscale ceramics
(and other materials as well) indeed show different mechanical properties. Higher
strength is a common trait of nanoceramics, often found together with ductility;
but the foremost characteristic of some nanoceramics is their ability to deform
superplastically to elongations over 100 % and in certain cases to strains of
hundreds of percents. Large strains, without necking, occur in superplasticity, if
there are the necessary FGs (in the nano range). Sophisticated techniques, such as
SPS, have been developed over the past two decades, enabling the manufacture of
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FG nanoceramics from nanosized powders; the very small dimensions are pre-
requisite to the production of ceramics with reduced flaw content. Sometimes, it is
also necessary to densify these powders by means of additives applied at elevated
temperatures. However, low-temperature sintering and densification methods have
been recently developed. Thus, there should not be any problems in obtaining
nanoscale ceramics to facilitate the forming of materials into desired shapes.
Forging, for example, might become cost-saving, because of the great plasticity of
nanoceramics.

Because the difference in the deformation behavior in nanoscale materials from
those of bulk macroscopic ones it is unlikely that their mechanical properties may
be evaluated by means of direct extrapolation from tests performed on macro-
scopic specimens. Note, however, that the methods and equipment used in regular
mechanical tests are generally not suitable for performing experiments on nano-
metric samples. Due to the sophisticated systems invented for directly studying
nanoscale materials (including ceramics), much understanding of their behavior
has been attained. Their mechanical properties, such as elasticity, plastic creep,
fatigue and fracture can be investigated, as well as a variety of structures (not all of
them included in this book), such as: nanofilms, nanowires, nanotubes and
nanorods of various materials. The experimental research processes have led to the
development of new test methods.

Despite the various views on the exact mechanism responsible for the observed
nano-behavior, it is clear from the experiments that nanoceramics may exhibit
increased strength (hardness, for example), improved toughness, improved duc-
tility and high resistance to fatigue. All these improved properties serve as safe-
guards against unexpected or premature fracture in service. This attitude does not
deny the existence of conflicting or contradictory results originating from exper-
iments by various investigators in different laboratories. One has to remember that
nanoscale materials are very sensitive to their initial microstructure, different
starting powders for sintering and densification and different preparation proce-
dures. Some contradictory experimental results did not prevent engineers from
putting nanoscale materials into immediate use in industry, while keeping their
eyes open and seeking reasons for the discrepancies.
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